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Abstract. An approach to modelling self-supervised learning for automated in-
ferring good classification tests is proposed. The concepts of internal and exter-
nal learning contexts are formulated. A model of intelligent agent, capable of 
improving own learning process of inferring good classification tests in the ex-
ternal context is advanced. Internal evaluation is used in an internal process of 
learning with the aim of tuning the external learning process. The same learning 
algorithm is used for supervised learning both in the external context and in the 
internal context. The structure of good test inferring is described and a proce-
dure to recognize the end of inferring process is proposed. 
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1 Introduction 

Self-learning embodies one of the essential properties of human intelligence related to 
an internal evaluation of the mental process quality. A deeper level of learning – self-
learning – allows to manage the learning process in an external context in terms of its 
effectiveness through the internal evaluation and developing rules to select the best 
learning strategies and parameters without a teacher. 

We shall understand self-learning as a process of improvement of an agent's (or 
system’s) actions on the basis of self-evaluation of his (its) actions in a variable con-
text. When the agent selects sub-contexts and some actions in learning process, he (it) 
uses some criteria. The self-learning is related to the ability to change these criteria, to 
form new criteria, which is essentially to improve the learning algorithms, making 
them more consistent with the external context and more effective. 

The purpose of this paper is to model a self-learning process in the logical or sym-
bolic supervised algorithms of machine learning. This mode of learning covers min-
ing logical rules and dependencies from data: “if-then” rules, decision trees, function-
al, implicative and associative dependencies. We shall consider a special kind of 
symbolic machine learning, namely, inferring good tests from data [1] in multi-valued 
dynamic contexts (external contexts) for recognizing classes of objects represented by 
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their symbolic descriptions. The self-learning at the internal (deep) level implements 
the analysis and internal evaluation of classification rule inferring in the external con-
text and allows one to reveal the relationships between the external contexts (sub-
contexts) and the parameters of learning. The implementation of self-learning in the 
internal context can be based on the same algorithm of symbolic machine learning 
that works in the external context. 

The paper is organized as follows. The related works are discussed in Section 2. 
Sections 3 and 4 deal with defining a software agent capable of self-learning and the 
structure of the internal context. Sections 5, 6, and 7 cover the description of self-
learning in inferring good maximally redundant classification tests from data. To 
complete the paper, we give a short conclusion. 

2 Related works 

The analysis of modern researches has been implemented in the following directions: 
modeling of self-learning (self-supervised learning), deep learning [2] and models of 
learning in robots and robotic systems.  

In the first direction, it is particularly interesting [3] the principles and technologies 
of creating a robot that can move in the environment, manipulate objects and avoid 
obstacles. The robot is designed as an autonomous system. It requires from the robot a 
good spatial and semantic understanding of the environment. The self-learning robot 
should be aware of its own localization and realize an internal reflection of spatial 
situation taking into account different scenes (semantic understanding) in order to 
recognize new objects. It is declared by the author that the robot should be self-
esteemed and self-managed on the basis of previous experience. It must constantly 
adapt its spatial and semantic models in order to improve the performance of its tasks. 
Some concepts and algorithms are proposed to evaluate the robot's own movement 
(Self-Supervised Visual Ego Motion Learning) [4]. Note that the concept of self-
learning proposed in [3] coincides with the concept of self-learning offered by us.  

In [5], the role of curiosity in self-learning is analyzed and the concepts of self-
learning with the phenomenon of curiosity are developed. 

It is an ordinary practice to associate self-learning with deep learning. Impressive 
successes in deep learning achieved in simulation games [6] and image analysis [7-
16]. However, deep learning does not mean self-learning. Using neural networks for 
segmenting images traditionally requires a large quantity of training data marked 
manually. In [14] an algorithm is proposed on the basis of which 130000 images were 
generated with automatic marking for 39 objects. In [15], a robot’s internal evaluation 
of its future path cost is based on the probabilistic Bayesian method.  

Neural networks recognize classes of objects and form a feature hierarchy of clas-
ses, but do not form their symbolic logical descriptions or rules to recognize them. 
There are a number of works in which attempts are made to find the interconnection 
between artificial neural networks and symbolic machine learning within the frame-
work of the analysis of formal concepts (FCA) [17-20]. The main purpose of these 
works is to use the algorithms of constructing the concept lattice to configure the 



 

artificial neural networks in order to make it interpretable in terms of concepts. How-
ever, an improvement of the artificial neural network learnability has not yet obtained.  

In some works, the authors propose the use of robot’s manipulation reflection in 
learning algorithms for improving and accelerating robot’s training. For example, 
industrial Robot of Japanese Company Fanuc uses a method known as "training with 
reinforcement" to grab objects by a manipulator. In this process, the robot fixes its 
work on video and uses this video for correcting own activity. Domestic development 
of robots is also based on the use of artificial neural networks [21-24]. 

3 Software agent capable of self-learning 

Intelligence acts always in a changing context. Several examples of changing contexts 
can be: the descriptions of patient's conditions supplemented by doctor's decisions and 
patient's responses, images of the Earth's surface, and student personal characteristics. 
The task of self-learnable individual or an automatic device in a such changing con-
text is to support any purposeful action or function (search of food, search for exit 
from a labyrinth, etc.). Intelligence must have some abilities to act in the context by 
choosing sub-contexts and/or actions in them, as well as by assessing the extent to 
which its actions bring it closer to the goal. We shall refer to the context in which an 
intellectual being or device is acting as the external context. 

The objects in the external context (training samples) are described in terms of 
their properties (features, attributes) and they are specified by splitting into classes. 
The task of learning is to find rules in a given space of object descriptions in order to 
repeat the classification of objects represented by splitting objects into disjoint clas-
ses. Good tests approximate the specified object classification in the best way and 
give the minimum sets of attributes (values) that carry out the greatest possible gener-
alization within object classes and distinguish in pairs all objects from different clas-
ses [1]. As a task in the external context, we have chosen the task of constructing 
good maximally redundant classification (diagnostic) texts, because the algorithms 
developed for this task have a number of convenient properties for self-monitoring the 
process of inferring tests [25]: 

- external context is partitioned into sub-contexts in which good tests are inferred 
independently; 

- sub-contexts are chosen and formed by the logical rules based on analyzing sub-
contexts’ characteristics; the choice of sub-context determines the speed and efficien-
cy of classification task.  

The strategies for selecting sub-contexts of the external context and the algorithms 
to find good tests in them are easy to describe (to represent) with the use of special 
multi-valued attributes. In what follows, we shall call the intellectual being an agent, 
although it does not mean that we identify it with the agent in multiagent systems. 
Summing up the foregoing, we conclude that for self-learning the agent should have: 

1. A display of the external context in terms of the internal context); 
2. A set of rules (possible actions) for selecting context (sub-context); 
3. A display of the desired target (state); 



 

4. An operation (a function) for comparing the desired target with the achieved 
result. 

During the training process, the agent must develop a sequence of actions that will 
lead to the goal. We shall consider the permanent external context and its changes 
only in connection with the activity of the agent, for example, a sub-context can be 
deleted when the agent has completely solved the problem for this sub-context. De-
composition of contexts into sub-contexts in the tasks of inferring good classification 
tests have been considered in [25-26].  

When the agent selects sub-contexts and its (his) actions in learning process, it (he) 
uses some criteria. These criteria can be: the number of sub-contexts to be considered, 
the number of tests already extracted in sub-context, the number of objects and values 
of attributes in sub-context, the number of essential objects and values of attributes 
(attributes) in sub-context [1], temporal characteristics and some others. The agent 
needs to memorize the situations of learning and the activity associated with them.  

Let us assume that the internal context necessarily contains: 
1. Description of selected sub-context in terms of its properties; 
2. Description of selected action and the rule for its selection; 
3. Internal estimation of learning process with the use of some criteria of its ef-

ficiency. 

4 The structure of the internal context and realizing self-
learning 

Let K be the descriptions of external sub-context via its properties, А = {A1, A2, …. 
An} be the descriptions of algorithms of good tests inferring via their properties in this 
sub-context, R = {R1, R2, …,.Rm} be the set of rules for selecting sub-contexts, and V 
= {V1, V2, …, Vq) be the set of rules for evaluating the process of good test inferring. 
Then the internal context is described by the direct product of sets K, A, R and its 
mapping on V: K × A × R → V. There are more simple variants of the internal con-
text: K × A → V and K × R → V. 

The same algorithm can be used in both the external and the internal context in or-
der to infer the logical rules for distinguishing the variants of learning in the external 
context evaluated as good ones from the variants evaluated as not good ones. A few 
algorithms for good test inferring have been elaborated: ASTRA [27], DIAGARA, 
NIAGARA, and, INGOMAR [28]. 

We come to the realization of deep learning for the symbolic machine learning 
tasks. The internal context is a memory of the agent, the rules extracted from the in-
ternal context represent the agent's knowledge about the effectiveness of its actions in 
the external context. Actions in the internal and external contexts can be represented 
as actions of two agents functioning in parallel and exchange data (Fig. 1). 

Agent A1 transmits the data (the descriptions of contexts, algorithms, rules for se-
lecting sub-contexts) to Agent A2. Agent A2 acts in the internal context (obtained 
from agent A1) and passes to agent A1 the rules, which the latter applies to select the 
best variant of learning with each new external sub-context. 



 

 

 
Figure 1. Scheme of self-learning with the interaction of two agents 

 
For Agent A2, the internal context (memory) should not be empty, but this agent 

(as well as Agent A1) can use an incremental mode of learning [28]. A few incremen-
tal algorithms for good test inferring in symbolic contexts are described in [28]. 

5 The structure of good maximally redundant test inferring 

Good test analysis (GTA) deals with the formation of best descriptions of a given 
object class (class of positive objects) against the objects do not belonging to this 
class (class of negative objects) on the basis of lattice theory. We assume that objects 
(or patterns) are described in terms of values of a given set U of attributes. The key 
notion of GTA is the notion of classification. To give a target classification of objects, 
we use an additional attribute k ∉ U. This attribute partitions a given set of objects 
into disjoint classes the number of which is equal to the number of values of this at-
tribute. We need in the following series of definitions. 

Denote by M the set of attribute values such that M = ∪a∈U rng(a), where rng(a) is 
the set of all values of a. Let G = G+ ∪ G− be the set of objects, where G+ and G− are 
the sets of positive and negative objects, respectively. 

Let T be a table with many-valued data, where lines correspond to objects and col-
umns correspond to attributes. For representing data, we do not use any scaling.  

Denote a description of g ∈ G by δ(g), and descriptions of positive and negative 
objects by D+ = {δ(g)| g ∈ G+} and D− = {δ(g)| g ∈ G−}, respectively. The Galois 
connections [29] between the ordered sets (2G, ⊆) and (2M, ⊆), i.e. 2G → 2M and 2M → 
2G, are defined by the following mappings called derivation operators [30]:  

for A ⊆ G and B ⊆ M, val(A) = ∩g∈A δ(g) and  
obj(B) = {g| B ⊆ δ(g), g ∈ G}.  
There are two closure operators [30, 31]: generalization_of(B) = val(obj(B)) and 

generalization_of(A) = obj(val(A)). A is closed if A = obj(val(A)) and B is closed if 
B = val(obj(B)). If (val(A) = B) & (obj(B) = A), then a pair (A,B) is called a formal 
concept [30, 32], subsets A and B of which are called concept extent and intent, re-
spectively. A triplet (G,M,I), where I is a binary relation between G and M, is a for-
mal context K. According to the values of a goal attribute, we get some possible 



 

forms of the formal contexts: Kε := (Gε,M,Iε) and Iε := I ∩ (Gε × M), where ε ∈ 
rng(k), rng(k) = {+,−} (if necessary the value τ can be added to provide undefined 
objects) [32]. A classification context K± is formed by the sub-position of contexts K+ 
and K−, and the apposition of the resulted context with (G±, k, G±×k), i.e. after add-
ing the classification attribute k. Let us rewrite the definitions of tests by using nota-
tion of classification contexts and semi-concepts [33]: pairs like (obj(B),B), B ⊆ M, 
the left side of which is called an extent, and pairs like (A,val(A)), A ⊆ G, the right 
side of which is called an intent. Here and later words “diagnostic test” (and GMRT) 
will be used for semi-concepts (or concepts), the right part of which is a test. 

Definition 1. A diagnostic test (DT) for K+ is a pair (A,B) such that B ⊆ M, A = 
obj(B) ≠ ∅, A ⊆ G+, and obj(B)∩G ≠ ∅. 

Definition 2. A diagnostic test (A,B) for K+ is to be said maximally redundant if 
obj(B∪m) ⊂ A for all m ∈ M \B. 

Definition 3. A diagnostic test (A,B) for K+ is to be said good iff any extension A1 
= A∪i, i ∈ G+ \A, implies that (A1,val(A1)) is not a DT for K+ . 

A maximally redundant test which is simultaneously good is called a good maxi-
mally redundant test (GMRT).  

Definitions of tests (as well as other definitions), associated with K+, are applicable 
to K−.  

If a good DT (A,B) for K+ is maximally redundant, then any extension B1 = B ∪ 
m, m ∉ B, m ∈ M implies that (obj(B1),B1) is not a good DT for K+.  

In the general case a set B is not closed for DT (A,B), consequently, DT is not ob-
ligatorily a formal concept. A GMRT can be regarded as a special type of formal 
concept [1]. Note that the definition of GMRTs is equivalent to the definition of in-
clusion-minimal concept-based hypothesis in the FCA [30]. 

To transform inferring GMRTs into an incremental process, we introduce two 
kinds of subtasks for K+ (K−), called subtasks of the first and second kind, respective-
ly [34]: 

1. Given a positive object g, find all GMRTs (obj(B),B) for K+ such that B is con-
tained in δ(g). In the general case, instead of δ(g) we can consider any subset of val-
ues B1, such that B1 ⊆ M, obj(B1) ≠ ∅, B1 ⊈ δ(g), ∀g ∈ G−.  

2. Given a non-empty set of values B ⊆ M such that (obj(B),B) is not a DT for pos-
itive objects, find all GMRTs (obj(B1),B1) such that B ⊂ B1.  

Accordingly, we define two kinds of sub-contexts of a given classification context 
called object and attribute value projections, respectively. If (G,M,I) is a context and 
if H ⊆ G, and N ⊆ M, then (H,N,I∩H×N) is called a sub-context of (G,M,I) [35]. 

Definition 4. The object projection ψ(K+,g) returns sub-context (N,δ(g),J), where 
N = {n ∈ G+ | n satisfies (δ(n) ∩ δ(g) is a test for K+)}, J = I+ ∩(N×δ(g)).  

Definition 5. The attribute value projection ψ(K+,B) returns sub-context (N,B,J), 
where N = {n ∈ G+ | n satisfies (B ⊆ δ(n))}, J = I+∩(N×B). In the case of negative 
objects, symbol + is replaced by symbol − and vice versa.  

The decomposition of inferring GMRTs into the subtasks requires the following 
actions: 

1. Select an object or value to form a subtask.  
2. Form the subtask.  



 

3. Reduce the subtask.  
4. Delete the object or value when the subtask is over. 
The following theorem gives the foundation for reducing sub-contexts formed by 

object and attribute value projections [27, 28]. 
Theorem 1. Let B ⊆ M, (obj(B),B) be a maximally redundant DT for positive ob-

jects and obj(m) ⊆ obj(B), m ∈ M. Then m cannot belong to any GMRT for positive 
objects different from (obj(B),B). 

6 A procedure for mining the all GMRTs in the projections of 
both kinds 

Let Sgood+ (Sgood−) be the partially ordered set of obj+(m), m ∈ M satisfying the 
condition that (obj+(m), val(obj+(m))) is a current good DT for K+ (K−). The basic 
recursive procedure (BRP) for K+ is defined in Fig. 2, where  

• the first step of recursion is omitted for simplicity;  
• the output Sgood+ is implicitly given via a globally defined set, which is modified 

during the procedure; algorithm formSgood is given in Fig. 3;  
• variable ψtype has two possible values: object or attribute value projection;  
• algorithm choiceOfprojection returns ψtype, and X, which can be either g or B 

w.r.t. value of ψtype; 
• algorithm formSubcontext implements a definition of object or attribute value 

projection and returns new subcontext K∗; conditions for the end of recursion are 
described in steps 7, 25;  

• after the end of the current recursion iteration the control goes to the previous re-
cursion iteration from steps 13, 31;  

• checking whether (obj+(m),val(obj+(m))) is a DT for K+ is performed as fol-
lows: val(obj+(m)) is a test for K+ iff obj(val(obj+(m))) = obj+ (m). 

 
Procedure BRP 
     Input: K+,K−,Sgood+  
     Output: Sgood+  
1. f := 0;  
2. forall m ∈ M do 
3. if val(obj+(m)) is a test for K+ then  
4. formSgood(obj+(m),Sgood+);  
5. M := M \m, f := 1;  
6. end  
7. if |M|≤ 1 then  
8. return;  
9. if f = 0 then  
10. ψtype, X choiceOfprojection (K+,K−);  
11. K∗ + formSubcontext(ψtype,X,K+);  
12. BRP (K∗ +,K−,Sgood+);  
13. if ψtype = object projection then  



 

14. G+ := G+ \X; 15. else  
16. M := M \X;  
17. else  
18. f := 0;  
19. end  
20. forall g ∈ G+ do  
21. if val(g) is not a test for K+ then  
22. G+ := G+ \g;  
23. f := 1;  
24. end  
25. if |G+|≤ 1 then  
26. return;  
27. if f = 0 then  
28. ψtype, X choiceOfprojection (K+,K−);  
29. K∗ + formSubcontext(ψtype,X,K+);  
30. BRP (K∗ +,K−,Sgood+);  
31. if ψtype = object projection then  
32. G+ := G+ \X;  
33. else  
34. M := M \X;  
35. else  
36. go to 1;  
37. end 
 

Figure 2. Pseudo code of basic recursive procedure 

7 Forming SGOOD as the main problem of good test inferring 

Essentially, the process of forming Sgood is an incremental procedure of finding all 
maximal elements of a partially ordered (by inclusion relation) set. It is based on 
topological sorting of partially ordered sets. Thus, when the algorithm is over, Sgood 
contains the extents of all the GMRTs for K+ (for K−) and only them. The operation 
of inserting an element A∗ into Sgood (in algorithm formSgood) under lexicograph-
ical ordering of these sets is reduced to lexicographically sorting a sequence of k-
element collections of integers. 

A sequence of n-collections whose components are represented by integers from 1 
to |M|, is sorted in time of O(|M| + L), where L is the sum of lengths of all the collec-
tions of this sequence [36]. Consequently, if Lgood is the sum of lengths of all the 
collections A of Sgood, then the time complexity of inserting an element A∗ into 
Sgood is of order O(|M| + Lgood). The set Tgood of all the GMRTs is obtained as 
follows: Tgood = {t|t = (A,val(A)), A ∈ Sgood}. 

Algorithm formSgood  
Input: A∗ ⊆ G+,Sgood+  
Output: Sgood+  



 

1. forall A ∈ Sgood do  
2. if A ⊂ A∗ then  
3. Sgood+ := Sgood+ \A;  
4. else  
5. if A∗ ⊆ A then  
6. return;  
7. end  
8. Sgood+ := Sgood+ ∪A∗;  
9. return; 
 

Figure 3. Pseudo code of algorithm formSgood 

8 Some problem to be solved 

In self-learning, it is very important determining the nearness of the current result to 
the goal of learning process. The goal in mining GMRTs is to find the all GMRTs for 
a given external context. Generally, a situation can be when there exist sub-contexts 
of the external context to be solved, but the saturation of SGOOD is already achieved (i. 
e., all GMRTs are obtained). A procedure of determining the saturation of SGOOD can 
be based on the properties of the set of all GMRTs of a formal context to be the 
Sperner System [37]. 

It is important to formulate some unsolved and nontrivial problems related to the 
decomposition considered in this paper. These problems are: 

• How to recognize a situation that current formal context contains only the 
GMRTs already obtained? 

• How to evaluate the number of recurrences necessary to resolve a subtask in 
inferring GMRTs? (in case we use a recursive algorithm like DIAGARA)? 

• How to evaluate the perspective of a selected sub-context with respect to 
finding any new GMRT? 

These problems are interconnected and the subject of our further research. The ef-
fectiveness of the decomposition depends on the properties of the initial classification 
context (initial data). Now we can propose some characteristics of data (contexts and 
sub-contexts) useful for choosing a projection:  

• The number of objects; 
• The number of attribute values;  
• The number of the GMRTs already obtained and covered by this projection.  

Some unsolved problems cited above are difficult for analytical solution. It is pos-
sible that realizing the proposed approach to self-improving learning algorithms per-
mits one to investigate these problems and enables us to overcame the above difficul-
ties.  

One of the advantages of our approach is related to the possibilities to reduce the 
process of choosing sub-contexts and to obtain the best variant of learning to the plau-
sible deductive reasoning, one of the models of which is described in [28]. Modeling 
of on-line human reasoning is a key problem in creating intelligent computer systems. 



 

However, any attention is hardly paid to this topic in computer science. Knowledge 
engineering has arisen from a paradigm in which knowledge is considered as some-
thing to be separated from its bearer and to function autonomously with a problem-
solving application. This paradigm ignores the very essential feature of intelligence, 
namely, its continuous cognitive activity. Knowledge is corrected constantly. This 
means that the mechanism of using knowledge cannot be separated from the mecha-
nism of discovering knowledge. The future realization of our approach to self-
improving good test inferring will support using logical rules extracted from the in-
ternal context for deductive process of choosing variants of learning. 

9 Conclusions 

The concept of self-learning in the processes of inferring good classification tests is 
proposed in the paper. The inferring of good classification tests is a task of symbolic 
machine learning, for which the questions of self-learning has been not considered 
earlier. The results of this article are the following: 

A model of self-learning was proposed allowing to manage the process of inferring 
good tests in terms of its effectiveness through an internal evaluation of the learning 
process and the development of rules for choosing the best strategies, algorithms, and 
learning characteristics. 

The concepts of internal and external learning contexts were formulated. 
The structure of the internal context was proposed. 
A model of intelligent agent, capable of improving own learning process of infer-

ring good classification tests in the external context was advanced; 
It was shown that the same learning algorithm can be used for supervised learning 

both in the external context and in the internal context. The proposed approach is a 
model of deep learning implemented by inferring logical rules from examples. 
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