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ABSTRACT
This work is about performing automatic differentiation of a query
in the context of relational databases and queries. This is done in
order to perform optimization through gradient descent in these
relational databases. This work describes a form of automatic dif-
ferentiation for a subset of relational queries.

1 INTRODUCTION
Modern Differentiable Programming applied to Deep Learning con-
centrates on dense and regular problems such as images [13] [12]
and sound [6], or studies ways to project unstructured problems
into this framework [11] (e.g. auto-encoders for text data). Its suc-
cess is partly due to automatic differentiation [21]. Parallel to this
many business domains have a very well-defined structure, but this
structure is relational. For example supply chain data is organized
in relational databases and experts are used to working with these.
A canonical example coming from this domain: items in the prod-
uct table come from suppliers in the supplier table and are stored
in warehouses in the warehouse table; the problem’s structure is
completely different from Computer Vision or Natural Language
Processing, two hot topics in Machine Learning (ML). As people
that understand the supply chain complexity work with relational
databases, it seems to be the adequate place to let them build their
own models and optimize them. One of the main ways to optimize
a model is through gradient-based methods; if the model is written
with queries then we need to differentiate them to optimize the
model. Letting experts build white box models will help them to
check the sanity of models, which is very difficult to do on black box
models, such as deep neural networks. It is called Interpretable ML
in [19] and directly applies to the supply chain, where thousands of
orders are placed everyday for a single company. Furthermore [20]
has shown the advantages when performing an optimization in the
database system itself, limiting data transfer costs, over pulling the
data out to an external ML-oriented system.

Many sub parts of languages have been differentiated: Python [17]
[4], C [8], Julia [10], Swift [18], F# [3] . . . A more complete refer-
ence can be found at [7]. However, there are only a few attempts at
differentiating SQL·like programming languages, to our knowledge.
Thus we study a way to differentiate relational queries in order to
perform optimization through gradient descent.
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2 ADSL
[8] [10] [2] [21] [. . . ] proposes to differentiate subsets of common
programming languages. What these initiatives have in common
is the purpose of differentiating a pre-existing language. It is an
interesting task, while being complicated, as those languages are
not crafted for differentiation. This is especially true for relational
programming languages.

We introduce ADSL1, which is A Differentiable Sub Language
that is intended to lower relational language. It is a simple language
where Automatic Differentiation is a first class citizen. This idea
is similar to [1] [9] [14]. ADSL is closed by differentiation: the
adjoint, i.e. the derived program, of an ADSL program is also a
differentiable ADSL program. This closure gives immediate access
to higher order derivatives, which are sometimes used [15] [5].
ADSL is a simple SSA language that supports loops and conditional.
Its major specificity is its projectors and broadcasts support.

According to the definition below, an ADSL program is a list of
Statements < 𝑆 >, whose grammar is defined by:
⟨ S ⟩ ::= .

| ⟨ v← 𝑒⟩ Variable assignment
| ⟨ Cond ( v Ψ 𝑃𝑇 𝑃𝐸 Φ)⟩ Conditional
| ⟨ For ( 𝜒 𝑃 Ξ)⟩ Loop
| ⟨ Return v ⟩ Output of a program

⟨ e ⟩ ::= .
| ⟨ v ⟩ Variable
| ⟨ f ⟩ Scalar
| ⟨ b ⟩ Boolean
| ⟨ v + w ⟩ Variable Addition
| ⟨ Call1 op v ⟩ Function Call
| ⟨ Call2 op v w ⟩ Function Call (2 parameters)
| ⟨ Param i ⟩ Parameter access
| ⟨ Const i ⟩ Constant access
| ⟨ v ⊳ 𝛽 ⟩ Broadcast Projector
| ⟨ v ⊲ 𝛼 ⟩ Aggregation Projector
| ⟨ Pred ⟩ Predicate

⟨ Pred ⟩ ::= .
| ⟨ And v w ⟩
| ⟨ Or v w ⟩
| ⟨ Not v ⟩
| ⟨ v < w ⟩
| ⟨ v ≤ 𝑤⟩

ADSL is tight but it is enough to tackle many real business
problems, such as those encountered in the supply chain. Its main
characteristic is to be easily and fully differentiable. Projectors

1Adsl library can be found at https://github.com/Lokad/Adsl

https://github.com/Lokad/Adsl
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Figure 1: Path to differentiation.

(broadcasts and aggregations) are overused (with INNER JOIN and
GROUP BY SQL operator) while lowering a relational query.

Remark 1. We special case the addition. At first glance, it might
seem unclear why it is not included in Call2. It is due to our automatic
differentiation implementation and goes beyond the scope of the paper.

3 DERIVED QUERY
In this section we describe our approach to derive relational query.
This approach is based on compilation.

Let R be a relational query that creates the float column 𝐿𝑜𝑠𝑠 in
the table 𝑂𝑇 . We assume that R involves a float column 𝑋 in the
table 𝑃𝑇 . In optimization or Machine Learning, such an objective
function is often called loss. 𝑂𝑇 stands for Observation Table and
𝑃𝑇 for Parameter Table. It is possible that 𝑂𝑇 = 𝑃𝑇 .

Our main goal is to minimize the scalar:

SELECT sum ( Loss ) FROM OT

Differentiating a relational query means that we want to create
the column 𝐿𝑜𝑠𝑠 ′ in 𝑃𝑇 that is the derivative of𝑂𝑇 .𝐿𝑜𝑠𝑠 with respect
to 𝑃𝑇 .𝑋 . Doing so will unlock optimization through gradient-based
methods. As it appears hard to differentiate arbitrary query, we
reduce our scope to a subset of queries that should be wide enough
to cover many industrial cases. First we do not consider a query
that involves a Common Table Expression: these have to be inlined
in the query. It drastically helps query compilation to ADSL. Second
𝑃𝑇 .𝑋 should appear once and only once.

Let 𝑇𝑠 be the set of tables used in R. Then {𝑂𝑇, 𝑃𝑇 } ⊂ 𝑇𝑠 .
Let’s introduce the relation"𝑇𝐴 −→ 𝑇𝐵" when the primary key

of 𝑇𝐴 is a foreign key in 𝑇𝐵 . It is said that 𝑇𝐴 broadcasts into 𝑇𝐵 .
Here is a simple way to create such 𝑇𝐴 and 𝑇𝐵 in SQL:

CREATE tab le TA AS
SELECT f o r e i gnKey AS primaryKey
FROM TB
GROUP BY f o r e i gnKey

(𝑇𝑠 ,−→) naturally forms a graph. Thenwe can compile the query
R to the pair (𝑇𝑠 ,−→)× 𝑓 where 𝑓 is an ADSL program. Evaluation
of (𝑇𝑠 ,−→) × 𝑓 gives 𝑂𝑇 .𝐿𝑜𝑠𝑠 .

As 𝑓 is an ADSL program it is possible to differentiate it with
respect to the input associated to 𝑃𝑇 .𝑋 as 𝑓 ′.

We state that with

R ′ = (𝑇𝑠 ,−→) × 𝑓 ′

evaluation of R ′ gives the expected 𝑂𝑇 .𝐿𝑜𝑠𝑠 ′, which is repre-
sented in Figure 1.

We believe that this schema is a good way to differentiate rela-
tional queries: if the output is a relational query then we can use all
the optimizations and parallelizations developed for regular ones.

4 GRAPH POINT OF VIEW
In this section we introduce notations on graphs that will be ap-
plied to the SQL Table tree in order to simplify it and facilitate its
compilation to ADSL.

Definition 4.1 (Polytree). A Polytree is a directed acyclic graph
whose underlying undirected graph is a tree.

For example, any tree structure of a website is a Polytree.

Definition 4.2 (Cross Edge). A cross-edge is a pair of edges in a
graph (𝐴 −→ 𝐵,𝐶 −→ 𝐵) which indicates that 𝐵 comes from a
cross operation between 𝐴 and 𝐶 .

Here is a simple way to create such an edge in SQL:

CREATE tab le B AS
SELECT ∗ FROM A
CROSS JOIN C

Let 𝑃 be a Polytree with cross-edges: (𝑁, 𝐸, (𝑒𝑖 , 𝑒 𝑗 ))
Definition 4.3 (PolyStar). Let’s define a PolyStar 𝑃★ as

𝑃★ = {(𝑃,𝑛) | 𝑃 a Polytree with cross-edges & n a node of 𝑃 } (1)

A PolyStar is a PolyTree with a special focus on a specific node
of the graph.

Let (𝑃, 𝑜𝑡) ∈ 𝑃★. We call
• an upstream node a node 𝑛 of 𝑃 such that 𝑛 −→ 𝑜𝑡 .
• an upstream cross node a cross node 𝑛 of 𝑃 such that one of
its parents is an upstream node.
• an observation-cross a cross node of 𝑃 such that one of its
parents is 𝑜𝑡 .
• a downstream node a node𝑑 of 𝑃 such that is not an observation-
cross node and that 𝑜𝑡 −→ 𝑑 .
• We call a full node the remaining nodes of 𝑃 .

By construction, there is no path between a full node and 𝑜𝑡 .

4.1 SQL Table tree simplification
A relational query in SQL creates many tables, even though some
could be grouped. For example,

SELECT Loss FROM OT

creates another table with a bijection from its index to 𝑂𝑇 index.
Thus we introduce a novel join operator that helps us to simplify
the table tree: TOTAL JOIN. 𝑇1 TOTAL JOIN 𝑇2 ON ⟨𝜃⟩ is the same
semantic as 𝑇1 INNER JOIN 𝑇2 ON ⟨𝜃⟩ with the additional con-
straint that for each line of 𝑇1, there is exactly one line of 𝑇2 that
corresponds. To make a successful 𝑇1 TOTAL JOIN 𝑇2 ON ⟨𝜃⟩ it is
sufficient that 𝜃 columns are a primary key in 𝑇2 and a foreign key
in 𝑇2, but it is not necessary.

Thanks to this join operator that is reminiscent of [16], we can
gather tables in the graph that come from this operation. Indeed,
creating a new table is thus equivalent to adding a column to the
origin table. Then the compilation in ADSL from any join oper-
ator that is not a TOTAL JOIN gives a projector (a broadcast or
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Figure 2: Simplification thanks to TOTAL JOIN

an aggregator). If a TOTAL JOIN is used then operations can be
performed line by line thus we can compile it to a scalar operation
such as +, Call1, Call2 . . .

Remark 2 (Sufficient condition). If the query is written with-
out any Common Table Expression and involves 𝑃𝑇 .𝑋 only once, then
𝑇𝑠 ,𝑂𝑇 ∈ 𝑃★ where 𝑇𝑠 are the used tables in R.

4.2 A supply chain example
In this section we take a real case from the supply chain industry
to illustrate our previous formalization.

Let’s consider that our database contains information on prod-
ucts that a company sells. It has the Product table recording the
products. These products are organized by categories. The Orders
table records products orders. Assuming that we also have aWeek
table whose primary is the week number, we would write:

CREATE tab le Category AS
SELECT c a t e go ry FROM Produc t
GROUP BY c a t e go ry

CREATE tab le CategoryWeek AS
SELECT ∗ FROM Category
CROSS JOIN Week

CREATE tab le ProductWeek AS
SELECT ∗ FROM Produc t
CROSS JOIN Week

Then we get Figure 3.

Figure 3: PolyStar

4.3 Why all these notations?
All these notations help us to compile the query as easily as possible.
While computing a line of 𝑃𝑇 .𝑋 ′ from (𝑇𝑠 ,−→) × 𝑓 ′, an input
coming from
• the observation table gives a scalar
• an upstream table gives a scalar
• a full table gives a vector of the size of the full table itself.
• an upstream-cross table gives a vector of the size of the left
table used in the cross operation
• a downstream table gives a vector of certain size.

In summary, we introduce the TOTAL JOIN operator to turn the
SQL Table tree into a PolyStar. Once it is a PolyStar, its lowering,
i.e. compilation, to ADSL is simplified.

5 EXPERIMENTS
5.1 Dataset
We used the Chicago taxi rides dataset that can be found here 2.
We chose this dataset because it has also been used by [20] which
partly motivated our work.

For each ride, we use the taxi identifier, distance (in miles) and
the tips (in dollar). In this example, the Observation table is the
Trips table and the Taxis table is an upstream table:

CREATE tab le Tax i s AS
SELECT t a x i I d , 1 AS a FROM Tr i p s
GROUP BY t a x i I d

5.2 Linear Regression
We use linear regression to predict the tip based on the trip distance.

𝑡𝑖𝑝𝑠 = 𝑎 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑏 (2)

It is an interesting example to perform a benchmark but according
to us, it does not illustrate the relational aspect of the dataset. Thus
we also used an augmented version of this model where the slope
depends on the taxi identifier, the intercept remains shared among
taxis:

𝑡𝑖𝑝𝑠taxiId = 𝑎taxiId × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑏 (3)

This example illustrates how the relational information between
the Trips table and the Taxis table has to be used.

DECLARE @in t e r c ep t FLOAT ;
SET @in te r c ep t = 0 . 0 ;

SELECT
t r i p I d , t a x i I d ,
( E s t ima t ed − Tips )^2 AS Loss ,

FROM (
SELECT

∗ ,
T ax i s . a ∗ Tr i p s . d i s t a n c e + @in t e r c ep t

AS Es t ima t ed
FROM Tr i p s
INNER JOIN Tax i s
WHERE Tr i p s . t a x i I d = Tax i s . t a x i I d ) ;

2https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
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𝜕

𝜕𝑎
(𝑎𝑥 + 𝑏 − 𝑦)2 = 2𝑎(𝑎𝑥 + 𝑏 − 𝑦)

thus the derived query (with respect to the slope 𝑎) should be:

DECLARE @in t e r c ep t FLOAT ;
SET @in te r c ep t = 0 . 0 ;

SELECT
t r i p I d , t a x i I d ,
2 ∗ a ∗ ( E s t ima t ed − Tips ) AS Grad ien t ,

FROM (
SELECT

∗ ,
T ax i s . a ∗ Tr i p s . d i s t a n c e + @in t e r c ep t

AS Es t ima t ed
FROM Tr i p s
INNER JOIN Tax i s
WHERE Tr i p s . t a x i I d = Tax i s . t a x i I d ) ;

For the sake of notation, slopes are initialized at 1 and intercept at
0.

Such a model has a straight forward explanation; the model can
be white boxed. Taxi’s slope shows its ability to get tips. It is called
Interpretable ML [19]. We’ve used linear regression for simplicity
sake, but unlocking differentiable programming, i.e. access program
derivative, to relational programming language unlocks an amazing
variety of other models. All experiments were run on Azure with
¨Standard_L8s_v2¨, a 8 vCPU machine, running at 2.557 GHz with
a disk of 1.9TB NVMe. Our prototype and experiments were run
on a supply chain Domain Specific Language. It is a Python·like
implementation of SQL narrowed for supply chain problems. Tests
were carried out five times and the average runtimes recorded. In
Table 1, we present our result for 10 epochs of gradient descent on
the Chicago dataset.

Table 1: Runtime for Linear Regressions

Trips Taxis Shared Slope (sec) Taxi’s Slope (sec)

103 479 5.6 × 10−2 6.1 × 10−2
105 1037 3.14 × 10−1 4.27 × 10−1

1.95 × 107 9201 4.47 × 102 5.38 × 102

In Table 1, Shared Slope is the implementation relative to equa-
tion 2 and Taxi’s Slope is relative to equation 3. We’ve not repro-
duced all experiments from [20] as our focus is to differentiate a
relational query that involves table relationships. In our example
this is the relationship between Trips and Taxis tables.

6 CONCLUSION
In this work we’ve presented a concrete approach to perform differ-
entiation on relational query. Our claim is that derived query should
also be a query. Thus we have introduced a dedicated programming
language ADSL that is closed by differentiation. Thanks to the intro-
duced operator TOTAL JOIN and PolyStar, we can clarify the roles
of different tables in the relational query to differentiate. Our imple-
mentation allows us to efficiently tackle real world problems such
as those encountered in a supply chain, for example. We hope that

relational programming language will consider Automatic Differ-
entiation as first class citizens in the future, this would strengthen
"Query 2.0" [22] and unlock many interesting applications. This
would help every engineer working on relational databases to de-
velop efficient white-box models by easily plugging their expertise
into it.
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