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ABSTRACT
Given that large tensor streams of time-evolving events (e.g., taxi
rides), which contain multiple attributes, how do we obtain intu-
itive groups and temporal patterns? Also, how do we incrementally
capture latent structure to achieve a meaningful summarization?
In this paper, we propose a streaming algorithm, namely T��C���,
which is designed to automatically �nd both latent groups and tem-
poral patterns in such complex yet huge collections. Our method
has the following advantages: (a) It is e�ective: it provides com-
pact and interpretable representations that reveal similar features
with respect to both attributes and time. (b) It is automatic: it auto-
matically recognizes and summarizes temporal patterns without
any parameter tuning. (c) It is scalable: it is incremental yet scal-
able, and thus requires computational time that is independent of
data stream length. Extensive experiments on two real datasets
demonstrate that T��C��� provides a summarization that helps us
understand the complicated data, and it consistently outperforms
the state-of-the-art methods in terms of both execution speed and
accuracy.

1 INTRODUCTION
Countless domains including location-based services [11], click
logs on websites [1], e-commerce, medical records [16], incessantly
observe time-stamped events along with the multiple categorical
attributes associated with them. Moreover, thanks to the advent of
the IoT, which enables us to access a massive volume and variety of
time series. In this situation, data is being generated with no end in
sight and not all of them can be stored. Thus, one of the most fun-
damental requirements, if we are to employ them for applications,
is to obtain a good summary in a streaming fashion.

In practice, we need a summary that o�ers interpretability re-
vealing underlying groups, adaptability so that it captures dynamics
and switches according to the state of the world, and automaticity
that requires no human intervention. For example, taxi rides are
continuously recorded with attributes such as pick-up time, pick-up
location, drop-o� location, taxi type, and customer type. To utilize
them to design precise marketing strategies and bene�cial business
planning while re�ecting actual conditions, service providers want
to know that there are groups of locations and customers, and the
di�erence between periods, without any tuning that requires time
and human resources.

To realize the above e�ective representation, it is necessary to
achieve the following two challenging and important tasks: (1)
Structure mining: the goal is to provide an interpretable description
that includes groups and their participation degrees. Unlike contin-
uous sequences represented by sensor data, event collections turn
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into a huge yet sparse tensor, since events have numerous categori-
cal features. We refer to such data as “complex events”. (2) Temporal
pattern mining: the aim is to discover repeated time-evolving pat-
terns. However, it is di�cult because the number of patterns, their
characteristic, and their duration are rarely known a priori. Thus
it is necessary to learn them through data automatically. We also
refer to such a temporal pattern as a “regime”.

There are following related works in terms of the two challenges
to be addressed:
Structure mining. Decomposition employing probability distri-
butions helps us to discover underlying structures [15, 17]. TriMine
[10] is a scalable method that extracts interpretable features using
the concept of topic modeling for forecasting future events. CoSTCo
[9] has been proposed as a convolutional neural network based
model for sparse tensor completion. In addition, learning mixture
distributions, such as Latent Dirichlet allocation (LDA) [3] and its
variants [2, 7], enable us to analyze large sets of categorical data.
However, these methods not intend to capture temporal patterns.
Temporal pattern mining. Classical approaches, such as hidden
Markov models (HMM) are extended to model dynamics and dis-
covery patterns in [12, 14]. TICC [5] reveals distinct patterns based
on a Markov random �eld. StreamScope [8] discovers similar pat-
terns in an online fashion, whereas CubeMarker [6] can handle
a 3rd-order tensor. The previous methods are employed to cap-
ture temporal patterns in continuous time-series, they thus cannot
address complex events with sparsity and categorical attributes.

In short, none of the previous studies speci�cally address both
structure mining and temporal pattern mining in complex event
streams. We thus aim to tackle an important yet di�cult task that
is to reveal similar features with respect to both attributes and
time simultaneously, moreover in automatic and streaming settings.
Informally, if each event has a timestamp and two attributes (i.e.,
entity1, entity2), the problem we want to solve is as follows.

I�������P������ 1. Given triplet collections of streams (en-
tity1, entity2, timestamp), (1) �nd the latent groups in complex event
collections and (2) summarize all dynamical patterns into models
automatically and incrementally, at any point in time.

2 PROBLEM FORMULATION
In this section, we formally de�ne the concepts behind our model
and the problem we want to solve. We mainly focus on a 3rd-order
tensor for simplicity throughout this paper. Our method however
can be applied to higher-order tensors. Consider that we receive
time-stamped event entries of the form (entity1, entity2, timestamp).
We then have a collection of entries with D unique entity1, E unique
entity2 and = timestamps. We turn them into a 3rd-order tensor,
i.e., X 2 ND⇥E⇥= .
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De�nition 2.1 (Complex event tensor). LetX be a 3rd-order tensor
of complex time-stamped events. The element G8, 9,C of X shows the
total number of event entries of the 8-th entity1 and the 9-th entity2
at time tick C .

We assume that an event entry has a common “latent group”. In
that case, the original tensor will be decomposed into three matrices
A, B, and C to represent groups with respect to entity1, entity2, and
time.

De�nition 2.2 (Participation matrix A (D ⇥ :)). Each entry 08, 9
shows the participation strength of entity1 8 for group 9 to describe
how strongly each entity1 participates in groups #1, #2, . . ., #: . We
let any participation weight 08, 9 be non-negative, and their total
become 1 among : groups, i.e.,

Õ:
9=1 08, 9 = 1.

The de�nitions of B and C are analogous, each of them corre-
sponds to entity2 and time. Although the multi-way representation
allows us to �nd latent groups, it is insu�cient for mining tensor
streams containing variable patterns; the latent groups and their
participants should change following �uctuation of dynamics. Thus,
we extend the representation by adding another higher-level archi-
tecture.

De�nition 2.3 (Regime). Let \ be a regime consisting of the three
matrices: \ = {A,B,C} to represent a certain pattern, with which
we can divide the entire tensor stream into segments. When there
are< regimes, a full model set is de�ned as ⇥ = {\1 . . . \<}.

We adopt all of the above components for dynamic modeling
over X. The problem that we want to solve is eventually as follows:

P������ 1 (S�������� �������������). Given a tensor stream
X ; Find full model set ⇥ that summarizes the whole input tensor X,
namely, ⇥ = {\1 . . . \<}, and the number of regimes<,

3 STREAMING ALGORITHMS
In this section, we proposed a streaming approach, T��C���, which
solves Problem 1. Intuitively, the main idea behind our algorithm is
to continuously generate a model parameter set (i.e., regime) from
current tensor X⇠ , and to try to update a full model set ⇥ using
the generated regime. More speci�cally, the algorithm comprises
the following two main procedures (Algorithm 1) :
(P1) T��C������C���: Estimate a candidate regime \2 from a

tensor X⇠ . It is derived by online decomposition while con-
sidering past ! temporal dependencies.

(P2) T��C����C�������: Keep track of two regimes, namely the
previous regime \? and the current candidate regime \2 . In
this step, the algorithm decides whether or not to employ \2
and selects the optimal regime following our coding scheme.
Also full model set ⇥ is suitably updated to settle streaming.

We roughly refer to the event streams ofX⇠ as a partial tensor ofX,
whose length is g ⌧ =, and whose elements are G8, 9,C�g+1,. . . ,G8, 9,C .
Our algorithm works when given a non-overlapping stream X⇠ at
every time point C with interval g .

3.1 T��C������C���
Here, our aim is to incrementally obtain matrices A, B, and C as
a candidate regime \2 , which summarizes the most recent stream

X⇠ . To discover several latent groups in X⇠ automatically, we
propose using the concept of topic modeling, which enables us to
probabilistically assign each event entry to a latent group based on
Dirichlet priors.

For incremental inference, a straightforward approach repeats
decomposition in each tensor X⇠ ; however, this approach discards
previous distributions and group allocations lose temporal con-
sistency at every inference. Therefore, T��C������C��� tracks
dynamics by conveying previous model parameters. We assume
that participation strength �uctuate over time, and their intensity
at the current time C is the same as that at those previous time C � 1
unless otherwise con�rmed by the newly observed data. Speci�-
cally, previous participation strength ÂC�1,D ,B̂C�1,: and ĈC�1,: are
integrated in Dirichlet prior (e.g., Dirichlet(U0̂C�1,8 )). Letting U , V ,
and W be the parameters of the Dirichlet priors for A, B, and C,
respectively, the generative process of a matrices is:

⇡A0F A8 ⇠ ⇡8A82⌘;4C (⌃!;=1U0̂C�; ,8 ),
⇡A0F BA ⇠ ⇡8A82⌘;4C (⌃!;=1V1̂C�; ,A ), (1)

⇡A0F CA ⇠ ⇡8A82⌘;4C (⌃!;=1W2̂C�; ,A ) .
By utilizing collapsed Gibbs sampling [13], we can e�ciently

draw latent variables I8, 9,C for each non-zero element G8, 9,C in X⇠

with the following probability:
? (I8,9 ,C = A |X,A0,B0,C0,U, V,W , Â, B̂, Ĉ) (2)

/
008,A +Õ!

;=1 U0̂; ,8,AÕ:
A=1 0

0
8,A + !U

·
10A ,9 +

Õ!
;=1 V1̂; ,A ,9ÕE

9=1 1
0
A ,9 + !V

·
20A ,C +

Õ!
;=1 W2̂; ,A ,CÕ=

C=1 2
0
A ,C + !W

,

where 08,A , 1A , 9 , and 2A ,C are the total counts with which group A
is assigned to the 8-th entity1, the 9-th entity2, and time C , respec-
tively. The prime (e.g., 008,A ) indicates that the summations which
is excluded the count of the entry, G8, 9,C . After the sampler has
burned-in, we produce estimated participation matrices. Ã, B̃, and
C̃ as follows:

0̃8,A /
08,A +Õ

; U0̂; ,8,AÕ
A 08,A + !U

, 1̃A ,9 /
1A ,9 +

Õ
; V1̂; ,A ,9Õ

9 1A ,9 + !V
, 2̃A ,C /

2A ,C +
Õ
; W2̂; ,A ,CÕ

C 2A ,C + !W
.

(3)

Thanks to the introduction of previous participation strength for
each group, we need not store previous tensors to represent dynam-
ics. It thus omits memory space and time complexity.

3.2 T��C����C�������
We next tackle the problem of how to optimize full model set ⇥. We
can solve this problem intuitively by monitoring the regime shift
and continuously choosing an appropriate model in {\? , \2 } based
on their data summarization qualities.

Here, we introduce novel coding scheme to de�ne a good sum-
mary for a complex event tensor and determine a optimal compact
description automatically. Our coding scheme composed of model
description cost < ⇥ > and data coding cost < X|⇥ >, which
is based on the minimum description length (MDL) principle [4].
Since we cannot store and process all historical data in a streaming
fashion, we only consider the increase in the total cost when a
set of new event streams is added to X. we de�ne the additional
description cost as follows:

� < X;⇥ > =< \⇤ > + < X⇠ |\⇤ >, (4)

where \⇤ represents an employed regime for describing the arrival
tensor X⇠ . Since the model description cost is the number of bits
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Algorithm 1 T��C��� (X⇠ ,⇥)
Input: Current tensor X⇠ 2 ND⇥E⇥g and previous full model set ⇥
Output: Updated full model set ⇥0
1: /* (I) T��C������C��� */
2: Compute A,B,C; // Equation (2) and (3)
3: \2  {A,B,C};
4: /* (II) T��C����C������� */
5: Compute < X⇠ ;\? > and < X⇠ ;\2 >; // Equation (4)
6: if < X⇠ ;\? > is less than < X⇠ ;\2 > then
7: /* Stay on the previous regime \? */
8: \ 0?  R�����U����� (\? ,\2 ) ;
9: else
10: \4 = arg min

\2⇥
< X⇠ ;\ >; // Equation (4)

11: if < X⇠ ;\2 > is less than < X⇠ ;\4 > then
12: /* Shift to the candidate regime \2 */
13: ⇥0  ⇥ [ \2 ; <  < + 1;
14: else
15: /* Shift to the existing regime \4 */
16: \ 04  R�����U����� (\4 ,\2 ) ;
17: end if
18: end if
19: return ⇥0 = {\1, . . . ,\< };

needed to describe the model, < \ > is de�ned as < \ > = < A >
+ < B > + < C >, where1,

< A > = |A | · (log( (: � 1) ⇤D) + 2� ) + log⇤ ( |A |), (5)

< B > = |B | · (log( (E � 1) ⇤ :)) + 2� ) + log⇤ ( |B |), (6)

< C > = |C | · (log( (= � 1) ⇤ :) + 2� ) + log⇤ ( |C |), (7)

where | · | describes non-zero elements when 1/: , 1/E , and, 1/= are
subtracted and 2� is the �oating point cost2.

The data encoding cost ofX given \ is the negative log-likelihood
in Hu�man coding, computed by: < X|\ >= � log % (X|A,B,C).
Thus the total encoding cost of X given ⇥ is:

< X |⇥ > =
<’
?=1
� log% (X [A? ] |\? ), (8)

where, X[A? ] is a set of partial tensors assigned by the ?-th regime.

4 EXPERIMENTS
We evaluated the performance of our proposed method on the two
real data streams. (#1) NY-Taxi 3 dataset is the records of Yellow
Taxi trips in New York City, which contains Pick up location ID
(D = 262), Drop o� location ID (E = 263), and the hourly timestamp
of each ride (= = 4368). (#2) NY-Bike 4 dataset is the history of
a bicycle ride-share service in New York City, whose attributes
include the user-age groups separated by every �ve ages from 10
to 100 (D = 19), the start station ID (E = 488), and, the start time per
hour (= = 8760).
E�ectiveness.Wewill answer the question that How well does our
method provide meaningful summaries with latent dynamical pat-
terns and groups? Figure 1 (a) showsT��C��� can incrementally and
automatically �nd two regimes and these assignments. Concretely,
1Here, log⇤ is the universal code length for integers.
2We set 8 bits in our setting.
3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
4https://www.citibikenyc.com/system-data

our method �rst discovers “Regime 1” based on the three latent
groups. After the dynamics behind the data have been changed at
time tick 80, our method automatically generates “Regime 2” for the
new pattern because the two regimes give us better summarization
of the stream. These two representations coincide with realistic ac-
tivities that correspond to weekdays and weekends. The “weekend”
regime (Regime 2) successfully recognizes a public holiday at time
tick 630 despite a non-periodic event.

Furthermore, T��C��� provides participation matrices which
show common groups and their attributes-wise participationweights.
Figure 1 (b) and (c) show the estimated participationmatrices, where
there are three latent activity groups (shown with three colors) and
the darker locations indicate stronger participation in the groups,
whereas each sequence in Figure 1 (a) describes the time-wise in-
tensities of each group.

As an example, we focus on Group 3 (green), which has a high
intensity when assigned into the weekend regime; therefore, it is
strongly related to weekend. Also, red circle areas in Figure 1 (c)
shift fromGroup 2 (orange) to Group 3 onweekends, suggesting that
these areas possess di�erent features from the ones on weekdays.
Considering these areas are located around vast parks and Lower
Manhattan with a large number of bars and restaurants, it is thus
likely to represent a group related to amusement. Activity groups
are common among attributes, so we can know taxi rides which
related to amusement are occurred from green area (Group 3) on
the right in Figure1 (b). In short, our dynamic approach provides
sense-making insights.
Accuracy and scalability.Wewill answer the following questions:
How accurately does our method summarize complex events? How
does our method scale in terms of computational time? To conduct
quantitative evaluations in two real datasets, we evaluated how
accurate the model represents original streams by comparing re-
construction accuracy in terms of 1) perplexity, and 2) RMSE. The
competitors consist of TriMine [10] and CoSTCo [9] which are
designed for sparse tensor decomposition.

Figure 2 shows the average perplexity and the average root mean
square error (RMSE) between the original tensor and estimated
values using every current tensor X⇠ of length 24. With both of
them, lower values indicate better model constructions. Overall, our
proposed method outperforms the other o�ine methods because it
can capture high-level patterns, i.e., regimes. CoSTCo is capable of
handling sparse tensors but it is not optimized for complex event
streams with latent dynamics.

Also, we evaluate the performance of T��C��� in terms of com-
putational time by comparison with its competitors. Figure 3 in-
dicates the wall clock time of an experiment performed on each
datasets. In each dataset, our method is faster than its competitors
by up to four orders of magnitude thanks to our incremental update.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented T��C���, an e�cient streaming method
for tensor streams of time-evolving events. Our proposed method
has the following advantages: (a) It is e�ective: our experiments
show that T��C��� successfully discover both latent groups and
typical patterns from huge yet complex events. (b) It is automatic:
T��C��� is carefully designed to summarize event tensor streams
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Public holiday

(a) Regime assignments and time-wise group intensity

(b) Pick up location-speci�c groups (c) Drop o� location-speci�c groups

Figure 1:Modeling power of T��C��� for taxi ride events: (a) Given the event tensor stream, it incrementally identi�es regimes,
i.e., underlying distinct dynamics (shaded rectangle with yellow/gray), and also captures time-wise intensity sequences of each
group. In addition, it reveals the attribute-speci�c groups of (b) pick up and (c) drop o� areas, in which the colors show their
latent groups and depth of the colors show attribute-wise participation weights (too low degrees are not shown (< 0.4)).

(a) Average perplexity (b) Average RMSE
Figure 2: T��C��� outperforms its baselines in accuracy
(lower is better).

(#1) : NY-Taxi (#2) : NY-Bike
Figure 3: Wall clock time vs. stream length: T��C��� sum-
marizes data streams in constant time.

without prior tuning. (c) It is scalable: thanks to incremental model
updating by T��C���, the computational time is constant with
regard to the entire length of the input tensor.

In future work, we will make the proposed method more general
by evaluating it on various datasets such as e-commerce, web access,
and medical records. In addition, we will also conduct extensive
experiments on more than three order tensors. Finally, we aim

to design a fully automatic and fast algorithm. Speci�cally, we
consider that it would automatically determine not only the number
of regimes but also the number of groups.
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