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ABSTRACT

Nowadays, deep learning models are used in a wide range of appli-

cations, including classification and recognition tasks. The constant

growth on the data size has led to the use of more complex model

architectures for creating neural network classifiers. Both the model

complexity and the amount of data usually prohibit the training

on a single machine, due to time and memory limitations. Thus,

distributed learning setups have been proposed to train deep net-

works, when a vast amount of data is available. One such common

setup follows the parameter server approach, where worker tasks

compute gradients to update the network stored in the servers,

often in a synchronous free manner. However, the lack of synchro-

nization may harm the resulting model quality due to the effect of

stale gradients, which are computed based on older model versions.

In this PhD research, we aim to explore how asynchronous learning

could benefit from data preprocessing tasks revealing hidden traits

regarding the data distribution.

1 INTRODUCTION

In the recent years, deep learning has become a widely used part

in a variety of applications. For example, in the image processing

domain, neural networks are widely used in classification [20] and

tagging [32] applications. Deepmodels are also widely used in other

domains as speech recognition [13] or text classification [21].

All the aforementioned applications are actually classification

tasks. In order to create accurate classifiers, a wide amount of data

shall be used. As we increase the volume of the data available, more

complex models are used in order to represent the patterns implied

by the data. A common example of complex model architectures

proposed are the ResNet [14] and Inception [29] architectures used

on the Imagenet [9] dataset.

Both the increase in the model complexity and the amount of

data available could prohibit model training in a single machine,

since it would take numerous hours or days to create a generic

and reliable model. For instance, without the use of accelerators as

GPUs, Stanford’s Dawnbench [6] took more than 10 days to train a

ResNet-152 model on the Imagenet dataset [2]. Thus, there have

been proposed distributed architectures that could be used in order

to speed up the training process. Depending onwhat is decided to be

distributed, multiple solutions could be adopted. The most common

approach, especially when it comes to big data, is to distribute the

available data to various workers, following data parallel learning

architectures [8]. The most prominent setups of such distributed
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learning setups are met under the parameter server [30] and the

all-reduce [7] architectures. Widely used deep learning systems, as

Google TensorFlow [3], Apache MXNet [5] and PyTorch [25] have

adopted the concept of distributed learning following one or more

the aforementioned architectures.

While distributed learning enables faster deep neural network

training, each distributed approach introduces some new issues that

might harm either the training speed or the quality of the resulting

model. For example, all-reduce approaches introduce synchroniza-

tion overheads on each training step. On the other hand, while in

the case of parameter server architecture such overheads are not

met, as workers usually operate in an asynchronous manner [18].

Thus, stale gradients effects may occur, which could either delay

model convergence or lead the model’s training loss function to

diverge [23]. However, we believe that if data are wisely used, such

phenomena could be overcome.

In this PhD research, we focus on studying how the distributed

deep learning process could benefit from the distribution of the

training data, especially under the parameter server architecture.

Data preprocessing techniques can be used to obtain an a-priori

knowledge of the data domain, which could be beneficial in the

training process . We aim to study and propose systematic ways on

how the data should be assigned to the available training worker

nodes. Furthermore, we will also study whether random or algo-

rithmic access patterns on data are preferable during the training

process, focusing on the distributed case. Considering such tech-

niques, we aim for the training to be less sensitive to undesirable

effects that appear in asynchronous distributed learning setups.

The rest of this papers is organized in four sections. At first, in

Section 2 we refer to any related background knowledge necessary

to easily understand the paper. Section 3 follows with a discussion

on how former knowledge of the data distribution could benefit the

learning process, especially under a parameter server setup. Finally,

the paper concludes with Section 4 which outlines the steps that

will be followed to complete this research.

2 BACKGROUND

2.1 Optimization Related Preliminaries

In the context of classification problems [12], a neural network with

weights represented by the vector �⃗� , is considered to approximate

a function 𝑓 : R𝑛 −→ R that, given an input feature vector 𝑥 , could

be used to classify it to a category 𝑦, i.e. 𝑦 = 𝑓 (𝑥 ; �⃗�). Given a set of

feature vectors 𝑥1, 𝑥2, ..., 𝑥𝑛 and their corresponding category labels

𝑦1, 𝑦2, ..., 𝑦𝑛 , the function 𝑓 used to describe the neural network

can be identified by using the appropriate vector �⃗� derived as the
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solution of an optimization problem on a loss function 𝐿. Gradient

Descent is considered to be among the most popular algorithm

used in optimization problems [27]. However, considering both the

size of deep neural networks and the vast amount of data usually

available, Gradient Descent is not preferred, since each iteration

will be too slow. Mini-Batch Stochastic Gradient Descent (mini-

batch SGD) is used as an alternative instead, which uses only a

subset of training examples in each training iteration.

While an iteration of Mini-Batch SGD is faster than the one of

GD, it is important to note that it usually needs more iterations

to converge. Figure 1 presents a contour plot, which outlines how

the gradients move the weights towards the optimization point.

Gradient Descent takes into account the whole data distribution

in each training step and thus continuously moves towards the

optimization point. However, mini-batch SGD computes the gradi-

ent of a training step with only 𝐵 examples, directing the weights

to various directions before converging. The aforementioned algo-

rithms cannot guarantee convergence to the global minimization

point, as optimization functions in neural network training are

non-convex and they may stuck on local minima. Alternatives, as

Adam, AdaGrad and others, have been proposed as less vulnerable

to such phenomena [27].

2.2 Parameter Server Architecture

Following a data parallel scheme, parameter server architecture [15,

30] introduces two different entities in the learning process: the

workers and the parameter servers. Parameter servers are used to

store neural network parameters in a distributed fashion. Work-

ers use local copies of the network and a local part of the data

to compute gradients based on some variance of the mini-batch

SGD algorithm. While gradients can be aggregated under various

synchronization schemes, parameter server usually follows an asyn-

chronous parallel approach for updating the global model in the

servers. The steps of training a model under the aforementioned

setup are fully depicted in Figure 2.

3 EXPLOITING DATA DISTRIBUTION IN

LEARNING

In this section, we will present how we could exploit distribution

related traits that could emerge from data preprocessing for the

learning process, especially in the distributed case.

3.1 Exploit data distibution in single node

training.

As we mentioned in Section 2.1, Mini-Batch SGD does not move

the weights of the neural network directly to the minimization

point due to the restricted view it has on the data on each iteration.

However, we know that Gradient Descent is able to move directly

towards the optimization point. A usual approach to overcome

such problems when training deep learning models is to randomly

shuffle the data before each mini-batch extraction in order to obtain

a mini-batch with less correlated data [12].

However, it is reasonable to state the question what will happen

if the mini-batch is chosen such that it is actually representative of

the whole dataset. Will this either result to a more accurate model

or to a faster training process in respect to the random sampling

techniques used? Is it important to perform some preprocess to the

training data in order to understand their structure and determine

the sampling process during the mini-batch selection?

Bengio proposed Curriculum Learning [4] as an approach to-

wards this direction and proved that the training was able to con-

verge to better local minima when he decided to use traits of the

data to help the network training process. For instance, in an image

classification case, he decided to use only some easily distinguished

data at first, and then include more complex images.

In this PhD research, we aim to focus on how to select the mini-

batch on each iteration to be representative of the whole data set

and boost the network training. As a proof of concept, we clustered

each class from the CIFAR-10 [19] dataset to two sub-clusters and

chose each mini-batch to include data from each resulting sub-

cluster of all classes. In this example, we noticed a 5% improvement

in the validation loss and a 2% improvement in the validation error.

We further aim to examine whether we could benefit from real-time

training metrics in order to select the training examples for each

upcoming mini-batch.

3.2 Exploit data distibution in parameter

server training.

Stale Gradients Effect. As we stated in the introductory section 1,

the parameter server training is usually harmed from the stale

gradients effect. Stale gradients occur when a worker computes

a gradient update using old model parameters. In 2013, Dutta ap-

proached the problem of staleness with proposing an appropriate

variable learning rate [10]. In 2017, Jiang also approaches the stale-

ness problem with learning rate techniques in an heterogeneous

environment [16]. Moreover, in 2018, Huang proposed FlexPS [15]

which facilitated a staleness parameter controlling the aging of the

parameter to avoid staleness effects.

Better data assignment to workers. In the research works

stated above, algorithmic solutions in the parameter server or learn-

ing rate level are proposed to smooth the staleness effect. However,
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Figure 3: Class Population Histogram of Imagenet data ob-

tained from Flickr

we believe that if the data part that can be accessed from each

worker is not representative on the whole dataset, this may further

harm the staleness effect, since a common approach is to randomly

shard the data to workers. For instance, TensorFlow uses a modular

sharding approach based on the training example index to assign it

to a worker. To further support this claim, we will discuss an exam-

ple based on an Imagenet subset with images from Flickr (approx.

60GB size). Figure 3 presents a histogram with the image popula-

tion in each class. In this figure, we can observe that most of the

classes consist of approximately 100 images, while some of them

consist of more than 1000 (and even more than 1500 images). Thus,

it is possible that a random data assignment approach could not

provide a worker with data of some of the less populated classes or

bias another towards a highly populated class (data skew on some

workers). Having trained on a stale parameter set on some iteration,

such worker could direct the weight not towards the direction of

the true optimization point, but possibly to another one which will

better optimize this part of data, due to lack of knowledge regarding

the data space. In this research, we aim to study whether stratifica-

tion in data sharding to workers and in mini-batch selection per

worker (in class or in hidden level according to the distribution)

could be facilitated in order to smooth the effects of staleness.

Stratification is widely used when the computing task cannot

view entirely the data, as for example in an approximate query

processing problem [17]. In the context of learning, it is also used

to facilitate learning from heterogeneous databases [26]. Moreover,

in a 2020 research [24], hidden stratification appeared to crucially

affect the quality of classification models for medical images.

Extracting data distribution related information. Hidden

stratification can be used to reveal how the data are organized

in the distribution. A common approach to discover hidden pat-

terns in the data distribution is the use of unsupervised learning

techniques, as clustering. In the big data context, multiple clus-

tering techniques have been proposed. For instance, in [28] they

have designed a clustering framework for big data, which is able

to discover multiple distribution types. Others propose approxi-

mate and distributed versions of common clustering algorithms,

as DBSCAN [22]. Apart from clustering, it would also be efficient

to utilize function that cluster together similar points, in the same

manner as hash functions do. Towards this approach and in the

spirit of Locality Sensitive Hashing, Gao proposed in [11] Data

Sensitive Hashing, where he facilitates data distribution to hash

together close data points in a high dimensional space.

4 RESEARCH PLAN

Having presented the concept and the ideas behind this PhD reasearch,

he have designed a plan that we should follow to conduct this re-

search. The aforementioned plan is outlined below.

• Measure the effects ofmini-batch design in single node

training. The first part of our work includes to propose and

study efficient techniques that take into account distribu-

tion traits to systematically construct the mini-batches, as

representatives of the whole data set, used for neural net-

work training. In case of data sets with numerous classes,

as ImageNet, where we can not create representative mini-

batches with commonly used size, we plan to randomly omit

different parts of the data from each mini-batch. Having

experimented with the distribution traits, we further plan

to take the real-time training and validation metrics into

account when creating the next mini-batch. For instance, in

case the model presents large loss metrics in some examples,

we could attempt to provide the next mini-batch with more

data following an equivalent distribution.

• Study and evaluate techniques to extract distribution

traits from big data sets. A first approach to identify how

data points are organized in the multidimensional space is

with the help of clustering algorithms. However, since we

want to focus on big data and distributing learning, we have

to compare various techniques that could efficiently discover

distribution related information, as the DSH one stated ear-

lier. Having studied existing approaches in this problem, we

will attempt to design and propose our own method that will

efficiently compute any necessary information.

• Apply distribution related information in data shard-

ing. In order to create representative data shards, our first

goal is to consider class stratification, and identify whether

it is able to facilitate the learning process. Moreover, hav-

ing efficiently discovered any necessary distribution traits,

the next part of our research aims to exploit them in shard

creation process. The knowledge of stratification and dis-

tribution traits derived from the data is expected to further

help parameter server training.

• Design and propose a streaming system for serving

mini-batches toworkers in the parameter server setup.

Our research will conclude with the design and implemen-

taion of a system that will collect data information and facil-

itate the distribution information extraction mechanisms to

learn how to efficiently prepare mini-batches for the workers

to train in the parameter server setup. This system will be

created taking into consideration any observations from the

steps described above.

4.1 Technologies

Having presented our research plan, we briefly describe state-of-

the-art technologies that we plan to use in order to construct our

various components.

• Apache Spark [31] is a widely used general purpose big data

system. Among other libraries, Spark provides SparkML,

which offers some clustering algorithms that we could ex-

ploit to identify initial data distribution traits. Moreover,



Spark can easily be used to compute any other interesting

metrics that we might need to consider.

• Regarding neural network training, we aim to use Google

TensorFlow [3], which also operates under the parameter

server architecture.

• For streaming mini-batches we aim to examine the use of

Apache Arrow [1], since it optimizes data in a columnar

format for CPU and GPU analytical operations. Moreover,

TensorFlow can directly read from Arrow streams.

We aim to design the final system as a layer over the training

cluster, which will encapsulate all the above technologies. Thus, a

user will be able to easily benefit from our system.

4.2 Benchmarking Setup

Having implemented each of our components, we aim to benchmark

how they affect the asynchronous distributed training process in

terms of speed and resulting training and validation metrics. As

a baseline, we will use state-of-the-art neural networks trained

under a parameter server setup with the optimal hyper parameters.

For instance, we could train ResNet or Inception models using

the ImageNet data set in a simple parameter server setup. These

baseline models could be compared with the ones trained taking

the distribution traits into account.
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