
Enhancing JSON Schema Discovery by Uncovering Hidden Data
Justin R. Namba

supervised by Michael J. Mior

Rochester Institute of Technology

Rochester, New York, USA

jrn1325@rit.edu

ABSTRACT
Schema discovery is finding the structure of data. It helps users

understand the meaning of data and write queries to manipulate

it. This is typically easy for relational databases, but complex for

non-relational (NoSQL) databases with JavaScript Object Notation

(JSON) documents. JSON is a representation of documents that

contain objects stored in the form of nested key-value pairs. For

relational databases, the schema is predefined because the data

they contain is structured, but for NoSQL databases, data is usually

unstructured or semi-structured. In a collection of JSON documents,

the structure of one document can be completely different from

another. Several algorithms were developed to discover schemas

from JSON documents, but they provide the physical structure and

semantic information that is insufficient for data understanding

and analysis. In this paper, we enumerate the major techniques

used to extract a schema from JSON documents and present the

next challenge: uncovering hidden data disguised as metadata. This

challenge needs to be addressed within the field of JSON schema

discovery to enhance the quality of the discovered schemas.

1 INTRODUCTION
NoSQL is an approach to database design that can accommodate a

wide variety of data models, including key-value, document, and

graph formats [6]. It provides an alternative to relational databases

in which data is placed into tables and the schema is designed before

the database is populated [10]. Over the years, NoSQL databases

have become popular because of their flexibility and performance.

However, analyzing NoSQL data is challenging because of the lack

of schema. We focus on data represented in JSON format, which is

semi-structured and consists of documents stored in the form of

nested key-value pairs. A key is a string that represents the name of

an attribute, and the value is an instance of the attribute that can be

a string, a number, a Boolean, an array, or a nested key-value pair.

Different documents within the same database may have a different

structure, therefore a query intended to retrieve one document may

notwork for another. Many researchers have designed algorithms to

analyze JSON documents and extract schemas from them. However,

their contributions mainly provide the structure of the schema,

but lacks additional information on how the JSON documents are

related that will enhance the quality of the discovered schemas.

We aim to extract this additional information by addressing the

following challenge: distinguishing data from metadata.

Proceedings of the VLDB 2021 PhD Workshop, August 16th, 2021. Copenhagen, Den-

mark. Copyright (C) 2021 for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

In this challenge, we aim to uncover hidden data disguised as

metadata by separating data from metadata. In relational databases,

there is a clear line that separates data from metadata, but in JSON

documents, that distinction is not evident. Within some sets of

JSON documents, a portion of the keys is data, but is classified as

metadata during schema extraction because the algorithms do not

take the possibility of keys being part of the data into consideration.

We call this misclassified data dynamic keys. We distinguish them

from the other category of keys called static. Static keys are the
metadata of the documents. Figure 1 shows two sampled JSON doc-

uments adapted from a dataset that contains Amazon products [12].

The key related is static or metadata because its nested keys are

generally constant across the JSON documents and only communi-

cate structural information. On the other hand, the key salesRank
is dynamic and part of the data because its nested keys differ from

one document to the next and represent more than just structure.

The distinction between these two categories of keys can bemade

by analyzing features that we extract from the JSON key-value pairs.

We parse the JSON documents, extract numerous features, and

use a classification algorithm to separate static from dynamic keys.
Overall, making this distinction within nested JSON documents will

enhance the quality of the discovered schemas by clearly identifying

which keys are data or metadata, as in relational databases.

The rest of the paper is organized as follows. Section 2 summa-

rizes related work. Section 3 describes our approach to uncover the

hidden data. Section 4 presents the results. Section 6 concludes the

paper and enumerates potential future works.

2 RELATEDWORK
A JSON schema is a structural representation of a collection of

JSON documents that consists of nested key-value pairs in which

the keys represent the metadata and the values represent the data.

Several researchers developed different algorithms to extract the

JSON schema. Their algorithms take a set of JSON documents as

input, but provide different outputs. Wang et al. [13] present a

framework that outputs a graph data structure to store the schema

of each unique document. From this graph, a skeleton model can be

formed to represent a summary of the smallest number of attributes

that capture the core features of a document.

Klettke et al. [8] present a framework that produces a graph data

structure called structure identification graph (SG) that stores the

attributes’ information such as data type and frequency of occur-

rence. From an SG, a JSON schema that consists of the attributes

and their data types can be generated.

Frozza et al. generate a single schema from JSON documents [4].

The algorithm parses JSON documents, applies aggregation tech-

niques to group and order documents with the same keys and



1 {"asin": "0309069963", "categories": [["Books"]],
2 "salesRank": {"Books": 2174268},
3 "related": {"also_bought": ["0465022227"], "buy_after_viewing": ["0465022227"],
4 "also_viewed": ["0465022227","0309069963"], "bought_together": ["0309069963"]}}
5

6 {"asin": "B007M6IMQO", "title": "Adrienne Vittadini Footwear Women 's Vida Flat ...",
7 "salesRank": {"Shoes": 139961, "Clothing":596278},
8 "related": {"also_bought": ["B006WVESEK", "B007VMCFLC"], "buy_after_viewing": ["B006WVESEK"],
9 "also_viewed": ["B006WVESEK","B00880CLHE"], "bought_together": ["B006WVESEK"]}}

Figure 1: Sample Amazon data

Figure 2: Schema extracted from JSON discoverer tool

remove duplicates, and stores all the information about the JSON

documents in a tree-based data structure called Reduced Schema

Unified Structure (RSUS). Here information refers to the objects’

attributes, their datatypes, the elements within and arrays and their

datatypes, and the count of attributes frequencies. From RSUS, a

JSON schema can be generated for each attribute.

Cánovas Izquierdo and Cabot [5] develop the JSON discoverer

tool that aims to discover and integrate the schemas of JSON docu-

ments. This tool has three main functionalities: (1) simple discovery,

(2) advanced discovery, and (3) composer. Simple discovery finds

the schema of a set of JSON documents and stores it in Unified

Modeling Language (UML) format. Advanced discovery takes the

output of a set of simple discoveries to infer a global schema. Finally,

the composer functionality takes the inferred global schemas as

input and produces a graph that is composed of the attributes the

inferred global schemas have in common.

Overall, these existing algorithms and tools provide the structure

of the JSON documents, but the semantic information they provide

is insufficient to understand and analyze those documents. Figure 2

shows the result obtained when using the JSONDiscoverer over the

two documents in Figure 1. There is no distinction made between

attributes that are data (Books, Shoes, Clothing) or metadata

(also_bought, also_viewed, bought_together, buy_after_viewing).

Spoth et al. [11] design an algorithm, Jxplain, to reduce am-

biguity in JSON schemas. They propose a threshold-based model

to distinguish collection-like objects from tuple-like objects, the

equivalent of our dynamic and static keys, respectively. The authors
calculate two features: datatype entropy and key entropy. The first

feature is the entropy of a particular key’s value datatype and the

second feature is the entropy of the number of keys nested under a

particular key. As a result, a key is considered collection-like if it

has a datatype entropy of 0 (all nested values are the same type) or

if its key entropy is greater than 1. Otherwise, the key is considered

a tuple-like object. As we detail in our evaluation, this model is

simpler, but does not outperform our feature-based classifier.

3 METHODOLOGY
In this section, we describe the methods we analyzed and will use

to address the challenge mentioned above.

3.1 Static vs. Dynamic Keys
Based on our knowledge, there are no existing algorithms that can

distinguish static keys from dynamic ones, in other words, accu-

rately delineate data from metadata in nested JSON documents. A

JSON key is a field name and a JSON path is the route to a JSON

key. For example, in Figure 3, a modified sample of a dataset con-

taining metadata of games available on the Steam platform [9],

minimum is a JSON key and requirements→minimum is the

JSON path of that particular key. Our algorithm defines features

that will help correctly separate the data from metadata. These fea-

tures come from various domains such as intrinsic characteristics,

central tendency, statistical dispersion, distribution shape, seman-

tic/contextual similarity, and structural similarity. These domains

were chosen after manually analyzing the JSON documents. We

explain the features from each domain below.

3.1.1 Intrinsic Characteristics Domain. From our preliminary anal-

ysis, we observe that dynamic keys are generally less frequent and

nested deeper than static keys. This leads us to examine two intrin-

sic features: percentage and nesting level. Percentage is the number

of times a key appears in all documents relative to the number

of documents in the dataset. For example, looking at Figure 3, we

count the number of times the key minimum, belonging to the

JSON path requirements→minimum appears. However, some

documents may not have this specific key. Nesting level is the depth

of each JSON key within a document. We call these features intrin-

sic because they only communicate each unique key’s information



that is independent to the presence of other keys within the JSON

datasets. In Figure 3, the keyminimum’s nesting level would be 2.

3.1.2 Central Tendency Domain. All the features defined within

this domain and the two following derive from the number of keys

nested under each key as described below.

We count the number of keys nested under each particular key.

We notice that dynamic keys have more nested keys than static keys.
For our data, the mean represents the average of the total number

of keys nested under a particular key across all the documents of a

dataset. In Figure 3, we can see that the dynamic key minimum
has three nested keys (windows, linux,macOS) whereas the static
key windows has two nested keys (processor andmemory).

3.1.3 Statistical Dispersion Domain. In this domain, we examine

the variation among the numbers of keys nested under each par-

ticular key. In Figure 1, across the two documents, the number

of nested keys under the dynamic key salesRank varies, while

the number of nested keys under the static key related remains

constant. We examine this stability by calculating range, standard

deviation, and entropy, the most common measures of dispersion.

The range represents the difference between the largest number of

keys and the smallest number of keys nested under a particular key.

The standard deviation represents the variation within the number

of keys nested under a particular key. Entropy is the amount of

uncertainty the frequency of the number of keys nested under a

particular key produces.

3.1.4 Distribution Shape Domain. In this domain, we examine the

distribution shape of the number of keys nested under dynamic
keys and static keys across the documents and notice that static keys
have a more normal distribution than dynamic keys. For example,

in Figure 1, the static key related has four nested key in each of

the two documents, while the dynamic key salesRank has one

nested key in the first document and two in the second one. To

examine the shape of this distribution, we calculate skewness and

kurtosis. Whereas skewness measures the asymmetry between the

frequency of the number of keys nested under a particular key,

kurtosis measures the weight of the minimum and maximum of

the frequency of the number of nested keys, relative to the mean.

3.1.5 Semantic and Contextual Similarity Domain. To expand the

distinction between of static and dynamic keys, we calculate three
more features: distinct sub-keys, distinct sub-keys data types, and

average sub-key contextual similarity. These three features are cal-

culated across all the JSON documents. We choose them because

our preliminary analysis shows that the keys nested under dynamic
keys are usually more unique and related either structurally, se-

mantically, or contextually than the keys nested under static keys.
The distinct sub-keys feature shows whether dynamic keys have

more or fewer unique nested keys than static keys. The distinct sub-
keys data types feature reveals whether the data types of the keys’

values, nested under dynamic keys, are generally the same or not,

compared to the data types of the keys’ values nested under static
keys. The average sub-key contextual similarity feature indicates

whether the keys nested under dynamic keys are more or less

contextually related than the keys nested under static keys.
Distinct sub-keys represent the number of unique keys nested

under a particular key. We also set an upper bound of 100 for this

1 {"pegi": {
2 "pegi_url": "https :// store.cloudflare",
3 "pegi_tags": ["Blood", "and", "Gore"]},
4 "requirements": {
5 "minimum": {
6 "windows": {
7 "processor": "1 GHz Intel ...",
8 "memory": "1024 MB RAM",
9 },
10 "linux": {
11 "processor": "1 GHz Intel ...",
12 "memory": "1024 MB RAM",
13 },
14 "macOS": {
15 "processor": "SSE2 inst ...",
16 "memory": ""}}}}

Figure 3: Sample Steam game data

feature. A key with over 100 distinct sub-keys gives no further

important information and significantly skews the distribution of

the number of nested keys. Distinct sub-keys data types represent

the number of unique keys’ values data types under a particular

key. The last feature we calculate in this domain is the average

pairwise distance of embeddings. A key word embedding is a row

of real-valued numbers in which each point represents a dimen-

sion of the key’s linguistic meaning. We use fastText [2], a word

embedding model to extract the vectors of each key from a set of

nested keys and determine which ones are contextually related.

After transforming the nested keys of a particular key into vectors,

we compare each unique pair of vectors to measure their cosine

distance and compute the average of these distances. We assume

that nested keys part of the same contextual domain will have a

smaller distance and be under a dynamic key. This phenomenon can

be seen in Figure 3, a sample of Steam game dataset [9]. Static keys
are in red and dynamic keys are in blue. The fastText model shows

that the dynamic keyminimum has nested keys (windows, linux,
macOS) with an average cosine distance of 0.5655. This means that

they are in a more similar contextual domain than the static key
windows nested keys (processor andmemory) where the cosine
distance between their key embedding vectors is 0.9040.

3.1.6 Structural Similarity Domain. To reduce the possibility that

keys get misclassified, we decide to group keys with the same or

similar nested structures within each JSON dataset. Grouping is

beneficial because it will improve our classification results by cate-

gorizing a set of keys instead of all keys individually. We perform

the grouping by using set similarity search [1]. It is an algorithm

that measures the similarity of a collection of sets using Jaccard

similarity, which gives a score between 0 and 1.

Given a set of sets of all the nested keys, the algorithm compares

the sets among each other to find which sets have similarities (keys

in common) greater than or equal to a user-defined threshold of 0.7.

For example, the keys windows, linux, and macOS form a group

because their similarity score is 1, which is greater or equal to the

threshold. A score of 1 means that they have the same nested keys,



Intrinsic Feat. Central Tend. Feat. Dispersion Feat. Dist. Shape Feat. Add. Feat. Grouping
Classifier F1-score F1-score F1-score F1-score F1-score F1-score
Logistic regression 0.0897 0.0906 0.0921 0.0826 0.4875 0.4875

Random forest 0.1106 0.1198 0.1447 0.1272 0.5616 0.5016

SVMs 0.1110 0.1129 0.1029 0.0880 0.4218 0.4218

Table 1: Avg, F1-score Results

which are processor andmemory. Once the groups are formed,

we take the average of the percentage and nesting level of the keys

that constitute them and replace all the features of the individual

keys within a group with the values of that group.

3.2 Data Pre-processing
We collect the above information from various online sources in-

cluding Kaggle and GitHub [3, 7], just to name a few. Kaggle is a

web-based environment where data scientists can publish data sets

and GitHub is a web platform for software development and version

control. We store the extracted feature information and over-sample

the dynamic keys because our data is unbalanced; there are dispro-
portionately more static keys than dynamic keys. To balance our
data, we randomly duplicate the records from the minority class

(dynamic keys) to have as many records as the majority class (static
keys). We also normalize our data by subtracting the mean and

dividing by the standard deviation each row variable to obtain a

normal distribution with a mean of zero and a standard deviation

of one. The last step in this data preparation involves defining the

ground truth by manually labelling static and dynamic keys.

3.3 Classification Algorithms
After feature extraction, we train a binary classifier to determine

whether a key is static or dynamic across all documents. Static and
dynamic are our two categories. For this purpose, we use cross-

validation to split that data into testing and training sets. We group

keys from the same dataset together. That means that for the dif-

ferent sets that resulted, each dataset had the opportunity to be

the testing set. We then test three algorithms: 1) logistic regression,

2) random forest, and 3) support vector machines (SVMs), on the

different training and testing sets.

4 EVALUATION
To analyze our models, we calculate the average F1-score of the

dynamic keys. This value represents the mean of all the F1-scores

obtained from the classification of the dynamic keys from each test

set. We focus on the average F1-score of the dynamic keys because
our datasets are highly skewed toward static keys and we want to

know if our model learns to correctly predict and classify dynamic
keys with unseen data.

The experimental results can be seen in Table 1. It shows the

F1-score as the features from each domain are added progressively

(the final column displays results using all of the described features).

We obtain low average F1-scores across all three algorithms, but

random forest outperforms the other algorithms at distinguishing

data from metadata. We observe that the average F1-score some-

times decreases as we add more features from different domains.

Currently, we do not know which specific features are detrimental

to the average F1-score. Overall, it is challenging to obtain high

F1-score values because we have disproportionately more static
keys than dynamic keys.

We also tested Jxplain against our datasets and obtained an

average F1-score of 0.1304, which is significantly lower than the

best results we obtained from the other three algorithms we tested.

5 CONCLUSION AND FUTUREWORK
Our goal is to enhance the quality of the discovered schemas of the

JSON documents. For this purpose, we presented a major challenge

that needs to be addressed related to JSON schema discovery: un-

covering hidden data disguised as metadata by distinguishing static
from dynamic keys. We implemented a new algorithm that classifies

the JSON keys as data or metadata by extracting and computing

various features. Our next steps involve gathering more datasets

with dynamic keys, identifying which features are impeding the

average F1-score and reducing the number of misclassified keys.

REFERENCES
[1] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up All

Pairs Similarity Search. InWWW ’07 (Banff, Alberta, Canada). Association for

Computing Machinery, New York, NY, USA, 131–140.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-

riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135–146.

[3] Justin Dorfman. 2020. GitHub Datasets. https://github.com/jdorfman/awesome-

json-datasets.

[4] A. A. Frozza, R. d. S. Mello, and F. d. S. d. Costa. 2018. An Approach for Schema

Extraction of JSON and Extended JSON Document Collections. In IRI 2018 (Salt
Lake City, UT, USA). IEEE, New York, NY, USA, 356–363.

[5] Javier Luis [Cánovas Izquierdo] and Jordi Cabot. 2016. JSONDiscoverer: Visualiz-

ing the schema lurking behind JSON documents. Knowledge-Based Systems 103
(2016), 52 – 55.

[6] Jing Han, Haihong E, Guan Le, and Jian Du. 2011. Survey on NoSQL database.

In 2011 6th International Conference on PCA. IEEE, Port Elizabeth, South Africa,

363–366.

[7] Kaggle. 2020. Kaggle Datasets. https://www.kaggle.com/datasets.

[8] Meike Klettke, Uta Störl, and Stefanie Scherzinger. 2015. Schema extraction

and structural outlier detection for JSON-based nosql data stores. In BTW 2015.
Gesellschaft für Informatik e.V., Bonn, 425–444.

[9] Deepan Moorthy. 2020. Steam Games. https://www.kaggle.com/deepann/80000-

steam-games-dataset/version/2.

[10] Zachary Parker, Scott Poe, and Susan V. Vrbsky. 2013. Comparing NoSQL Mon-

goDB to an SQL DB. In ACMSE ’13 (Savannah, Georgia). ACM, New York, NY,

USA, Article 5, 6 pages.

[11] William Spoth et al. 2021. Reducing Ambiguity in Json Schema Discovery. In

SIGMOD/PODS ’21 (Virtual Event, China). ACM, New York, NY, USA, 1732–1744.

[12] Mengting Wan and Julian McAuley. 2016. Modeling Ambiguity, Subjec-

tivity, and Diverging Viewpoints in Opinion Question Answering Systems.

arXiv:1610.08095 [cs.IR]

[13] Lanjun Wang, Shuo Zhang, Juwei Shi, Limei Jiao, Oktie Hassanzadeh, Jia Zou,

and Chen Wangz. 2015. Schema Management for Document Stores. Proc. VLDB
Endow. 8, 9 (May 2015), 922–933.

https://github.com/jdorfman/awesome-json-datasets
https://github.com/jdorfman/awesome-json-datasets
https://www.kaggle.com/datasets
https://www.kaggle.com/deepann/80000-steam-games-dataset/version/2
https://www.kaggle.com/deepann/80000-steam-games-dataset/version/2
https://arxiv.org/abs/1610.08095

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Static vs. Dynamic Keys
	3.2 Data Pre-processing
	3.3 Classification Algorithms

	4 Evaluation
	5 Conclusion and Future Work
	References

