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ABSTRACT
Context-Free Path Querying (CFPQ) is an important problem with
applications in many areas, for example, graph databases, bioin-
formatics, static analysis, etc. Historically, regular languages are
used as constraints for navigational path queries. However, in some
important cases, regular languages are not expressive enough and
context-free languages are used instead. Many algorithms for CFPQ
were proposed but recently showed that the state-of-the-art CFPQ
algorithms are still not performant enough for practical use. One
promising way to achieve high-performance solutions for graph
querying problems is to reduce them to linear algebra operations
(such as matrix multiplication). The active utilization of these oper-
ations in the process of context-free path query evaluation makes it
possible to efficiently apply a wide class of optimizations and com-
puting techniques, such as GPGPU (General-Purpose computing
on Graphics Processing Units), parallel computation, sparse matrix
representation, distributed-memory computation, etc. In this Ph.D.
work, we aim at: (i) studying the applicability of linear algebra
methods to the CFPQ problem, (ii) at devising the algorithms for
context-free path query evaluation formulated in terms of linear
algebra operations, and (iii) at achieving high-performance imple-
mentations of the devised algorithms using parallel computations.

1 INTRODUCTION
Formal language-constrained path querying [2] is a graph analysis
problem in which formal languages are used as constraints for nav-
igational path queries. In this problem, a path in an edge-labeled
graph is viewed as a word constructed by the concatenation of
edge labels. The formal languages are used to constrain the paths
of interest: a query should find only paths labeled by words from
the language. The most popular class of constraints used as naviga-
tional queries in graph databases are the regular ones. However, in
some important cases, regular languages are not expressive enough
and context-free languages are used instead. The context-free path
querying (CFPQ), can be used in many areas, for example, RDF anal-
ysis [15], static code analysis [9, 14], biological data analysis [12],
graph segmentation [6].

CFPQ has been studied a lot since the problem was first stated by
Mihalis Yannakakis in 1990 [21]. Jelle Hellings investigates various
aspects of CFPQ in [16–18] and formulates three possible querying
semantics: relational that requires to find all vertex pairs reachable
by some path of interest, single-path query semantics also requires
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to return the example of such path for all vertex pairs, and all-path
query semantics that requires to return all such paths for all vertex
pairs.

A number of CFPQ algorithms based on parsing techniques were
proposed: (G)LL and (G)LR-based algorithms by Ciro M. Medeiros
et al. [3], Fred C. Santos et al. [19], Semyon Grigorev et al. [13],
and Ekaterina Verbitskaia et al. [4]; CYK-based algorithm by Xi-
aowang Zhang et al. [15]; combinators-based approach to CFPQ
by Ekaterina Verbitskaia et al. [5]. Yet recent research by Jochem
Kuijpers et al. [8] shows that existing solutions are not applicable
for real-world graph analysis because of significant running time
and memory consumption.

Inspired by Valiant’s [20] matrix-based algorithm for context-
free language recognition, we explore the applicability of linear
algebra methods to the CFPQ problem. The linear algebra methods
is widely used for various problems of finding paths in graphs, but
the CFPQ problem poses additional challenges originating from
query-specific information that needs to be captured. Valiant pro-
posed a parsing algorithm, which computes a recognition table
by computing matrix transitive closure. These algorithms take a
string at the input and decide whether this string is generated from
the input context-free grammar. Valiant’s algorithm has essentially
the same complexity as Boolean matrix multiplication. This is a
promising way to achieve high-performance solutions for graph
querying problems. The active utilization of these operations in the
process of context-free path query evaluation makes it possible to
efficiently apply a wide class of optimizations and computing tech-
niques, such as GPGPU (General-Purpose computing on Graphics
Processing Units), parallel computation, sparse matrix representa-
tion, distributed-memory computation, etc.

In this Ph.D. work, we make the following contributions.

(1) We provide an approach to solving the CFPQ problem using
linear algebra operations. The provided approach allows
us to use a wide class of optimizations of linear algebra
operations for efficient analysis of large graphs.

(2) Using provided approach, we devise the CFPQ algorithms
based on linear algebra operations for relational, single-
path, and all-path query semantics.

(3) We provide the implementations of the devised algorithms
for context-free path query evaluation using different op-
timizations and computing techniques. Our preliminary
results demonstrate that our best CPU and GPU-based
implementations that utilize sparse matrix representation
and parallel computation outperform the state-of-the-art
context-free path querying solutions.
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Figure 1: An overview of our proposed approach to solving the CFPQ problem using linear algebra operations

2 APPROACH
In this section, we describe our approach to solving the CFPQ prob-
lem using linear algebra operations. The idea of using a sparse adja-
cency matrix as a graph representation in graph analysis problems
is well-known. Recently, became very popular the GraphBLAS [7]
API specification that defines standard building blocks for graph
algorithms in the language of linear algebra. Various libraries that
implement it provide data structures and functions to compute lin-
ear transformations and other linear algebra operations on sparse
matrices. Using these libraries or other efficient libraries for such
operations is a good recipe for making a high-performance CFPQ
solution if we can reduce the CFPQ problem to linear algebra oper-
ations. Although such reduction was found for a number of graph
algorithms, there are many graph algorithms for which it has not
been done. To the best of our knowledge, the reduction of CFPQ
problem to linear algebra operation is an open question.

An overview of our proposed approach is shown in Figure 1. The
purpose of this approach is to solving CFPQ problem using linear
algebra operations. In order to do this, it is necessary to devise the
CFPQ algorithms that have the input in the form of a directed edge-
labeled graph as a data, a context-free grammar as a query, and the
query semantics that determines the type of requested information
about paths in the graph. Further, the approach can be divided into
the following stages.

Reducing the CFPQ problem to the linear algebra operations. The
query is formulated by a context-free grammar 𝐺 which is a tuple
(𝑁, Σ, 𝑃, 𝑆), where 𝑁 is a finite set of nonterminals; Σ is a finite set
of terminals, 𝑁 ∩ Σ = ∅; 𝑃 is a finite set of productions of the form
𝐴 → 𝛼 , where𝐴 ∈ 𝑁, 𝛼 ∈ (𝑁 ∪ Σ)∗; and 𝑆 is the start nonterminal.
To formulate the obtained problem in terms of linear algebra, the in-
put graphs are considered in the form of adjacencymatrices, and the
input context-free grammar (CF-grammar) is encoded in the form

of a certain algebraic structure, namely, in the form of a semiring
with non-associative multiplication. This approach takes advantage
of the fact that in the production rules of the CF-grammars there
are two operations — concatenation and union, which are trans-
formed into the product and the sum of a semiring. The elements
of the adjacency matrices must be sets of nonterminals since each
of them describe the set of words corresponding to the paths of
interest. Further, the resulting semiring is used to define matrix
multiplication (or other linear algebra operation), which simulates
the step of the input graph traversing. For a complete traversal of
the input graph, a transitive closure of adjacency matrices can be
defined, which allows us to obtain the information about all paths
corresponding to the query. The type of information retrieved de-
pends on the query semantics, which must be taken into account
when constructing the adjacency matrices and semirings.

Analysis. To analyze the theoretical properties of the constructed
algorithm, the existing theoretical results of linear algebra, graph
theory and the theory of formal languages can be used. The proper-
ties of the entire CFPQ algorithm largely depend on the properties
of linear algebra operations since it evaluates the context-free path
queries by offloading the most intensive computations into calls to
procedures for these operations. Therefore, the most effective for
the algorithm will be optimizations that use the existing results of
linear algebra to efficiently compute such operations, for example,
sparse matrix and vector operations.

Implementation. From a practical point of view, the algorithms
built in this approach are easy to implement, since the most time
consuming is the implementation of the necessary linear algebra
operations, which have already been implemented in many effi-
cient libraries that support linear algebra operations. For example,
can be used the SuiteSparse:GraphBLAS [1] library — is an imple-
mentation of the GraphBLAS API. In such libraries, various matrix
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optimizations are used, which will significantly speed up the com-
putation of the context-free queries for large graphs. One of such
optimizations is the use of sparse matrix formats (CSR, CSC, COO),
the use of which gives a significant performance gain since real
data is often sparse. In addition, many linear algebra operations
can be efficiently computed in parallel, for example on a GPU. As a
result, the CFPQ implementation will allow to obtain matrices that
will store information about the desired paths in the graph. The
type of stored information is determined by the query semantics,
for example, it can be an answer to the question of the existence of
paths of a certain form or their enumeration.

Result interpretation. The final step is to interpret the query re-
sult. Depending on the query semantics, it is possible to extract
certain information about the paths between the vertices of in-
terest from the resulting matrix. In addition, in the case when the
query semantics involves the enumeration of paths between certain
vertices in the graph, it also becomes necessary to implement an
algorithm for constructing these paths from the resulting matrices.

3 ALGORITHMS
In this section, we briefly describe our devised CFPQ algorithms
based on the linear algebra operations. For all our algorithms we
formally prove the correctness, termination, and time complexity
bounds. Our algorithms can be divided into two groups.

Matrix-based algorithms. The algorithms in the first group utilize
the Boolean matrix multiplication for relational query semantics
and operate with more complex matrices for single-path and all-
path query semantics. Also, these algorithms, like many existing
ones, require the CF-grammar transformation to some normal form
that allows us to encode one step of the input graph traversing into
exactly one matrix multiplication since in this form we have only
two nonterminals in the right-hand side of productions rules.

We define a binary operation ( · ) for arbitrary subsets 𝑁1, 𝑁2 of
𝑁 with respect to a CF-grammar 𝐺 = (𝑁, Σ, 𝑃) as

𝑁1 · 𝑁2 = {𝐴 | ∃𝐵 ∈ 𝑁1, ∃𝐶 ∈ 𝑁2 such that (𝐴 → 𝐵𝐶) ∈ 𝑃}.

Using this binary operation as subset multiplication, and union
as an addition, we can define a matrix multiplication, 𝑎 × 𝑏 = 𝑐 ,
where 𝑎 and 𝑏 are matrices of a suitable size, that have subsets of 𝑁
as elements, as 𝑐𝑖, 𝑗 =

⋃𝑛
𝑘=1 𝑎𝑖,𝑘 · 𝑏𝑘,𝑗 . Also, we use the element-wise

union operation on matrices 𝑎 and 𝑏 with the same size: 𝑎 ∪ 𝑏 = 𝑐 ,
where 𝑐𝑖, 𝑗 = 𝑎𝑖, 𝑗 ∪ 𝑏𝑖, 𝑗 . Finally, we define the transitive closure

of a square matrix 𝑎 as 𝑎+ = 𝑎
(1)
+ ∪ 𝑎

(2)
+ ∪ · · · , where 𝑎 (1)+ = 𝑎 and

𝑎
(𝑖)
+ =

⋃𝑖−1
𝑗=1 𝑎

( 𝑗)
+ × 𝑎

(𝑖−𝑗)
+ , 𝑖 ≥ 2.

We can evaluate the context-free path queries with relational
semantics by computing this transitive closure of an adjacency ma-
trix 𝑇 of input labeled graph with sets of nonterminals as elements
where 𝐴 ∈ 𝑇𝑖, 𝑗 only if there is 𝑥 ∈ Σ such that there is edge from
vertex 𝑖 to 𝑗 labeled by 𝑥 and (𝐴 → 𝑥) ∈ 𝑃 . However, described
operations can be computed using several Boolean matrix multipli-
cations and additions if we encode the matrix𝑇 by the |𝑁 | Boolean
matrices (one Boolean matrix for each nonterminal how it is done
in the work of Valiant [20]).

Figure 2: Execution time in seconds of the path extraction
algorithm depending on the path length for 𝑔𝑒𝑜𝑠𝑝𝑒𝑐𝑖𝑒𝑠

For single-path and all-path query semantics, we store additional
information in matrices to be able to restore found paths. For single-
path query semantics, we store the intermediate vertex 𝑘 in the
element 𝑇𝑖, 𝑗 only if there is a path from 𝑖 to 𝑘 corresponding to the
nonterminal 𝐵, there is a path from 𝑘 to 𝑗 corresponding to the
nonterminal𝐶 , and there is a rule (𝐴 → 𝐵𝐶) ∈ 𝑃 . For all-path query
semantics, we store the sets of the intermediate vertices, since we
must store the information about all paths between each vertex
pair. In that case, we cannot reduce computations to operations
on Boolean matrices and we use custom matrix multiplication for
matrices with more complex elements (tuples or arrays of integers).
There are still libraries that support linear algebra operations for
our algorithms for single-path and all-path query semantics, for
example, the GraphBLAS implementations that support the creation
of custom semirings for the matrix operations.

Kronecker product-based algorithm. On the contrary, the algo-
rithm in the second group is based on the Kronecker product opera-
tion and does not require the transformation of the input grammar.
The transformation leads to at least a quadratic blow-up in grammar
size, thus by avoiding the transformation, this algorithm achieves
better time complexity in terms of the grammar size. While regu-
lar languages can be expressed as a Finite-State Machine (FSM), a
CF-grammar can be expressed as a Recursive State Machine (RSM)
in a similar fashion. In these algorithms, we use RSM to represent
the context-free path query and evaluate this query using the Kro-
necker product of the corresponding adjacency matrices of the
input graph and the RSM for the input CF-grammar. Although the
Kronecker-based algorithm for constructing the matrices with in-
formation about required paths (or so-called index) is the same for
all three query semantics, the paths extraction algorithm for each
semantics is different.

4 PRELIMINARY RESULTS
We evaluate implementations of devised algorithms on real-world
RDFs. We provide results only for our CPU and GPU-based imple-
mentations of matrix-based algorithms for relational and single-
path query semantics because of the page limit. We use Redis-
Graph [11] graph database as storage and measure the full time of
query execution including all overhead on data preparation. This
way we can estimate the applicability of the matrix-based algorithm
to real-world problems. The source code is available on GitHub1

1Sources of matrix-based CFPQ algorithm for the RedisGraph database: https://github.
com/YaccConstructor/RedisGraph. Access date: 27.02.2021.
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Table 1: Index creation time for RDFs (time is measured in seconds and memory is measured in megabytes)

Name V E
Relational semantics index Single-path semantics index

RG_CPUrel RG_GPUrel RG_CPUpath RG_GPUpath
Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB)

go-hierarchy 45 007 1 960 436 0.091 16.3 0.108 121.2 0.976 92.0 0.336 125.0
enzyme 48 815 219 390 0.018 5.9 0.018 4.0 0.029 8.1 0.043 6.0
eclass_514en 239 111 1 047 454 0.067 13.8 0.166 16.0 0.195 31.2 0.496 26.0
go 272 770 1 068 622 0.604 28.8 0.365 30.2 1.286 75.7 0.739 45.4
geospecies 450 609 2 311 461 7.146 16 934 0.856 5 274 15.134 35 803 1.935 5 282

The results of the CFPQ evaluation are presented in Table 1.
As we can see, our matrix-based algorithm for relational query
semantics implemented for RedisGraph is more than 1000 times
faster than the one based on annotated grammar implemented for
Neo4j [8] and uses more than 4 times less memory. We can conclude
that the matrix-based algorithm is more performant than the state-
of-the-art CFPQ algorithms for query evaluation under a relational
semantics for real-world data processing.

We can conclude, that the cost of computing matrices for single-
path query semantics is not high. On average, it is about 2 times
slower than for the relational query semantics. The additional run-
ning time of the path extraction is presented in Figure 2 (boxplots
are standard, outliers are omitted). As we can see, this time is small
and linear in the length of the path.

Finally, we conclude that the matrix-based algorithm paired with
a suitable database and employing appropriate libraries for linear
algebra operations is a promising way to make CFPQ with different
query semantics applicable for real-world data analysis.

5 CONCLUSION AND NEXT STEPS
In this Ph.D. work, we provide an approach to solving the CFPQ
problem using linear algebra operations. Using provided approach
we devise the CFPQ algorithms for all three query semantics and
implement them using appropriate libraries for linear algebra op-
erations. Preliminary results show that our CPU and GPU-based
implementations that utilize sparse matrix representation and par-
allel computation outperform the state-of-the-art solutions.

As a next step, we plan to provide a full comparison of our linear
algebra-based implementations with all state-of-the-art solutions
for CFPQ on the same benchmark and experimental setup. More-
over, our implementations are prototypes and we plan to provide
full integration of CFPQ to RedisGraph. Also, we plan to improve
the dataset by including more real-world cases with larger graphs,
for example, from the area of static code analysis [10, 14].
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