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ABSTRACT

The recovery process in main memory database systems (MMDBs)
run in an offline way. Thus, MMDB only becomes available for new
transactions after the complete recovery process has finished. Some
MMDBs maintain database replicas for assuring high availability af-
ter systems failure. Nonetheless, a database replication mechanism
is not immune to failures as well. For that reason, recovery tech-
niques are required to repair failed systems as quickly as possible.
This work proposes an instant recovery strategy for MMDBs, which
makes MMDBs able to process transactions immediately after the
recovery engine is triggered. The proposed approach rebuilds the
database incrementally and on-demand. Besides, a novel checkpoint
technique is proposed to interfere as little as possible in the system
performance. The checkpoint technique can also act during the
recovery process so that the next recoveries are faster in the face of
successive failures. In order to validate the approach, simulations
with a prototype implemented on Redis have been conducted over
Memtier benchmark. Preliminary results evidence the suitability of
the proposed recovery mechanism.

1 INTRODUCTION

It is a matter of fact that Main Memory Databases provide very high
throughput rates since the primary database is handled in main
memory. Nevertheless, databases residing in a volatile memory
are much more sensitive to system failures than traditional disk-
resident. The recovery mechanism is responsible for restoring the
database to the most recent consistent state before a system failure
[2,7,8].

The recovery process for most MMDBs is performed offline,
meaning that the database and its applications only become avail-
able for new transactions after the full recovery process is com-
pleted. One might claim that systems are capable of keeping data-
base replicas for high availability. In fact, with the advent of high-
availability infrastructure, recovery speed has become secondary
in importance to runtime performance for most MMDBs. Never-
theless, high availability infrastructure is not immune to human
errors and unpredictable defects in software and firmware that are
a source of failures and might cause multiple and shared problems.
Besides, it require an additional cost to the system infrastructure.
[2,7,12,15].
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This paper proposes an instant recovery approach for MMDBs.
The proposed approach allows MMDBs to schedule new transac-
tions immediately after the failure during the recovery process,
giving the impression that the system was instantly restored. The
main idea of instant recovery is to organize the log file in a way that
enables efficient on-demand and incremental recovery of individ-
ual database tuples. Furthermore, the paper presents a log record
propagation scheme (checkpoint) to accelerate recovery and free up
log space. The scheme uses an extension the fuzzy checkpoint ap-
proach to try not to degrade system performance. The checkpoint
can also propagate records during recovery and thus accelerate
next recoveries in case of successive failures.

The remainder of this paper is organized as follows. Session 2
provides an overview of MMDB recovery and related work. Section
3 presents the proposed approach for database instant recovery.
Section 4 discusses the results of empirical experiments. Finally,
Section 5 concludes this paper.

2 BACKGROUND AND RELATED WORK

Most MMDBs implements logical logging technique which records
higher-level database operations, such as inserting database tuples.
MMDBs produce only Redo log records of modified tuples to re-
duce the amount of data written to secondary storage. The commit
processing uses group commit, i.e., it tries to group multiple log
records into one large I/O [15, 18].

The MMDB checkpoint materializes log logical operations to
physical data on a checkpoint file. However, most MMDBs produces
a consistent checkpoint file equivalent to a materialized database
state in an instant of time, commonly called snapshot [1-3].

Whenever a system crash occurs in an MMDB, the primary copy
of the database is lost. Thus, the recovery manager should load the
last checkpoint into memory and redo log records [2, 14, 15].

Hekaton [1], VoltDB [14], HyPer [4], SAP HANA [3], and SiloR
[18] are examples of modern MMDBs that perform the recovery
activities mentioned above. Nevertheless, those systems do not
execute new transactions until the full recovery is completed.

PACMAN [15] and Adaptive Logging [16] utilize a dependency
graph between transactions performed to identify opportunities
for database recovery in parallel. Those systems must wait for the
full database recovery to service new transactions.

The Log-Structured Merge tree (LSM-tree) [10] provides low-
cost indexing for a file that has a high rate of record insertions and
deletions. The LSM-tree access method uses a buffer to avoid multi-
ple I/Os in secondary memory for frequently referenced pages. This
approach is not suitable for writing log records since they require
immediate and atomic persistence during commit processing.



Sauer et al. [12, 13] present a technique for instant restoring
a disk-resident database. This technique uses a partitioned index
to write log records efficiently. After a crash, the recovery loads
pages from a backup device and their corresponding log records
from the indexed log. New transactions are allowed as soon as
their necessary pages are restored. As a disadvantage, when the
number of partitions increases, the system may search for multiple
partitions to retrieve a page, which might delay the recovery.

In the paper [6] the authors provide a survey of techniques for
implementing recovery in MMDBs. Besides, the authors describe
the main features of recovery mechanisms delivered by well-known
MMDBs.

3 THE INSTANT RECOVERY MECHANISM

The existing MMDBs recovery strategies use a sequential log that
makes instant recovery impossible. The recovery by a sequential
log is not incremental and requires full recovery before any tuple
can be accessed. This scenario does not allow the system to execute
an on-demand transaction during recovery since the required tuples
for the transaction can only be accessed after the recovery process
has finished [2, 7, 12].

The instant recovery technique presented in this work builds
the log file as an index structure. This log organization enables
an efficient restoration of a tuple. A single fetch on the indexed
log can restore one tuple. Thus, the system can use the indexed
log to recover a database by restoring tuple by tuple incrementally.
This technique naturally supports database availability since a new
transaction can access a tuple immediately after the tuple is re-
stored, i.e., transactions do not have to wait for a full recovery to
access restored tuples. Figure 1 shows the architecture to imple-
ment the proposed MMDB instant recovery approach. The next
subsections discuss the main components of the architecture and
their interactions.
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Figure 1: Architecture of the instant recovery mechanism.

3.1 The Logging Strategy

The proposed approach for MMDB instant recovery employs two
log files: a sequential log (Figure 2 (a)), and an indexed log (Fig-
ure 2 (b)). Each record in the sequential log represents an update
performed on a tuple by a transaction. During transaction process-
ing, each transaction generates Redo records that are kept in a
thread-local. During the commitment, all log records generated by
a transaction are appended atomically on the sequential log by the
Logger component. The Log Sequence Number (LSN) represents
the order in which a record was stored. This scheme ensures log
consistency to recover the database.
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Figure 2: Sequential log (a), and indexed log (b).

The proposed recovery scheme requires efficient log reading to
fetch the records in order to redo a given tuple during recovery.
For this reason, the logging strategy implements an indexed log.
The index structure is an extension to B*-tree in which each node
contains a tuple ID and the log records generated by transaction
updates on that tuple. Therefore, the log granularity is tuple. One
probe on B*-tree retrieves all records to restore a single tuple. The
Indexer component indexes records from the sequential log to the
indexed log asynchronous to transaction commit, i.e., a transaction
does not need to wait for the log indexing to commit its execution.
Records can be removed from the sequential log after they are
indexed in the B*-tree. However, the sequential log is maintained to
ensure consistent database recovery in the event of index corruption.
In this case, the system must build a new indexed log from the
sequential log. This process delays the start of recovery process.

The primary purpose of instant recovery is to restore the data-
base efficiently without degrading the transaction throughout pro-
vided by the system. The indexed log requires random writes, while
a sequential log has a sequential write pattern. Writing records
into a sequential log file is potentially faster than doing so into
an indexed log file. For this reason, in our approach, log records
are written to the sequential file since they have efficient record
writes. Periodically, the log records are flushed from sequential log
to indexed log file. The indexing process occurs asynchronously to
the transaction commit operation so as not to degrade the process-
ing. Therefore, the proposed log organization can flush log records
efficiently to a sequential log during transaction processing and it
needs only one fetch on the indexed log to retrieve all log records
required to restore one tuple.

Figure 2 illustrates logging process. Observe that transactions
Tx1, Tx2, and Tx3 generated log records for updates performed in
tuples Tp1, Tp2, and Tp3. Sequential log stores the records flushed
by the three transactions. The log records with LSN 11, 13, 16, and
19 represent the last update performed in tuple Tp1, for example. A
fetch on the indexed log can retrieve the records of LSN 11, 13, 16,
and 19 to redo the tuple Tp1. The absence of an index implies the
necessity of a full scan on the sequential log to restore Tp1.

3.2 The Checkpoint Strategy

During transaction processing, the Accesses Logger component
stores tuple access information. The Checkpointer component uses
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those information to identify the most frequently accessed tuples.
These tuples are associated with most of the generated log records.
Periodically, the Checkpointer starts the checkpoint process that
is an extension of the fuzzy checkpoint approach. The checkpoint
propagates the record actions in the indexed log of the most fre-
quently used tuples.

For each tuple T, in which T is one of the most frequently ac-
cessed tuples, the Checkpointer retrieves the set S of log records
contained in node N of B*-tree (in the indexed log) associated with
T. The set S is able to redo the tuple T entirely in case of failure.
Then, a new log record L, whose effect is equivalent to that of the
set S to redo tuple T, is generated. Finally, log record L replaces
set S on node N. This process is useful to decrease the number of
log records to be processed during recovery. As a result, the check-
point can accelerate the recovery process and liberate log space.
The checkpoint is performed asynchronously to the transaction
processing.

3.3 The Recovery Process

After a system failure, the system should initiate the database re-
covery by restoring tuples through the indexed log. However, the
record indexing process is asynchronous to the transaction commit.
As a result, some records on the sequential log may not have been
indexed before a failure. Therefore, immediately before starting
recovery, the system must verify if any records have not yet been
indexed. The Indexer component must index those records to en-
sure recovery consistency. When this process ends, recovery can
begin and new transactions can be performed. Thus, the Restorer
component begins redoing tuples by traversing the indexed log B*-
Tree. Each visit to a B*-tree node can retrieve the update records to
redo a tuple. When a tuple is redone, its key is marked as restored.
After visiting all B*-tree nodes, all database tuples are restored, and
the recovery process is completed.

The indexed log recovery scheme can naturally support avail-
ability since new transactions can be executed immediately after
restoring their required tuples. Furthermore, this recovery scheme
can service new transactions whose necessary tuples have not yet
been loaded into memory during recovery. When a transaction
requires tuples, the Scheduler component checks whether the tu-
ples have already been restored. If they are not in the memory, the
Scheduler must request the Restorer for these tuples on-demand.
Then, the recovery manager should pause the incremental recovery
(the traversing in B*-tree) and begin fetching the necessary tuples
for the transaction from the indexed log. After the transaction’s
tuples are restored, they are marked as restored, the transaction
can run, and the system can continue the incremental recovery.

During recovery, the checkpoint propagates log record actions
similarly to the algorithm shown in Section 3.2. However, the prop-
agation is applied to the log records of each restored tuple, rather
than just the most frequently used tuples. Therefore, after a tuple
is restored, the Restorer requires the Checkpointer to perform a
checkpoint for the log records for that tuple. The contents of the re-
stored tuple are used to generate a new log record that replaces the
log records in the B*-tree node used to redo the tuple. If successive
failures occur, the next recovery will process fewer log records.

3.4 The Evaluation Prototype

The instant recovery approach proposed in this paper was imple-
mented in Redis 5.0.7 [11] to evaluate the feasibility of indexing
for log replay. The evaluation prototype can be downloaded!. Re-
dis is an open-source in-memory data structure store used as an
in-memory key-value database. Redis is written in ANSI C, has
a simple architecture, and its source code is easy to understand.
These characteristics facilitated the development of the prototype.

Redis uses an append-only file (AOF) to write log records and
generates snapshots at regular intervals as a binary dump using
the Redis RDB Dump File Format. Redis can automatically rewrite
the AOF in the background in case its size exceeds the optimal [11].
The prototype uses the AOF from Redis, i.e., we did not need to
implement a sequential log. The RDB was disabled in the prototype.
Moreover, the system does not rewrite the log.

The B*-tree of the indexed log was implemented using Berkeley
DB 4.8 [9]. Berkeley Database (Berkeley DB or BDB) is a software
library intended to provide a high-performance embedded database
for key/value data. BDB allows the specification of the underlying
organization of the data in various database implementations (e.g., b-
tree, hash, queue, and recno). The checkpoint component proposed
in this work is still under development. Thus, the experiments
presented in the next session do not include this module.

4 RECOVERY MECHANISM EVALUATION

We have empirically evaluated the proposed instant recovery mech-
anism in order to present its efficiency and suitability to be imple-
mented in MMDBs. All experiments were executed with 4 worker
threads on Intel Core i7-9700k CPU 3.60GHz x 8. The system has
64GB of RAM and 400GB of SSD Kingston SA400S37 as a persistent
storage device. The operating system was Ubuntu Linux 18.04.2
LTS. We used the Memtier benchmark [5, 17] to perform the tests.
Menmtier is a high-throughput benchmarking tool for Redis devel-
oped by Redis Labs. The tool offers options to generate various
workload patterns. Memtier has already been used in several scien-
tific works, such as this one [17], for example.

4.1 Preliminary Experiments

The experiments were focused on measuring the time to fully re-
cover a database, the availability to process transactions after a
system failure, the time needed to run a workload entirely, and log-
ging overhead. These experiments were performed on a database
containing 99, 507 keys that generated an 11.8GB sequential log
file containing 160 million records. Additionally, an indexed log
was generated along with this sequential log using the recovery
technique proposed in this work. For each experiment, the system
was shut down to simulate a failure. At the database restart, as
soon as the recovery process was triggered, a workload would be
submitted. Thus, one could measure transaction throughput and
recovery time from system restart.

The key goal was to compare the proposed instant recovery
approach to the traditional MMDB recovery. However, we also
tested our instant recovery scheme in different scenarios to confirm
the following expectations about our technique: (1) an indexed log
must be employed to incrementally and on-demand recover the

!https://drive.google.com/drive/folders/1LTbtY3600kWIpxZBM-hc1BPvIjICuy2F



database, and (2) the asynchronous indexing of log records must
be adopted to avoid transaction processing overhead. Thus, the
experiments have been conducted in the three following scenarios:
(i) Sequential Log Recovery - SLR; (ii) Asynchronous Indexed Log
Instant Recovery - AILIR; (iii) Synchronous Indexed Log Instant
Recovery - SILIR.

The SLR scenario (traditional recovery) uses only a sequential log.
In this scenario, transaction update records are written to a sequen-
tial log file during transaction processing. The recovery process
recovers the database by scanning the entire log file. The AILIR sce-
nario (our approach) uses a sequential log + indexed log. In AILIR,
transaction update records are written in a sequential log, during
transaction processing, and stored asynchronously to the transac-
tion commit in an indexed log. The SILIR scenario (which is derived
from AILIR) uses only an indexed log. In SILIR, transaction update
records are written directly to an indexed log synchronously to the
transaction commit. After a failure, for both scenarios ii (AILIR)
and iii (SILIR), the recovery manager must traverse the B*-tree
to recover the database. The SILIR scenario was created to mea-
sure the log indexing overhead during transaction processing and
instant recovery processing. For each scenario, the experiments
were performed on workloads with a 5: 5 ratio between read and
write operations. They were simulated using the Memtier bench-
mark which operated 4 worker threads, with each thread driving
50 clients. Each client made 170,000 requests in a random pattern.

The results of recovery experiments are in Figure 3. The vertical
dashed lines in the figure indicate the final recovery time of the re-
spective color approach. Besides, it did not overload the throughput
of transactions since its throughput was similar to that of the default
approach (SLR). This result was already expected because AILIR
and SLR flush log records to secondary memory in a similar manner,
except that AILIR additionally indexes the log records. However,
the indexing did not interfere with the transaction throughput be-
cause it is performed asynchronously to transaction commit. SILIR
had the worst performance due to its synchronous log indexing,
i.e., a transaction must wait for indexing to confirm its writes. Al-
though the SLR recovered the database before AILIR, the AILIR
was able to perform transactions since system restart and was the
fastest approach to finish the workload execution. This result was
achieved because AILIR has asynchronous indexing and can process
transactions while the system is recovering. Additionally, the client
application did not notice the AILIR recovery, giving the impression
that the recovery was instantaneous.
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Figure 3: Experiment results
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5 CONCLUSION

This paper proposed an instant recovery approach for MMDBs.
The approach allows new transactions to run concurrently to the
recovery process. The approach takes benefit of using a log file
with a B*-tree structure. Thus the recovery mechanism is able to
seek tuples directly on the log file to rebuild the database in an on-
demand and incremental fashion. New transactions are scheduled
as soon as required tuples are restored into the MMDB.

The results show that instant recovery reduces the perceived time
to repair the database, seeing that transactions can be performed
since the system is restarted. In other words, it can effectively de-
liver tuples that new transactions need during the recovery process.
The experiments also analyzed the impact of using a log indexed
structure on transaction throughput rates in an OLTP workload
benchmark. We believe that adding a checkpoint module to the
prototype developed in this work will increase system availability
and provide faster database recovery.
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