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Abstract
Understanding the meaning of a text is a fundamental challenge of natural language understanding (NLU) research. An

ideal NLU system should process a language in a way that is not exclusive to a single task or a dataset. To do so, knowledge

driven generalized semantic representation for English text is utmost important for any NLU applications. Ideally, for any

realistic (human like) NLU system, commonsense reasoning must be an integral part of it and goal directed answer-set-

programming (ASP) is indispensable to do commonsense reasoning. Keeping all of these in mind, we have developed various

NLU application ranging from visual question answering to a conversational agent. In contrast to existing purely machine

learning-based methods for the same tasks, we have shown, our applications not only maintain high accuracy but also

provides explanation for the answer it computes.
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1. Introduction
The long term goal of natural language understanding

(NLU) research is to make applications, e.g., chatbots

and visual/textual question answering (QA) systems, that

act exactly like a human assistant. A human assistant

will understand the user’s intent and fulfill the task. The

task can be answering questions about a story or an im-

age, giving directions to a place, or reserving a table

in a restaurant by knowing user’s preferences. Human

level understanding of natural language is needed for

an NLU application that aspires to act exactly like a hu-

man. To understand the meaning of a natural language

sentence, humans first process the syntactic structure of

the sentence and then infer its meaning. Also, humans

use commonsense knowledge to understand the often

complex and ambiguous meaning of natural language

sentences. Humans interpret a passage as a sequence of

sentences and will normally process the events in the

story in the same order as the sentences. Once humans

understand the meaning of a passage, they can answer

questions posed, along with an explanation for the an-

swer. Similarly, for visual question answering, an image

should be represented in human’s mind, then it is able

to answer natural language questions by understanding

the intent. Moreover, by using commonsense, a human

assistant understands the user’s intended task and asks

questions to the user about the required information to

successfully carry-out the task. Also, to hold a goal ori-
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ented conversation, a human remembers all the details

given in the past and most of the time performs non-

monotonic reasoning to accomplish the assigned task.

We believe that an automated QA system or a goal ori-

ented closed domain chatbot should work in a similar

way.

If we want to build AI systems that emulate humans,

then understanding natural language sentences is the

foremost priority for any NLU application. In an ideal

scenario, an NLU application should map the sentence

to the knowledge (semantics) it represents, augment it

with commonsense knowledge related to the concepts

involved–just as humans do—then use the combined

knowledge to do the required reasoning. In this paper, we

introduce to one of our algorithm [1] for automatically

generating the semantics corresponding to each English

sentence using the comprehensive verb-lexicon for En-

glish verbs - VerbNet [2]. For each English verb, VerbNet

gives the syntactic and semantic patterns. The algorithm

employs partial syntactic matching between parse-tree

of a sentence and a verb’s frame syntax from VerbNet

to obtain the meaning of the sentence in terms of Verb-

Net’s primitive predicates. This matching is motivated by

denotational semantics of programming languages and

can be thought of as mapping parse-trees of sentences to

knowledge that is constructed out of semantics provided

by VerbNet. The VerbNet semantics is expressed using a

set of primitive predicates that can be thought of as the

semantic algebra of the denotational semantics.

Answering questions about a given picture, or Visual

Question Answering (VQA) can be processed similar to

the textual QA. To answer questions about a picture, hu-

mans generally first recognize the objects in the picture,

then they reason with the questions asked using their

commonsense knowledge. To be effective, we believe
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a VQA system should work in a similar way. Thus, to

perceive a picture, ideally, a system should have intu-

itive abilities like object and attribute recognition and

understanding of spatial-relationships. To answer ques-

tions, it must use reasoning. Natural language questions

are complex and ambiguous by nature, and also require

commonsense knowledge for their interpretation. Most

importantly, reasoning skills such as counting, inference,

comparison, etc., are needed to answer these questions.

Here, we present out VQA work — AQuA (ASP-based

Visual Question Answering), that closely simulates the

above described way of an ideal VQA [3].

2. Background
Answer Set Programming (ASP): An answer set pro-

gram is a collection of rules of the form -

𝑙0 ← 𝑙1, ... , 𝑙𝑚, 𝑛𝑜𝑡 𝑙𝑚+1, ... , 𝑛𝑜𝑡 𝑙𝑛.

Classical logic denotes each 𝑙𝑖 is a literal [4]. In an ASP

rule, the left hand side is called the head and the right-

hand side is the body. Constraints are ASP rules without

head, whereas facts are without body. The variables start

with an uppercase letter, while the predicates and the

constants begin with a lowercase. We will follow this

convention throughout the paper. The semantics of ASP

is based on the stable model semantics of logic program-

ming [5]. ASP supports negation as failure [4], allowing

it to elegantly model common sense reasoning, default

rules with exceptions, etc., and serves as the secret sauce

for AQuA’s sophistication.

s(CASP) System: s(CASP) [6] is a query-driven, goal-

directed implementation of ASP that includes constraint

solving over reals. Goal-directed execution of s(CASP) is

indispensable for automating commonsense reasoning,

as traditional grounding and SAT-solver based implemen-

tations of ASP may not be scalable. There are three major

advantages of using the s(CASP) system: (i) s(CASP) does

not ground the program, which makes our framework

scalable, (ii) it only explores the parts of the knowledge

base that are needed to answer a query, and (iii) it pro-

vides natural language justification (proof tree) for an

answer [7].

Denotational Semantics: In programming language re-

search, denotational semantics is a widely used approach

to formalize the meaning of a programming language in

terms of mathematical objects (called domains, such as

integers, truth-values, tuple of values, and, mathematical

functions) [8]. Denotational semantics of a programming

language has three components [8]:

1. Syntax: specified as abstract syntax trees.

NP V NP
Example “She grabbed the rail”
Syntax Agent V Theme
Semantics Continue(E,Theme),Cause(Agent,E)

Contact(During(E),Agent,Theme)

Figure 1: VerbNet frame instance for the verb class grab

2. Semantic Algebra: these are the basic domains

along with the associated operations; meaning

of a program is expressed in terms of these basic

operations applied to the elements in the domain.

3. Valuation Function: these are mappings from

abstract syntax trees (and possibly the semantic

algebra) to values in the semantic algebra.

Given a program P written in language L, P’s denotation

(meaning), expressed in terms of the semantic algebra,

is obtained by applying the valuation function of L to

program P’s syntax tree. Details can be found elsewhere

[8].

VerbNet: Inspired by Beth Levin’s classification of verbs

and their syntactic alternations [9], VerbNet [2] is the

largest online network of English verbs. A verb class in

VerbNet is mainly expressed by syntactic frames, thematic
roles, and semantic representation. The VerbNet lexicon

identifies thematic roles and syntactic patterns of each

verb class and infers the common syntactic structure and

semantic relations for all the member verbs. Figure 1

shows an example of a VerbNet frame of the verb class

grab.

3. Commonsense Reasoning with
Default Theories

As mentioned earlier, a realistic socialbot should be able

to understand and reason like a human. In human to

human conversations, we do not always tell every detail,

we expect the listener to fill gaps through their common-

sense knowledge and commonsense reasoning. Thus, to

obtain a conversational bot, we need to automate com-

monsense reasoning, i.e., automate the human thought

process. The human thought process is flexible and non-
monotonic in nature, which means “what we believe to-
day may become false in the future with new knowledge”.
We can model commonsense reasoning with (i) default

rules, (ii) exceptions to defaults, (iii) preferences over

multiple defaults [5], and (iv) modeling multiple worlds
[4, 10].

Much of human knowledge consists of default rules,

for example, the rule: Normally, birds fly. However, there

are exceptions to defaults, for example, penguins are ex-
ceptional birds that do not fly. Reasoning with default



rules is non-monotonic, as a conclusion drawn using a

default rule may have to be withdrawn if more knowl-

edge becomes available and the exceptional case applies.

For example, if we are told that Tweety is a bird, we will

conclude it flies. Later, knowing that Tweety is a penguin

will cause us to withdraw our earlier conclusion.

Humans often make inferences in the absence of com-

plete information. Such an inference may be revised later

as more information becomes available. This human-

style reasoning is elegantly captured by default rules and

exceptions. Preferences are needed when there are mul-

tiple default rules, in which case additional information

gleaned from the context is used to resolve which rule

is applicable. One could argue that expert knowledge

amounts to learning defaults, exceptions and preferences

in the field that a person is an expert in.

Also, humans can naturally deal with multiple worlds.
These worlds may be consistent with each other in some

parts, but inconsistent in other parts. For example, ani-

mals don’t talk like humans in the real world, however, in

the cartoon world, animals do talk like humans. So, a fish

called Nemo, may be able to swim in both the real world

and the cartoon world, but can only talk in the cartoon

world. Humans have no trouble separating cartoon world

from real world and switching between the two as the sit-

uation demands. Default reasoning augmented with the

ability to operate in multiple worlds, allows one to closely

represent the human thought process. Default rules with

exceptions and preferences and multiple worlds can be

elegantly realized with answer set programming [4, 10]

and the s(CASP) system [6].

4. Visual Question Answering
Our work — AQuA (ASP-based Question Answering) is

an Answer Set Programming (ASP) based visual question

answering framework that truly “understands” an input

picture and answers natural language questions about

that picture [3]. This framework achieves 93.7% accu-

racy on CLEVR dataset, which exceeds human baseline

performance. What is significant is that AQuA trans-

lates a question into an ASP query without requiring

any training. AQuA replicates a human’s VQA behavior

by incorporating commonsense knowledge and using

ASP for reasoning. VQA in the AQuA framework em-

ploys the following sources of knowledge: (i) knowledge

about objects extracted using the YOLO algorithm [11],

(ii) semantic relations extracted from the question, (iii)

query generated from the question, and (iv) common-

sense knowledge. AQuA runs on the query-driven, scal-

able s(CASP) [6] answer set programming system that

can provide a proof tree as a justification for the query

being processed.

AQuA processes and reasons over raw textual ques-

tions and does not need any annotation or generation

of function units such as what is employed by several

approaches proposed for the CLEVR dataset [12, 13, 14].

Also, instead of predicting an answer, AQuA augments

the parsed question with commonsense knowledge to

truly understand it and to compute the correct answer

(e.g., it understands that block means cube, or shiny object
means metal object).

4.1. Technical Approach
AQuA represents knowledge using ASP paradigm and it

is made up of five modules that perform the following

tasks: (i) object detection and feature extraction using the

YOLO algorithm [11], (ii) preprocessing of the natural

language question, (iii) semantic relation extraction from

the question, (iv) Query generation based on semantic

analysis, and (v) commonsense knowledge representa-

tion. AQuA runs on the query-driven, scalable s(CASP)

[6] answer set programming system that can provide a

proof tree as a justification for a query being processed.

Figure 2 shows AQuA’s architecture. The five modules

are labeled, respectively, YOLO, Preprocessor, Semantic

Relation Extractor (SRE), Query Generator, and Common-

sense Knowledge.

Preprocessor module extracts information from the

question by using Stanford CoreNLP parts-of-speech

(POS) tagger and dependency graph generator. The out-

put of the Preprocessing module will be consumed by

the Query Generator and the Semantic Relation Extrac-

tion (SRE) modules. AQuA transforms natural language

questions to a logical representation before feeding it

to the ASP engine. The logical representation module

is inspired by Neo-Davidsonian formalism [15], where

every event is recognized with a unique identifier. Next,

the semantic relation labeling is the process of assigning

relationship labels to two different phrases in a sentence

Figure 2: AQuA System Architecture



Question Type Accuracy (%)
Exist 96
Count 91.7

Compare Value

Shape 87.42

92.89Color 94.32
Size 92.17

Material 96.14

Compare Integer

Less Than 97.7

98.05Greater Than 98.6
Equal NA*

Query Attribute

Shape 94.01

94.39Color 94.87
Size 93.82

Material 94.75

Table 1
AQuA Performance Results

* Equality questions are minuscule in number so currently
ignored.

based on the context. To understand the CLEVR dataset

questions, AQuA requires two types of semantic rela-

tions (i.e., quantification and property) to be extracted (if

they exists) from the questions. Based on the knowledge

from a question, AQuA generates a list of ASP clauses

with the query, which runs on the s(CASP) engine to

find the answer. In general, questions with one-word

answer are categorized into: (i) yes/no questions, and

(ii) attribute/value questions. Similar to a human, AQuA

requires commonsense knowledge to correctly compute

answers to questions. For the CLEVR dataset questions,

AQuA needs to have commonsense knowledge about

properties (e.g., color, size, material), directions (e.g., left,

front), and shapes (e.g., cube, sphere). AQuA will not

be able to understand question phrases such as ’... red
metal cube ...’, unless it knows red is a color, metal is a

material, and cube is a shape. Finally, the ASP engine

is the brain of our system. All the knowledge (image

representation,commonsense knowledge, semantic rela-

tions) and the query in ASP syntax are executed using

the query-driven s(CASP) system

4.2. Experiments and Results
We tested our AQuA framework on the CLEVR dataset

[16] and we got accuracy of 93.7% with 42,314 correct

answers out of 45,157 questions. This performance is

beyond the average human accuracy. Quantitative results

for each question type are summarized in Table 1.

We have extensively studied the 2,843 questions that

produced erroneous results. Our manual analysis showed

that mismatch happens mostly because of errors caused

by the YOLO module: failing to detect a partially vis-

ible object, wrongly detecting a shadow as an object,

wrongly detecting two overlapping objects as one, etc.

Other reasons for wrong answers are wrong parsing or

oversimplified spatial reasoning.

5. Textual Question Answering
Unlike programming languages, the denotation of a nat-

ural language can be quite ambiguous. English is no

exception and the meaning of a word or sentence may

depend on the context. The generation of correct knowl-

edge from a sentence, hence, is quite hard. We have

developed a VerbNet based algorithm for semantic gener-

ation of English text. In this section, we present a novel

approach to automatically map parse trees of simple En-

glish sentences to their denotations, i.e., knowledge they

represent [17]. We applied this approach to construct

two NLU applications that we present here: SQuARE

(Semantic-based Question Answering and Reasoning En-

gine) and StaCACK (Stateful Conversational Agent using

Commonsense Knowledge).

5.1. Semantics-driven ASP Code
Generation

Similar to the denotational approach for meaning rep-

resentation of a programming language, an ideal NLU

system should use denotational semantics to composi-

tionally map text syntax to its meaning. Knowledge prim-

itives should be represented using the semantic algebra
[8] of well understood concepts. Then the semantics

along with the commonsense knowledge represented us-

ing the same semantic algebra can be used to construct

different NLU applications, such as QA system, chatbot,

information extraction system, text summarization, etc.

The ambiguous nature of natural language is the main

hurdle in treating it as a programming language. English

is no exception and the meaning of an English word or

sentence may depend on the context. The algorithm we

present takes the syntactic parse tree of an English sen-

tence and uses VerbNet to automatically map the parse

tree to its denotation, i.e., the knowledge it represents.

An English sentence that consists of an action verb

(i.e., not a be verb) always describes an event. The verb

also constrains the relation among the event participants.

VerbNet encapsulates all of this information using verb

classes that represent a verb set with similar meanings.

So each verb is a part of one or more classes. For each

class, it provides the skeletal parse tree (frame syntax)

for different usage of the verb class and the respective

semantics (frame semantic). The semantic definition of

each frame uses pre-defined predicates of VerbNet that

have thematic-roles (AGENT, THEME, etc.) as arguments.

Thus, we can imagine VerbNet as a very large valuation

(semantic) function that maps syntax tree patterns to

their respective meanings. As we use ASP to represent

the knowledge, the algorithm generates the sentence’s



Algorithm 1 Semantic Knowledge Generation

Input: 𝑝𝑡: constituency parse tree of a sentence

Output: semantics: sentence semantics

1: procedure GetSentenceSemantics(𝑝𝑡)

2: verbs ← getVerbs(𝑝𝑡) ◁ returns list of verbs present

in the sentence

3: semantics ← {} ◁ initialization

4: for each 𝑣 ∈ verbs do
5: classes ← getVNClasses(v) ◁ get the VerbNet

classes of the verb

6: for each 𝑐 ∈ classes do
7: frames ← getVNFrames(c) ◁ get the

VerbNet frames of the class

8: for each 𝑓 ∈ frames do
9: thematicRoles ←

getThematicRoles(𝑝𝑡, f.syntax, v) ◁ see Algorithm 2

10: semantics ← semantics ∪
getSemantics(thematicRoles, f.semantics)

11: ◁ map the thematic roles into the frame semantics

12: end for
13: end for
14: end for
15: return semantics

16: end procedure

semantic definition in ASP. Our goal is to find the partial
matching between the sentence parse tree and the Verb-
Net frame syntax and ground the thematic-role variables
so that we can get the semantics of the sentence from the
frame semantics and represent it in ASP.

The illustration of the process of semantic knowledge

generation from a sentence is described in the Figure 3.

We have used Stanford’s CoreNLP parser [18] to generate

the parse tree, 𝑝𝑡, of an English sentence. The semantic

generator component consists of the valuation function

to map the 𝑝𝑡 to its meaning. To accomplish this, we

have introduced Semantic Knowledge Generation algo-

rithm (Algorithm 1). First, the algorithm collects the list

of verbs mentioned in the sentence and for each verb

it accumulates all the syntactic (frame syntax) and cor-

responding semantic information (thematic roles and

Stanford CoreNLP
Parser

Semantic Generator
(Valuation Function

contact(during(grab),agent(john),theme(the_apple)).
continue(event(grab),theme(the_apple)).
transfer(during(grab),theme(the_apple)).
cause(agent(john),event(grab)).
...
...

Sentence
(John grabbed 
the apple there)

VerbNet

VerbNet
Frames

Verb
(grab)

Sentence Semantics
Represented in ASP

Parse Tree

Figure 3: English to ASP translation process

Algorithm 2 Partial Tree Matching

Input: 𝑝𝑡: constituency parse tree of a sentence; s:

frame syntax; v: verb

Output: tr : thematic role set or empty-set: {}

1: procedure GetThematicRoles(𝑝𝑡, s, v)

2: root ← getSubTree(node(v), 𝑝𝑡) ◁ returns the

sub-tree from the parent of the verb node

3: while root do
4: 𝑡𝑟 ← 𝑔𝑒𝑡𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑟𝑜𝑜𝑡, 𝑠) ◁ if s matches the

tree return thematic-roles, else {}

5: if 𝑡𝑟 ̸= {} then return tr

6: end if
7: root ← getSubTree(root, 𝑝𝑡) ◁ returns false if

root equals 𝑝𝑡
8: end while
9: return {}

10: end procedure

predicates) from VerbNet using the verb-class of the verb.

The algorithm finds the grounded thematic-role variables

by doing a partial tree matching (described in Algorithm

2) between each gathered frame syntax and 𝑝𝑡. From

the verb node of 𝑝𝑡, the partial tree matching algorithm

performs a bottom-up search and, at each level through

a depth-first traversal, it tries to match the skeletal parse

tree of the frame syntax. If the algorithm finds an exact

or a partial match (by skipping words, e.g., prepositions),

it returns the thematic roles to the parent Algorithm 1.

Finally, Algorithm 1 grounds the pre-defined predicate

with the values of thematic roles and generates ASP code.

The ASP code generated by the above mentioned ap-

proach represents the meaning of a sentence comprised

of an action verb. Since VerbNet does not cover the se-

mantics of the ‘be’ verbs (i.e., am, is, are, have, etc.), for

sentences containing ‘be’ verbs, the semantic generator
uses pre-defined handcrafted mapping of the parsed in-

formation (i.e., syntactic parse tree, dependency graph,

etc.) to its semantics. Also, this semantics is represented

as ASP code. The generated ASP code can now be used

in various applications, such as natural language QA,

summarization, information extraction, Conversational

Agents (CA), etc.

5.2. SQuARE
Question answering system for reading comprehension

is a challenging task for the NLU research community.

In recent times with the advancement of ML applied

to NLU, researchers have created more advanced QA

systems that show outstanding performance in QA for

reading-comprehension tasks. However, for these high

performing neural-networks based agents, the question

rises whether they really “understand” the text or not.

These systems are outstanding in learning data patterns

and then predicting the answers that require shallow



Natural Language
Processor

(CoreNLP & spaCy)

Text Question

Semantic
Generator

ASP Query
Generator

Valuation Function

s(CASP) 
Engine

Syntactic
Parse Tree

Syntactic
Parse Tree

Semantic
Knowledge in

ASP ASP Query

Answer

(Text) (Question)

Commonsense Knowledge

Figure 4: SQuARE Framework

or no reasoning capabilities. Moreover, for some QA

tasks, if a system claims that it performs equal or bet-

ter than a human in terms of accuracy, then the system

must also show human level intelligence in explaining

its answers. Taking all this into account, we have created

our SQuARE QA system that uses ML based parser to

generate the syntax tree and uses Algorithm 1 to trans-

late a sentence into its knowledge in ASP. By using the

ASP-coded knowledge along with pre-defined generic

commonsense knowledge, SQuARE outperforms other

ML based systems by achieving 100% accuracy in 18 tasks

(99.9% accuracy in all 20 tasks) of the bAbI QA dataset

(note that the 0.01% inaccuracy is due to the dataset’s flaw,

not of our system). SQuARE is also capable of generating

English justification of its answers.

SQuARE is composed of two main sub systems: the

semantic generator and the ASP query generator. Both

subsystems inside the SQuARE architecture (illustrated

in Figure 4) share the common valuation function.

Example: To demonstrate the power of the SQuARE

system, we next discuss a full-fledged example showing

the data-flow and the intermediate results.

Story: A customized segment of a story from the bAbI

QA dataset about counting objects (Task-7) is taken.

1 John moved to the bedroom.

2 John got the football there.

3 John grabbed the apple there.

4 John picked up the milk there.

5 John gave the apple to Mary.

6 John left the football.

Parsed Output: CoreNLP and spaCy parsers parse each

sentence of the story and pass the parsed information

to the semantic generator. Details are omitted due to

lack of space, however, parsing can be easily done at

https://corenlp.run/.

Semantics: From the parsed information, the semantic
generator generates the semantic knowledge in ASP. We

 The total count of all the objects that john is possessing at time t6 is 1, because
[the_milk] is the list of all the objects that are possessed by john at time t6,  
                                                                                                            because

the_milk is possessed by john at time t6, because
time t6 comes after time t5, and
the_milk is possessed by john at time t5, because

time t5 comes after time t4, and
the_milk is possessed by john at time t4, and
there is no evidence that the_milk is not possessed by john at time t5.

there is no evidence that the_milk is not possessed by john at time t6.
The list [the_milk] is generated after removing duplicates from the list [the_milk], 
                                                                                                             because

The list [] is generated after removing duplicates from the list [].
1 is the length of the list [the_milk], because

0 is the length of the list [].

Figure 5: Natural language justification

only give a snippet of knowledge (due to space constraint)

generated from the third sentence of the story (VerbNet

details of the verb - grab is given in Figure 1).

1 contact(t3,during(grab),agent(john),
theme(the_apple)).

2 cause(t3,agent(john),event(grab)).
3 transfer(t3,during(grab),

theme(the_apple)).

Question and ASP Query: For the question - “How
many objects is John carrying?”, the ASP query generator
generates a generic query-rule and the specific ASP query

(it uses the process template for counting).

count_object(T,Per,Count) :-
findall(O,property(possession,T,Per,O),Os),
set(Os,Objects),list_length(Objects,Count).

?- count_object(t6,john,Count).

Answer: The s(CASP) system finds the correct answer -

1.

Justification: The s(CASP) system generated justifica-

tion for this answer is shown in Figure 5.

5.3. StaCACK
Conversational AI has been an active area of research,

starting from a rule-based system, such as ELIZA [19] and

PARRY [20], to the recent open domain, data-driven CAs

like Amazon’s Alexa, Google Assistant, or Apple’s Siri.

Early rule-based bots were based on just syntax analysis,

while the main challenge of modern ML based chat-bots

is the lack of “understanding” of the conversation. A re-

alistic socialbot should be able to understand and reason

like a human. In human to human conversations, we

do not always tell every detail, we expect the listener to

fill gaps through their commonsense knowledge. Also,

our thinking process is flexible and non-monotonic in

nature, which means “what we believe today may become
false in the future with new knowledge”. We can model

this human thinking process with (i) default rules, (ii)

exceptions to defaults, and (iii) preferences over multiple

defaults [4].
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Figure 6: FSM for StaCACK framework

Following the discussion above, we have created Sta-

CACK, a general closed-domain chatbot framework. Sta-

CACK is a stateful framework that maintains states by

remembering every past dialog between the user and

itself. The main difference between StaCACK and the

other stateful or stateless chatbot models is the use of

commonsense knowledge for understanding user utter-

ances and generating responses. Moreover, it is capable

of doing non-monotonic reasoning by using defaults with

Tasks
Model

MemNN
(AM+
NG+
NL)

Mitra
et al.

SQu-
ARE

Single Supporting Fact 100 100 100
Two Supporting Facts 98 100 100
Three Supporting Facts 95 100 100

Two Arg. Relation 100 100 100
Three Arg. Relation 99 100 99.8
Yes/No Questions 100 100 100

Counting 97 100 100
Lists/Sets 97 100 100

Simple Negation 100 100 100
Indefinite Knowledge 98 100 98.2
Basic Coreference 100 100 100

Conjunction 100 100 100
Compound Coreference 100 100 100

Time Reasoning 100 100 100
Basic Deduction 100 100 100
Basic Induction 99 93.6 100

Positional Reasoning 60 100 100
Size Reasoning 95 100 100
Path Finding 35 100 100

Agent’s Motivations 100 100 100
MEAN ACCURACY 94 100 100

Table 2
SQuARE accuracy (%) comparison

exceptions and preferences in ASP.

Task-specific CAs follow a certain scheme in their in-

quiry that can be modeled as a finite state machine (FSM).

The FSM is illustrated in Figure 6. However, the tasks in

each state transition are not simple as in every level it

requires different types of (commonsense) reasoning.

StaCACK achieves 100% accuracy on the Facebook

bAbI dialog dataset suit [21] (including OOV: out-of-

vocabulary datasets) of five tasks created for a restau-

rant reservation dialog system. In addition, StaCACK

can answer questions that ML chatbots cannot without

proper training (details are given in following sections).

We focus on agents that are designed for a specific tasks

(e.g., restaurant reservation).

Example: StaCACK is able to hold the conversation in

a more natural way by using commonsense knowledge,

which may not be possible with a rule-based system based

on a monotonic logic. Following example shows how Sta-

CACK can understand the cuisine preference of a user,

just by performing reasoning over commonsense infor-

mation about a cuisine (that curry is predominant in

Indian and Thai cuisine).

User: Good morning.
StaCACK: Hello what can i help you with

today?
User: Can you make a restaurant

reservation in London in a cheap
price range?

StaCACK: I’m on it.
User: <SILENCE>
StaCACK: Any preference on a type of

cuisine?
User: Anything, except Lebanese food.
StaCACK: Do you want to have Chinese

food?
User: I want to have curry.
StaCACK: Do you like Indian or Thai?

User: Thai.

5.4. Experiments and Results
The SQuARE and the StaCACK system have been tested

on the bAbI QA [22] and the bAbI dialog dataset respec-

tively [21]. With the aim of improving NLU research,

Facebook researchers have created the bAbI datasets suit

comprising of different NLU application-oriented sim-

ple task-based datasets. The datasets are designed in

such a way that it becomes easy for human to reason

and reach an answer with proper justification whereas

difficult for machines due to the lack of understanding

about the language. In the SQuARE system, the accuracy

has been calculated by matching the generated answer

with the actual answer given in the bAbI QA dataset.

Whereas, StaCACK’s accuracy is calculated on the basis

of per-response as well as per-dialog. Table 2 and table 3

compares our results in terms of accuracy with the ex-



Mem2Seq BossNet StaCACK
Task 1 100 (100) 100 (100) 100 (100)
Task 2 100 (100) 100 (100) 100 (100)
Task 3 94.7 (62.1) 95.2 (63.8) 100 (100)
Task 4 100 (100) 100 (100) 100 (100)
Task 5 97.9 (69.6) 97.3 (65.6) 100 (100)
Task 1
(OOV) 94.0 (62.2) 100 (100) 100 (100)

Task 2
(OOV) 86.5 (12.4) 100 (100) 100 (100)

Task 3
(OOV) 90.3 (38.7) 95.7 (66.6) 100 (100)

Task 4
(OOV) 100 (100) 100 (100) 100 (100)

Task 5
(OOV) 84.5 (2.3) 91.7 (18.5) 100 (100)

Table 3
StaCACK accuracy per response (per dialog) in %.

isting state-of-the-art results for SQuARE and StaCACK

system respectively.

6. Social-Bot
Using the similar technology of the StaCACK system, We

have designed and developed the CASPR system, a social-

bot designed to compete in the Amazon Alexa Socialbot

Challenge 4. CASPR’s distinguishing characteristic is

that it will use automated commonsense reasoning to

truly “understand” dialogs, allowing it to converse like a

human. Three main requirements of a socialbot are that it

should be able to “understand” users’ utterances, possess

a strategy for holding a conversation, and be able to learn

new knowledge. We developed techniques such as con-

versational knowledge template (CKT) to approximate

commonsense reasoning needed to hold a conversation

on specific topics.

Our philosophy is to design a socialbot that emulates,

as much as possible, the way humans conduct social con-

versations. Humans employ both learned-pattern match-

ing (e.g., recognizing user sentiments) and commonsense

reasoning (e.g., if a user starts talking about having seen

the Eiffel Tower, we infer that they must have traveled to

France in the past) during a conversation. Thus, ideally,

a socialbot should make use of both machine learning

as well as commonsense reasoning technologies. Our

goal is to use the appropriate technology for a task, i.e.,

use machine learning and commonsense reasoning for

respective tasks that they are good at. Machine learning

is good for tasks such as parsing, topic modeling, and

sentiment detection while commonsense reasoning is

good for tasks such as generating a response to an ut-

terance. In a nutshell, we should use machine learning

for modeling System 1 thinking and commonsense rea-

soning for modeling System 2 thinking [23]. We strongly

believe that intelligent systems that emulate human abil-

ity should follow this approach, especially, if we desire

true understanding and explainability.

CASPR’s conversation planning is centered around a

loop in which it moves from topic to topic, and within a

topic, it moves from one attribute of that topic to another.

Thus, CASPR has an outer conversation loop to hold the

conversation at the topmost level and an inner loop in

which it moves from attribute to attribute of a topic. The

logic of these loops is slightly involved, as a user may

return to a topic or an attribute at any time, and CASPR

must remember where the user left off in that topic or

attribute. For the inner loops, CASPR uses a template,

called conversational knowledge template (CKT), that

can be used to automatically generate code that loops

over the attributes of a topic, or loops through various

dialogs (mini-CKT) that need to be spoken by CASPR for

a given topic.

7. Conclusion and Future Work
In this paper, we discussed about our ASP based ap-

proaches to overcome the challenges of NLU. In the pro-

cess of that we presented a visual question answering

framework — AQuA. In the textual QA domain, we in-

troduced to our novel semantics-driven English text to

answer set program generator. Also, we showed how

commonsense reasoning coded in ASP can be leveraged

to develop advanced NLU applications, such as SQuARE

and StaCACK. We make use of the s(CASP) engine, a

query-driven implementation of ASP, to perform reason-

ing while generating a natural language explanation for

any computed answer. At the end, we discussed about the

design philosophy behind our social-bot CASPR and how

we have qualified to participate in the Amazon Alexa

Socialbot Challenge 4. As part of future work, we plan

to extend the SQuARE system to handle more complex

sentences and eventually handle complex stories. Our

goal is also to develop an open-domain conversational

AI chatbot based on automated commonsense reason-

ing that can “converse” with a human based on “truly

understanding” that person’s utterances.
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