CEUR-WS.org/Vol-2970/gdepaper7.pdf

AUTO-DISCERN: Autonomous Driving Using Common Sense Reasoning

Suraj Kothawade, Vinaya Khandelwal, Kinjal Basu, Huaduo Wang, Gopal Gupta

Computer Science Department, The University of Texas at Dallas, Richardson, USA
{suraj.kothawade, vinaya.khandelwal, kinjal.basu, huaduo.wang, gupta} @utdallas.edu

Abstract

Driving an automobile involves the tasks of observing sur-
roundings, then making a driving decision based on these ob-
servations (steer, brake, coast, etc.). In autonomous driving,
all these tasks have to be automated. Autonomous driving
technology thus far has relied primarily on machine learning
techniques. We argue that appropriate technology should be
used for the appropriate task. That is, while machine learn-
ing technology is good for observing and automatically un-
derstanding the surroundings of an automobile, driving deci-
sions are better automated via commonsense reasoning rather
than machine learning. In this paper, we discuss (i) how com-
monsense reasoning can be automated using answer set pro-
gramming (ASP) and the goal-directed s(CASP) ASP sys-
tem, and (ii) develop the AUTO-DISCERN |f| system using this
technology for automating decision-making in driving. The
goal of our research, described in this paper, is to develop
an autonomous driving system that works by simulating the
mind of a human driver. Since driving decisions are based on
human-style reasoning, they are explainable, their ethics can
be ensured, and they will always be correct, provided the sys-
tem modeling and system inputs are correct.

1 Introduction

Autonomous Vehicles (AVs) have been sought for a long
time. With the availability of cheaper hardware (sensors,
cameras, LIDAR) and the advent of advanced software tech-
nology (Al, Machine/Deep learning (ML/DL), Computer
Vision) over the last decades, rapid advancements have been
made in AV technology. However, no car has yet achieved
full automation or Society of Automation Engineers (SAE)
Level 5 (BlancoMay, 2021)). We believe that AV technology
advancement has slowed due to over-reliance on ML/DL for
automating all aspects of AVs. While ML technologies are
important for developing AV technology, we believe that we
can achieve better success by closely emulating how humans
drive a car. Once a human driver has viewed their surround-
ing and processed a scene in their mind, they use their com-
monsense knowledge and commonsense reasoning to make
driving decisions (e.g., if the traffic light is red, apply brakes
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Figure 1: Overview of the AUTO-DISCERN system.

and stop). Our goal in this paper is to develop an AV sys-
tem that emulates the mind of a human: we will use ML/DL
technology for tasks for which humans use pattern matching
(vision and scene understanding) and automated common-
sense reasoning for tasks for which humans perform mental
reasoning (driving decision-making)(see Fig.[I).

To automate commonsense reasoning, we use ASP (Gel-
fond and Kahl|2014; Brewka et al.[2011;|Gebser et al.[2014)
and the goal-driven implementation of ASP called s(CASP)
(Arias et al.|2018])). A goal-driven implementation of ASP is
important for automated commonsense reasoning as SAT-
solver based implementations such as CLINGO (Gebser
et al|2014) face several practical issues (e.g., scalability,
explainability) (Gupta et al.|2017) for applications such as
autonomous driving.

2 Autonomous Vehicle Technology

We express various decision making strategies that drivers
use as commonsense rules in ASP, that will be executed
on the s(CASP) system. These rules capture various driv-
ing decisions regarding steering, turning, braking, acceler-
ating, stopping, etc. We also report on a prototype system
called AUTO-DISCERN that we have developed that takes a
scene-description and sensor values as input and calculates
the driving decision at that instant using the rules. A use case
is shown in Fig. [I] We expect that a scene description (per-
ception) will be obtained via image processing techniques
that use deep learning methods. Because our decision mak-
ing is based on automated commonsense reasoning, every



decision can be explained, and, in theory, our system will
never make a wrong decision, as long as the rules are cor-
rect and system input is correct.

Our main contribution in this paper is to show how auto-
mated commonsense reasoning can be harnessed to achieve
an SAE Level 5 autonomous driving system.

Autonomous vehicles (AVs) hold enormous promise: they
can reduce the cost of transportation and increase conve-
nience, as well as reduce road accidents and traffic fatali-
ties by a significant number. AVs can also have a big en-
vironmental impact: private ownership of cars can become
unnecessary. AVs can greatly aid in the mobility of elderly,
disabled, and disadvantaged. The story of AVs has been one
of great optimism: it was projected in 2017 that there will
be 10 million AVs on the road by 2020 and that fully au-
tonomous vehicles will be the norm in 10 years. Not only we
have not reached the 10M vehicle mark, but also no vehicle
has earned the fully automated (SAE Level 5) designation.

The history of making vehicles autonomous began with

the introduction of the cruise control in 1948
contributors| 2021). In 1999, the US Federal Communica-
tion Commission allocated 75 MHz of spectrum dedicated
to short range communication. In early 2000s, several teams
developed and demonstrated autonomous cars in response
to a DARPA grand challenge (DARPA|[2014} [Thrun|2010).
In 2009, Google began its self-driving project, and in 2014
Google’s AV passed a 14-mile driving test in Nevada. The
US National Highway Transportation and Safety Adminis-
tration (NHTSA) released its initial policy on AVs that year,
and in 2015, Tesla released its autopilot self-driving soft-
ware. Since then, many other companies have entered the
market, and many partnerships have been forged between
them. The Society of Automation Engineers developed a
scale for vehicle automation: Level 0: No automation; Level
1: Driver assistance (e.g., cruise control); Level 2: Partial
automation (perform steering and acceleration under human
watch); Level 3: Conditional automation (most tasks can be
performed, but human driver has control; Level 4: High au-
tomation (car can perform all tasks under specific circum-
stances, e.g., in a geo-fenced area; human over-ride is still
possible); Level 5: Full automation (all tasks automated; no
human intervention required at all).
No car has reached SAE Level 5 yet. The principle reason,
we believe, is over-reliance on ML and DL technologies for
most aspects of driving. Our goal here is to show that au-
tomated commonsense reasoning is essential for achieving
SAE Level 5 automation.

3 Machine Learning-based AV Systems

At present, machine learning plays a major role in the AV
technology. A significant amount of technology goes into an
AV: radar (to detect cars and other large objects), ultrasonic
sensors (to detect objects close by, e.g, the curb), lidar (to
detect lane markings, edge of a road, etc.), GPS (for direc-
tion to destination and knowing AV’s location), and video
cameras (for obtaining the surrounding scene and analyz-
ing it). All these are connected to a central computer where
processing takes place. Driving data is collected along with
sensor readings, video images, Lidar data, etc. In NVidia’s

Figure 2: Tesla self-driving fails to perform a lane merge
right. The radar sensor detects a barrier to the left. However
the visual component is confused by the reflection on the
barrier (likely thinks of it as a yellow dividing lane marking)
and does not register that the lane is ending.

PilotNet project (Bojarski et al.|2020), for example, a deep
learning model is trained on this data to make one of three

decisions: steering along a predicted trajectory, amount of
braking, and amount of acceleration. Predicted trajectories
are one of the following: (i) lane stable (keep driving in the
same lane); (ii) change to left lane (first half of left-lane-
change maneuver); (iii) change to left lane (second half of
left-lane-change maneuver); (iv) change to right lane (first
half of right-lane-change maneuver); (v) change to right lane
(second half of right-lane-change maneuver); (vi) split right
(e.g. take an exit ramp); (vii) split left (e.g., left branch of a
fork in the road). A ML based solution can be boiled down to
predicting the degree of steering, the amount of braking, and
the amount of acceleration at every moment during driving.
Of course, the last two are mutually exclusive, that acceler-
ation and braking are rarely needed at the same time.
Neural-based technology has a number of well-known is-
sues with respect to accurate prediction of an outcome. An
ML algorithm is a universal function that learns an approx-
imate mapping from an input to an output in accordance to
the training data. This technology is fundamentally statisti-
cal. Edge cases, unusual circumstances that are uncommon
in training data, are not covered. Obviously, anything outside
the training data is not learned. This is especially true for au-
tonomous driving, where there are many situations that may
never be encountered in the driving data collected for train-
ing. A good example of this is flashing red and blue lights
in police cars and fire trucks that Tesla autopilot system has
had trouble with (Shen|2021). There are many such exam-
ples where a ML system gets confused by the noise present
in the data and generates an erroneous model. Fig. 2] shows
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Figure 3: Partial modifications to traffic signs can cause ML
models to misclassify the sign entirely. A stop sign can be
classified into a speed limit. Speed limits can be misinter-
preted as well, a small tape can make 35 to be classified as
85.

a scenario where Tesla AV model fails to detect a barrier on
the left. Fig. [B]shows an example where slight perturbations
to traffic signs can cause failure cases in ML models. There
are many instances where an AV got into an accident, result-
ing in loss of life (Law|2021)). We believe that our common-
sense reasoning-based AUTO-DISCERN system can safely
deal with situations where other ML-based systems failed
(see error mitigation in Sec.[6.3).

Because of these issues, many companies have scaled
down their ambitions down from SAE level 5. Some com-
panies shut down (e.g., Starsky Robotics). Others (e.g.,
Waymo) revised their goal down to achieving SAE Level
4 while others have restricted autonomous behavior within
limited circumstances (e.g., geo-fenced areas). So the goal
of reaching SAE Level 5 seems illusive. In this paper, we
argue that SAE Level 5 can be reached via automated com-
monsense reasoning. In fact, we believe that automated com-
monsense reasoning is indispensable for the AV technology
to reach SAE Level 5 (full automation).

4 AV based on Commonsense Reasoning:
Motivation
To drive a vehicle, a human driver must have the:

1. ability to control the vehicle, i.e., be able to steer, brake,
accelerate, and signal for a turn.

2. ability to make visual deductive inferences, i.e., be able
to see objects in front of or around the vehicle and
make decisions, estimate the speed of objects, and project
where they will be in the near future.

3. ability to make a visual abductive inference, i.e.: (i) be
able to infer hidden or occluded parts of the objects; e.g.,
a car will normally have four tires, even though only two
are visible; (ii) be able to perform counterfactual (“what-
if”’) reasoning.

4. ability to distinguish between various scenarios, e.g., be
able to tell, for example, that a car in a bill board is not
the same as a car on the street.

Essentially, there are two types of tasks involved in driv-
ing: (i) visual scene processing and inferencing (tasks #2
through #4 above) and (ii) controlling the vehicle (task #1).
Learning to control the vehicle is hard for humans, but vi-
sual inferencing comes naturally to us. Controlling the ve-
hicle is easy for a machine, learning visual inferencing is
significantly harder for it.

To realize truly autonomous vehicles (SAE Level 5), we
need to emulate the way humans drive cars, i.e., use ML
for scene processing, while using automated commonsense
reasoning for making inferences regarding driving actions.
Once an inference is made (steer, accelerate, brake, etc.),
it can be easily carried out by the machine. Our ideas are
based on the insight that for tasks for which humans use pat-
tern matching (e.g., picture recognition), we should use ML
technology, while for tasks for which humans use deduction,
we should use automated reasoning. The current practice of
using ML for all AV tasks is overkill and is preventing us
from reaching SAE Level 5.

We envisage that the cameras will provide an image of
the surroundings every second or so. This image will be pro-
cessed using deep learning (object, lane detection, depth pre-
diction, etc.) so that all the items present in the picture will
be labeled and their bounding-boxes marked. The labels will
be predicates, that will be extracted from the picture, along
with coordinates of each bounding-box. A picture can be
labeled with predicates with the help of datasets such as Vi-
sual Genome (Krishna, Zhu et al.|2016) and systems such
as DenseCap (Johnson, Karpathy, and Fei-Fei/2016). These
predicates that describe the picture, constitute the input to
the AUTO-DISCERN system. The commonsense rules that
a human driver uses will take this data (expressed as predi-
cates that capture the position and spatial relationship among
various objects in the scene) as input to compute a driving
decision. The question then arises: How does one automate
commonsense reasoning?

5 Background

Commonsense Reasoning: As mentioned earlier, an au-
tonomous driving system should be able to understand and
reason like a human driver. If we examine how we humans
reason, we fill lot of gaps in our understanding of a scene,
conversation, or a piece of text we read, through our com-
monsense knowledge and reasoning (e.g., if we see a car
moving fast on a road, we use our commonsense knowl-
edge to infer that, normally, there must be a driver inside).
Thus, to develop autonomous driving software, we need to
automate commonsense reasoning, i.e., automate the human
thought process. The human thought process is flexible and
non-monotonic in nature, which means “what we believe
now may become false in the future with new knowledge”.
It is well known that commonsense reasoning can be mod-
eled with (i) defaults, (ii) exceptions to defaults, (iii) pref-
erences over multiple defaults, and (iv) modeling multiple
worlds (Gelfond and Kahl/2014; Brewka et al.|[2011)).

Much of human knowledge consists of default rules, for
example, “Normally, birds fly” is a default rule. However,
there are exceptions to defaults, for example, penguins are
exceptional birds that do not fly. Reasoning with default
rules is non-monotonic, as a conclusion drawn using a de-
fault rule may have to be withdrawn if more knowledge be-
comes available and the exceptional case applies. For exam-
ple, if we are told that Tweety is a bird, we will conclude it
flies. Knowing later that Tweety is a penguin will cause us to
withdraw our earlier conclusion. Similarly, if we see a car,



we know there must be a driver inside, normally, unless we
realize it’s a robot-taxi, then we withdraw that conclusion.
Humans often make inferences in the absence of complete
information. Such an inference may be revised later as more
information becomes available. This human-style reasoning
is elegantly captured by default rules and exceptions. Pref-
erences are needed when there are multiple default rules, in
which case additional information gleaned from the context
is used to resolve which rule to apply. One could argue that
expert knowledge amounts to learning defaults, exceptions,
and preferences in the field that a person is an expert in.
Also, humans can naturally deal with multiple worlds.
These worlds may be consistent with each other in some
parts, but inconsistent in other parts. For example, animals
don’t talk like humans in the real world, however, in the car-
toon world, animals do talk like humans. So Nemo the fish,
may be able to swim in both the real world and the cartoon
world, but it can talk only in the cartoon world. Similarly, we
are able to distinguish between a car shown on a billboard
on the road and an actual car on the road. Humans have
no trouble distinguishing between multiple worlds (world
shown in the billboard vs real world) and can easily switch
between them as the situation demands. Default reasoning,
augmented with the ability to operate in multiple worlds, al-
lows one to closely represent the human thought process.
Default rules with exceptions and preferences and multiple
worlds can be elegantly realized in the paradigm of ASP
(Gelfond and Kahl|2014; [Baral/[2003; Brewka et al.[[2011])
and executed using the s(CASP) system (Arias et al.2018)).

ASP and s(CASP): ASP is a declarative paradigm that
extends logic programming with negation-as-failure. We
assume that the reader is familiar with ASP. Considerable
research has been done on ASP since the inception in the late
80s of the stable model semantics that underlies it (Brewka
et al.|[2011). A major problem with ASP implementations
is that programs have to be grounded and SAT-solver-based
implementations such as CLINGO (Gebser et al,|2014)
used to execute the propositionalized program to find the
answer sets. There are multiple problems with this SAT-
based implementation approach, which include exponential
blowup in program size, having to compute the entire
model, and not being able to produce a justification for a
conclusion (Gupta et al.|2017).

Goal-directed implementations of ASP such as s(CASP)
(Arias et al.[2018)) work directly on predicate ASP programs
(i.e., no grounding is needed) and are query-driven (simi-
lar to Prolog). The s(CASP) system only explores the parts
of the knowledge-base that are needed to answer the query,
and they provide a proof tree that serves as justification for
the query. The s(CASP) system support predicates with ar-
bitrary terms as arguments as well as constructive nega-
tion (Arias et al.|[2018)). It also supports abductive reason-
ing. Goal-directed implementations of ASP such as s(CASP)
have been used for developing systems that emulate an ex-
pert. Chen et al have used it to emulate a cardiologists mind
by automating applications of the guidelines they use for
treating congestive heart failure (Chen, Marple et al.[2016).
The system, reportedly, can outperform cardiologists (Chen,
Salazar et al.|2018)). In our project, we want to emulate the

mind of an automobile driver.

6 Commonsense Reasoning-based AV

The commonsense rules that a human driver uses for driving
are modeled in ASP, using defaults, exceptions and prefer-
ences. The input to these rules is gleaned from a scene that
the driver sees, where the scene is translated into a set of
predicates that describe the objects and their placement in
a scene. We assume that state-of-the-art ML technology is
used to obtain these predicate labels. These predicates are
represented as a set of facts in ASP that describe the envi-
ronment and serves as input to the AUTO-DISCERN system.
Formally, facts F for a given frame at a timestamp 7 are
combined with (commonsense) driving rules R to make a
driving decision ), given an intent X. Fig. Fig. ] shows the
facts describing a scene and rule snippets that will be acti-
vated for this scenario to compute a driving decision at each
timestamp. The ASP facts F contain speed, lane, relative
distance, predicted trajectory of the AV and other detected
objects, lane structure, intersection information, visible traf-
fic signs and lights, etc. An intent X’ describes the short term
goal that needs to be achieved by the AV in order to reach
its destination. It is based on the instruction from the naviga-
tion system, for example, continue in lane, stay in leftmost

Step 1. Scenario representation Extract entities from the im-
ages obtained from the environment using ML, computer vision
models along with sensor data. Convert extracted information
into structured format F that can be processed by prolog like
programs

self speed(5, 1), self_lane(l, 1), speed_limit (10, 1),
lanes([1,2,3], 1), traffic_signs(stop, 1)

obj_meta(l, 2, car, ..), traffic_light (green, 1)

Step 2. Common sense reasoning Apply s(CASP) based rules
R on the facts F to obtain a primitive understanding of the in-
volved entities and their relations at every frame. Build upon the
primitive understanding to obtain high level driving decisions )}

select_action (brake, T) :- brake_conditions (T)
obstacle_in_lane (...
right_lane_clear(T) :- lanes(Lids, T)
not neg_lane_clear(...)
obstacle_in_lane :- subclass (0OType, automobile),
Depth #< Dist

RESULT. High level action for each frame, along with a detailed
trace of why the action was chosen for the frame

.., action(cruise, 140), action(accelerate, 141),
action(cruise, 142), action(change_lane_left, 143),
. , action(turn_left, 149), action(brake, 150)

Figure 4: Computation Steps of AUTO-DISCERN .



lane, turn left, etc. Based on the facts and the driving rules, a
decision ) is taken which is one of accelerate, brake, cruise,
change lane left, change lane right, turn left, turn right, etc.

6.1 Driving Rules

The driving rules written in s(CASP) are rules that drivers
use while driving (e.g., if behind a slow-moving vehicle,
change lanes to go faster [default], unless lanes are blocked
[exception]). We refer to this collection of rules as the ‘Driv-
ing Rules Catalog’. First, we describe this catalog using ex-
amples. We then show (in the experimentation and testing
section) how the catalog examples can be converted into
ASP rules and executed in s(CASP) to make decisions.

At the topmost level, the catalog is categorized by the
set of actions (brake, accelerate, change lane, turn etc.). For
each action, ASP rules have been developed that use knowl-
edge of the scene to compute the driving action. Note that
the number of commonsense rules that humans use while
driving is not really that large. We have cataloged 35 rules at
present. Next, we give some examples.

® Change lane to left, if there is a non-automobile obstacle
ahead in the lane within x meters, and the left lane is clear
to perform the lane change

@ Turn right, if the intent is to enter the right lane, and
if on the major lane of a T-junction intersection, and
if AV’s predicted path does not intersect with any ob-
ject(pedestrian, cyclist, ...)

® Turn right, if the intent is to enter the right lane, and if at
a signalized 4-way intersection, and if the traffic light is
green, and if AV’s predicted path does not intersect with
any object

@ Brake, if there is an object ahead, within stopping dis-
tance from the AV and in the same lane

® Brake, if at an unsignalized 4-way intersection, and AV
vehicle is not the earliest to arrive at the intersection

To arrive at a decision, the AV evaluates all possible ac-
tions consistent with the current intent and decides on the
best one. For each action, there is a set of default rules and
exceptions. The default rules evaluate the conditions under
which AV should consider taking the action. The exception
acts as a filter, checking if the action is safe to perform.

The hierarchical logic and default reasoning have been en-
coded in s(CASP). Here is code for change lane-left:

select_action (change_lane_left, T) :-
change_lane_left_conditions(T),
not ab(d_select_action(change_lane_left, T)),

not neg_select_action (change_lane_left, T).

The change lane left conditions define the default rules to
perform the action. The AV would consider changing to left
lane if the current intent is to stay in leftmost lane (precursor
to performing a left turn) or it needs to overtake a vehicle or
avoid an obstacle ahead.

change_lane_left_conditions(T) :- self_lane(SLid, T),
nonmv_ahead_in_lane (T, SLid, 20, OType),
neg_can_drive_over (OType), can_swerve_around (OType) .

change_lane_left_conditions (T) :—

intent (stay_in_leftmost_lane, T).

However, it is not always possible to perform an action even
if it is a short term goal. Predicate neg_select_action encodes
the exception rules when performing the action is not safe
or possible. The AV cannot change to the left lane if its not
clear of obstacles. Similarly, it cannot accelerate if it is ap-
proaching a red traffic light or it is above the speed limit.

neg_select_action (accelerate, T) :-—
above_speed_limit (T);
self_ lane(SLid, T), neg_lane_clear (T, SLid, 10);
traffic_light (red, T).

neg_select_action (change_lane_left, T) :-

not left_lane_clear(T).

6.2 Experimentation & Testing

We demonstrate the usability and simplicity of our approach
to autonomous driving. Further, we show selected scenarios
where common sense reasoning is essential to safe driving
and how our approach achieves this. For each selected sce-
nario, we show the relevant rules that lead to the action and
describe the decision making process.

System Testing We have developed a large set of test sce-
narios to test our ASP-coded commonsense rules for driv-
ing. The test scenarios cover normal and adverse conditions
encountered during driving. These scenarios cover general
cases as well as corner case situations that even humans
would find challenging to drive in. In Fig.[5] we show some
of the scenarios that are covered by our model.

Common Driving Scenarios Once our rules were tested,
we evaluated the AUTO-DISCERN system on real-world sit-
uations obtained from the KITTI (Geiger, Lenz, and Urtasun|
dataset. The experiment covers scenarios from a vari-
ety of traffic conditions that one may come across on a day-
to-day basis. We test AUTO-DISCERN on manually anno-
tated subset of KITTI scenarios to obtain a runtime analysis.
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Figure 5: Testing Scenario: white vehicle represents our AV
(a) when obstructed by vehicles on all sides, AV should
brake (b) when another object suddenly enters lane, AV
should change lane if possible or brake (c) on a lane merge
right, the AV should slow down, give way to traffic on target
lane before merging



We selected 3 representative frames from 2 scenarios per en-
vironment and show the runtime for each frame. Tab. [[]sum-
marizes the result. The performance is largely determined by
the number of objects in the frame and the complexity of the
action performedﬂ Note that on average our system com-
putes a decision for a frame in half a second. Our system
will take a snapshot once per second. We expect, on aver-
age, half of this one second to go into analyzing the picture,
annotating it and generating input data, and the other half in
computing the driving decision using s(CASP).

KITTI iumim(e )

. per frame (ms
Environment Avg Max
City 413 873
Road 285 635
Residential 127 657
Campus 106 469

KITTI Runtime (ms)
Scenario Frame 1 | Frame 2 | Frame 3
City 1 873 426 15
City 2 507 525 262
Road 1 160 26 32
Road 2 635 631 342
Residential 1 657 21 16
Residential 2 25 24 159
Campus 1 47 51 31
Campus 2 469 84 16

Table 1: Run-times for AUTO-DISCERN on real-world
environments in the KITTI dataset. Top table shows avg
time taken for processing frames in various environments.

Selected frames from the experiment along with the rules
that allowed AUTO-DISCERN to perform the required action
are shown below. Fig. [6a]shows a situation where the AV has
to merge into the left lane with high incoming traffic. As the
AV approached the merge, it slowed down to a stop, per-
forming the lane change when the left lane was clear. Fig.
[b]is an example of waiting before performing a right turn.
The rules build upon predicted object trajectories obtained
from ML model to realize performing a right turn is unsafe.
These rules were derived from example @ and @ of the driv-
ing rules catalog respectively.

Finally, we tested the AUTO-DISCERN system on cases
where a ML based system failed. AUTO-DISCERN system
was able to arrive at a correct decision in all such scenarios.

6.3 Discussion

Our experiments indicate that commonsense knowledge
about driving can be modeled with relative ease. This should
not come as a surprise, as we use relatively few rules to chart
a course through the various types of objects we encounter
as we drive. If the rules are correct, and the input to our sys-
tem is correct, then we are in effect modeling an unerring

2Experiment run on Intel(R) Core(TM) i7-6500U CPU @
2.50GHz 8-Core Processor, 12GB RAM.

change_lane_left_conditions (T) :—
intent (merge_into_left_lane, T).
neg_select_action (change_lane_left, T) :-
not left_lane_clear (T).
brake_conditions(T) :- intent (merge_into_left lane, T),

not left_lane_clear (T) .

(a) AV performs a change lane left to merge at high city traffic.

turn_right_conditions (T) :- intent (enter_right_lane, T).

neg_select_action (turn_right, T) :-
self_pred_path(SPath, T),
obj_pred_path(0id, OPath, T),
path_intersects (SPath, OPath).
brake_conditions(T) :- intent (enter_right_lane, T)

intersection(_, _, at, T).

(b) AV waits for pedestrians before performing a right turn.

Figure 6: Example frames from KITTI experiments.

human driver. There are many advantages to developing an
AV system based on commonsense reasoning:

Explainability: Every driving decision made is explainable,
as it can be justified via rules. The justification is obtained
by using the s(CASP) system’s proof tree generation facility
(Aras et al.|2020). An example proof tree fragment for the
scenario in Fig.[6a]is shown below:

QUERY:Does 'start_drive' holds (for 410, and 411)7?
>'start_drive' holds (for 410, and 411) because
>'suggest_action' holds (for change_lane_left) because
>'action' holds (for change_lane_left) and
>there is no evidence that 'neg_suggest_action'
holds (for change_lane_left) and
>'select_action' holds (for change_lane_left) because
>'change_lane_left_conditions' holds because
>'intent' holds (for merge_into_left_lane).
>there is no evidence that 'neg_select_action'
holds (for change_lane_left) because
>'left_lane_clear' holds because

>there is no evidence that 'neg_lane_clear'
holds (for Lid 2, and StopDist 10) because
>there is no evidence that 'class' holds,
with Var0 not equal bicycle, bike, car,
pedestrian

The global constraints hold.



Error Mitigation: A major problem with ML-based sys-
tems is that unusual and corner cases may be missed. For
example, as shown earlier, the speed limit of 35 may be
read as 85. If a human misinterprets the speed limit sign
of 35 as 85, their commonsense knowledge that they are
in a city tells them that an 85 speed limit seems too high.
This type of commonsense reasoning can be performed in
our AUTO-DISCERN system. Defaults rules with exceptions
can be written in ASP to determine what a reasonable speed
limit ought to be in each type of surrounding, which can
then be used to perform sanity checks as shown in the (self-
explanatory) example below:

max_speed (Location, S) :- reasonable_speed(Location, S1)
posted_speed_limit (Location, S2),

minimum(S1, S2, S), not abnormal (Location, S).

Commonsense knowledge can also be used to ensure that
the frame corresponding to a scene is consistent with infor-
mation provided by various sensors in the AV. If there is
any inconsistency, the sensor information can be given pri-
ority, as visual information is more likely to be erroneous.
Consider the example shown in Fig. [2] The following rules
allow AUTO-DISCERN to perform a change lane right based
on sensor data overriding the visual information.

change_lane_right_conditions (T) :-
sensor (left, Dist, T),
collision_distance(CD, T), Dist =< CD.

Thus, ensuring that the AV system is safe is considerably
easier as we are emulating a human driver’s mind that gets
inputs from various sources and tries to infer a consistent
world view with respect to which a driving action is taken.
A system like AUTO-DISCERN can also be used to aid ML
based AV systems to cross-check the decision made by them.
Additionally, it’s provably ethical and explainable.

Handling Complex Scenarios: More complex scenarios
can also be handled through the use of s(CASP)-based com-
monsense reasoning technology. For instance, flashing traf-
fic lights require that a sequence of scenes is processed to
recognize the flashing of lights. Commonsense rules to per-
form this processing can be easily written in ASP/s(CASP).
Similarly, predicting where various objects in the scene will
be a few seconds in the future can also be done by analyzing
a sequence of temporally ordered scene through common-
sense reasoning. Incorporating more nuanced commonsense
reasoning is part of our future work.

An ML based AV system has to be retrained if it has to
be used in another country with slightly different conven-
tions. In contrast, a commonsense reasoning-based AV sys-
tem such as AUTO-DISCERN can be easily used in such sit-
uations as the differences in conventions can be described
as commonsense rules (the DL-based scene understanding
system, of course, must be retrained if traffic signs are dif-
ferent). Note that humans don’t have to be heavily retrained
when they drive in another country.

7 Related Work and Conclusions

Use of formal logic and ASP to model driving has been
proposed in the past. Bhatt et al. have employed ASP and
the CLINGO system for autonomous driving experiments
(Suchan et al.[[2018}; Suchan, Bhatt, and Varadarajan|[2019).
They propose a framework that takes visual observations
computed by deep learning methods as input and provides
visuo-spatial semantics at each timestamp. These seman-
tics help in reasoning with overall scene dynamics (e.g.
sudden occlusion of a motorcycle at a distance due to a
car right in the front). However, their work can only sup-
port decision-making via visual sense-making. On the other
hand, our AUTO-DISCERN system focuses on “understand-
ing” the scene through commonsense reasoning and then
computing a driving decision. Additionally, use of CLINGO
for executing ASP poses some limitations as discussed ear-
lier (Gupta et al.[|2017).

Karimi and Duggirala (Karimi and Duggirala[2020) have
coded up rules from the California DMV handbook in ASP
using CLINGO. Their goal is to verify the correctness of
AV systems’ behavior at intersections. In contrast, our ap-
proach is to use commonsense reasoning/ASP for actual
autonomous driving. There are other works in this direc-
tion that apply formal logic/reasoning to verifying AV sys-
tems, particularly at unsignaled intersections (Hilscher and
Schwammberger| 20165 |/Azimi et al.|2011; Hafner et al.
2013 |[Loos and Platzer||2011)), as well as situations where
an AV should hand over to a human driver (McCall|2019)).

To conclude, in this paper we described our
AUTO-DISCERN system that employs commonsense
reasoning (CSR) for autonomous driving. Commonsense
knowledge about driving is represented as a predicate
answer set program and executed on the s(CASP) goal-
directed ASP system. While ML based AV have made
significant advances, none of them have reached the level of
full automation. We strongly believe that taking an approach
based on automating CSR is indispensable for developing
AV technology. The goal is to emulate human drivers,
who use CSR for making decision while driving. Rules for
driving were developed into the AUTO-DISCERN system
with the help of existing data-sets such as KITTI, driving
manuals available, and our own commonsense knowledge
of driving. Our system is explainable and provably ethical.
Input to the system consists of data from all the sensors
as well as description of the scene as predicates (obtained
using ML technology). Given that CSR is used, ML errors
in processing the scene can be compensated for.

The main contribution of our work is to demonstrate how
a complete decision making system for autonomous driv-
ing can be developed by modeling commonsense reasoning
in ASP and the s(CASP) system. The s(CASP) system is
what makes AUTO-DISCERN possible, and it is one reason
why an AV system based entirely on commonsense reason-
ing has not been developed thus far. Future work includes
refining and developing the AUTO-DISCERN infrastructure
to make it work with the CARLA setup (https://carla.org) as
well as to develop an actual AV deployment with our indus-
trial partner.


https://carla.org
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