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Abstract. Recent years have witnessed the increase of openly available knowl-
edge graphs online. These graphs are often structured according to the W3C se-
mantic web standard RDF. With this availability of information comes the chal-
lenge of coping with dataset versions as information may change in time and
therefore deprecates the former knowledge graph. Several solutions have been
proposed to deal with data versioning, mainly based on computing data deltas
and having an incremental approach to keep track of the version history. In this
article, we describe a novel method that relies on aggregating graph versions to
obtain one single complete graph. Our solution semantically compresses simi-
lar and common edges together to obtain a final graph smaller than the sum of
the distinct versioned ones. Technically, our method takes advantage of FCA to
match graph elements together. We also describe how this compressed graph can
be queried without being unzipped, using standard methods.

1 Introduction

Knowledge Graphs (KG) are becoming the preferred data model for integrating het-
erogeneous data into actionable knowledge. General domain knowledge graphs such
as Wikidata [21] and DBpedia [16] have been used as core knowledge sources to de-
velop intelligent applications. Moreover, domain-specific knowledge graphs are being
constructed in almost all domains. Knowledge graphs provide a flexible data model
allowing the addition and deletion of facts in the graph. Therefore, KGs are dynamic
and evolve over time: facts are either added or removed. Such a paradigm leads to the
availability of several versions of the same KG e.g. each version may correspond to a
specific release published by the data providers.

Practically, KGs are often modeled according to the RDF standard, proposed by the
W3C. In a nutshell, the RDF1 data model implements multi-relational directed labelled
graphs using triples. Indeed, a triple t = (subject, predicate, object) encodes a fact,
e.g., ex:CR7 ex:born ex:Madeira states that Cristiano Ronaldo was born in
Madeira (Figure 1). To efficiently handle the continuously growing knowledge graphs,
there is a need for efficient compression techniques to allow practitioners to share and

1 https://www.w3.org/TR/rdf11-primer/
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KG-2002 (5 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:playsFor ex:Sporting_CP .
ex:CR7 ex:speaks “Portuguese” .

KG-Compression based on the URIs standardisation (6 triples)
ex:CR7 ex:name?v=02-20 “Cristiano Ronaldo” .
ex:CR7 ex:born?v=02-20 ex:Madeira .
ex:CR7 ex:occupation?v=02-20#08,20#13 “Football_Player#Entrepreneur#Model” .
ex:CR7 ex:playsFor?v=02#08#13#20 
ex:Sporting_CP#ex:Man_United#ex:Real_Madrid#ex:Juve .
ex:CR7 ex:speaks?v=02-20#08-20#13-20 “Portuguese#English#Spanish” .
ex:CR7 ex:fatherOf?v=13-20 ex:Cristiano_Jr .

KG-2008 (7 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Entrepreneur” .
ex:CR7 ex:playsFor ex:Man_United .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks "English” .

(a)  30 triples in total

KG-2013 (9 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Model” .
ex:CR7 ex:playsFor ex:Real_Madrid .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks “English” .
ex:CR7 ex:speaks “Spanish” .
ex:CR7 ex:fatherOf ex:Cristiano_Jr .

KG-2020 (9 triples)
ex:CR7 ex:name “Cristiano Ronaldo” .
ex:CR7 ex:born ex:Madeira .
ex:CR7 ex:occupation “Football_Player” .
ex:CR7 ex:occupation “Entrepreneur” .
ex:CR7 ex:playsFor ex:Juve .
ex:CR7 ex:speaks “Portuguese” .
ex:CR7 ex:speaks “English” .
ex:CR7 ex:speaks “Spanish” .
ex:CR7 ex:fatherOf ex:Cristiano_Jr .

(b) 6 triples in total (~80% of compression)

Fig. 1: Motivating example: (a) shows four different KG deltas of CR7 entity contain-
ing 30 triples in total. (b) depicts our vision of a semantically compressed KG with six
triples gaining 80%. The most critical challenge is searching for implicational depen-
dencies in the different deltas. Hence, FCA plays a crucial role in our approach.

store their graphs more easily. Ideally, knowledge graph compression algorithms should
serialize RDF data compacting RDF representation in a manner that still allows for
querying. By doing so, it should then be possible to query directly compressed graphs
without having to “unzip” them prior; this strategy would thereby save memory.

To date, most RDF compression approaches focus on syntactic compression, with
systems that modify the standard RDF data model. These systems require the imple-
mentation of complex encoders and decoders to deal with various KG versions, com-
puting deltas of triples to capture changes spanning across several versions. For exam-
ple, Álvarez-García et al. [2] implement algorithms directly in the storage solution. The
authors apply compact tree structures to the well-known vertical-partitioning technique
reaching a great compression degree. However, additional data structures are needed,
including a mapping dictionary and adjacency matrices. In this work, we focus on a
semantic compression of a set of RDF KGs, i.e., reducing the number of triples by
replacing or grouping repetitive parts observed in the various graphs of the set. Tech-
nically, our method takes advantage of formal concept analysis (FCA) to match graph
elements together. Moreover, our method allows to aggregate together concepts consid-
ered as “similar” according to a chosen similarity metric.

2 CR7’s career as a motivating example

First, let us take as example four different versions of the same small knowledge graph
(Figure 1) encoding facts about Cristiano Ronaldo (URI = ex:CR7). These versions
provide facts about CR7 at various moments of his career: in 2002, 2008, 2013 & 2020.

We notice that there are redundant facts among the knowledge graph versions, e.g.,
ex:CR7 ex:name "Cristiano Ronaldo" is present in all of them. Intuitively,
a compressed graph of these four versions should carry only once this specific state-



ment, mentioning that it is present in each of the considered versions. Such mentions
could be done by enriching the URIs of both predicates and objects, specifying e.g. the
range of the version where the statement holds. Similarly, the ex:playsFor concept
changes across versions as Cristiano played for a different team in each version. Our se-
mantic compression, using the same kind of URI annotation, encompasses such changes
to wrap all these statements within a single triple (cf. the 4th triple of Figure 1-b).

At the end of this process, the four versions of the CR7 graph are compressed into 6
triples. Moreover, the overall information contained in the obtained compressed KG is
strictly the same as the sum of the information available in the various distinct versions.
Therefore, for this basic example, our approach allows practitioners to carry one small
KG of 6 triples instead of 4 distinct KGs gathering 30 triples.

3 Definitions

In this section, we introduce the main concepts used for our description of the approach
and formally define them adapting existing definitions from the literature. First we de-
fine the concepts related to RDF Knowledge Graphs and then those related to FCA.

3.1 Knowledge Graph

Definition 1. Sets: Let U and L be the mutually disjoint sets of URI references and
literals, respectively. Let P ⊆ U be the set of all properties.

Definition 2. RDF triple: An RDF triple t = (s, p, o) ∈ U ×P × (U ∪L) displays the
statement that the subject s is related to the object o via the predicate p. In this work,
we do not consider blank nodes as speficied in the W3C RDF standard.

Definition 3. RDF Knowledge Graph: An RDF Knowledge Graph G is a finite set of
RDF triples, where t = (s, p, o) ∈ G. An RDF graph can also be viewed as a finite set
of edges t, of the form s

p−→ o, in a directed edge-labelled graph.

3.2 Formal Concept Analysis

Formal concept analysis (FCA) is a methodology for extracting a concept hierarchy
from sets of entities and their properties [22]. In other words, FCA is based on extracting
formal concepts from formal contexts. Adapting the definitions in [8,14]:

Definition 4. Formal Context: A formal context is a triple X = (E, A, I), where E is
a set of entities, A is a set of attributes, and I ⊆ E × A is the incidence: a set of pairs
such that (e, a) ∈ I if and only if the attribute a is defined for entity e.

Definition 5. Formal Concept: Let X = (E, A, I) be a formal context; for a subset of
entities F ⊂ E, let H(F ) := {a ∈ A | ∀f ∈ F : (f, a) ∈ I}, conversely, for a subset
of attributes G ⊂ A, let K(G) := {e ∈ E | ∀g ∈ G : (e, g) ∈ I}. A formal concept of
the formal context X is an ordered pair (F, G) such that H(F ) = G and K(G) = F .
If (F, G) and (F1, G1) are formal concepts of X , then (F, G) ≤ (F1, G1) if F ⊂ F1
or, equivalently, if G1 ⊂ G.
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Fig. 2: Zip function: our compression approach creates a formal context from the same
entities in different KG deltas. Then, we apply FCA to obtain an entity summary lattice.
Finally, we execute a rule-based grammar to produce a compressed KG as output.

Definition 6. Concept Lattice: Let X = (E, A, I) be a formal context. The set of all
formal concepts of X with the partial ordering defined in Definition 5 is called the
concept lattice of X .

4 An approach for zipping Knowledge Graph versions together

Grounded on FCA, we propose a zip function for compressing RDF knowledge graphs
providing a solution to the problem of semantically compressing RDF graphs. Figure 2
depicts the main steps defined for our zip function. Our zip function follows a three-
fold approach. We receive as input a set of KG versions i.e. several complete versions of
the same Knowledge Graph (containing thereby redundant triples). First, we compute
and prepare the formal context. Then, we run an FCA Engine to produce the formal
concepts. Finally, we apply a set grammar rules to synthesize a (single) semantically
compressed KG from the initial set of graphs.

Formal Context Mapper: First, from the set of KG deltas, we create a formal context,
as defined in Definition 4. As E we consider objects of the same type in the KG deltas
to be the entities. As A we consider all the properties in E to be the attributes, and
the incidence I is given by the use of that property as a predicate on the given subject.
Table 1 presents the entity formal context for the example introduced in Section 2, for
instance, the RDF triple “ex:CR7 ex:playsFor ex:Juve” is only stated in ‘KG-
2020’ as marked in the bottom-right corner cell.

FCA Engine: Second, we apply an FCA implementation to compute the formal
concepts out of the formal context as defined in Definition 5. More visually, Figure 3
provides a concept lattice (Definition 6) corresponding to the Section 2 example. For
instance at a glance one may see that “name-CR, born-Madeira, occu-Player,
speak-Por” are statements made in every versions of the Knowledge Graph (practi-
cally it would be useful to store only once this information instead of four times).

Rule-based Grammar Compressor: Taking the formal concepts output by the FCA
Engine, the idea to obtain a single compressed Knowledge Graph is to “group” the
redundancies by subjects: meaning that for each distinct subject of the versions we
establish the list of (predicate,object) available and then we tag the predicates and the
object using the version name. In practice, we take advantage of the fact that the URIs
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Table 1: Example of the entity formal context that our approach creates for CR7 entity.

name-CR, born-Madeira, occu-Player, speak-Por, speak-En, 
occ-Model, plays-Madrid, speak-Spanish, father-CRJ
cr7-13

name-CR, born-Madeira, occu-Player, plays-Sporting, speak-Por, occu-Enter, plays-MU, 
speak-En, occ-Model, plays-Madrid, speak-Spanish, father-CRJ, plays-Juve

name-CR, born-Madeira, occu-Player, speak-Por
cr7-02, cr7-08, cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, plays-Sporting, speak-Por
cr7-02

name-CR, born-Madeira, occu-Player, speak-Por, speak-En
cr7-08, cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, speak-En, speak-Spanish, father-CRJ
cr7-13, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, speak-En, speak-Spanish, father-CRJ, plays-Juve
cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, speak-En
cr7-08, cr7-20

name-CR, born-Madeira, occu-Player, speak-Por, occu-Enter, plays-MU, speak-En
cr7-08

Fig. 3: Example of a resulting lattice after applying FCA to an entity formal context.
We browse this lattice, employing rules to compress facts into a compressed KG.

used in RDF can be enriched, and we apply (on the predicates and the objects) the
following rule-based grammar to compress the KGs semantically.

– Hash “#” is used for ordered separation of version numbers and their correspond-
ing objects, both in new predicate IRIs and new concatenated object IRIs;

– Hyphen “-” indicates a continuous range of versions (i.e. from-to);
– Comma “,” indicates a discrete list of individual versions.

For example, in Figure 1, “ex:CR7 ex:born?v=02-20 ex:Madeira” means that
“ex:CR7 ex:born ex:Madeira” was present in all the versions from ‘02’ to ‘20’.

5 Querying the compressed Knowledge Graph

Fernández et al. [11] categorised all possible retrieval needs for versioned RDF archives.
They identify six different types of retrieval needs, regarding the query type (materiali-
sation or structured queries) and the target (version/delta) of the query. These types are
listed below, including example queries based on our CR7 example (Figure 1).

1. Single-version structured queries are performed only on one specific version.
Q1-a: In ‘KG-2013’ what team did CR7 play for?
Q1-b: What “occupations” did CR7 have in ‘KG-2013’?

2. Cross-version structured queries must be satisfied across different versions.
Q2-a: In which KG version did CR7 play for ex:Juve ?
Q2-b: In which KG versions did CR7 have the “occupation” of ‘Entrepreneur’?
Q2-c: Which predicates connect CR7 to ex:Madeira and in which versions?



3. Single-delta structured queries are the counterparts of the above version-focused
queries, but must be satisfied on change instances instead.
Q3-a: What triple with subject ‘CR7’ and predicate ‘ex:speaks’ was added be-
tween the two consecutive versions ‘KG-2002’ and ‘KG-2008’?

4. Cross-delta structured queries are the counterparts of the above version-focused
queries, but must be satisfied on change instances instead.
Q4-a: What has changed between the non-consecutive versions ‘KG-2002’ and ‘2020’?

5. Delta materialisation queries retrieve the delta between two or more versions.
Q5-a: What has changed between the consecutive versions ‘KG-2013’ and ‘2020’?

6. Version materialisation queries correspond to the retrieval of a full version.
Q6-a: What are all the statements about CR7 valid in version ‘KG-2008’?

Naively, these retrieval needs can be satisfied unzipping the KG to re-obtain the different
versions. Nevertheless, one advantage of our approach lies in the expressive power of
the de facto RDF query language: SPARQL2. Indeed, practitioners can express each of
the aforementioned queries using one single SPARQL query involving filters based on
regular expressions to grasp the relevant predicates. This therefore allows any
standard-compliant triplestore to load and query the compressed KG. For instance, the
aforementioned Q6-a could correspond to the following SPARQL query:3

SELECT DISTINCT ?s ?p ?o
WHERE{
{

?s ?p ?o .
FILTER regex(str(?p), "[?&]v=([^&]*)08.*$").

}UNION{
?s ?p ?o .
BIND (REPLACE(str(?p), "(..)*-.*", "$1") AS ?strFrom).
BIND (REPLACE(str(?p), ".*-(..).*", "$1") AS ?strTo).
FILTER (xsd:int(?strFrom) < 8).
FILTER (xsd:int(?strTo) > 8).

}
}

Different string functions, from the SPARQL 1.1 standard, are operated in order to
check if the predicate ?p was present in ‘KG-2008’. Technically, this is done using
regular expressions, for instance above, regex are used to extract the starting and end-
ing versions in case the sought version is “hidden” within an interval using a hyphen.
As a consequence, the compressed KG can be used to deal with version-related needs
together with conventional querying while being kept “light” in terms of triples.

6 Related Work

We now provide an overview of the most pertinent related efforts in the areas of FCA
for KGs, compression approaches for KGs, and KG versioning.

FCA on KGs: We see FCA supporting different tasks, including: Data Integration
using ontologies [13], Entity Matching [20], Entity Temporal Evolution [19] and Mod-
elling Dynamics [14], or Knowledge Exploration where FCA helps assess the com-
pleteness of Linked Datasets by mining definitions from RDF annotations [1]. FCA

2 https://www.w3.org/TR/sparql11-overview/
3 The presented query is simplified for space reasons; it might not generalize to all possible

cases, but it could be adapted using additional FILTERs like the ones shown. See https:
//github.com/badmotor/FCACompressRDF for test data and all query examples.



is also used in specific cases such as in [4] to propose an alternative semantics for
owl:sameAs, or to verbalize KG evolution [3]. Similarly, Aquin & Motta describe
how to extract relevant questions to an RDF dataset [7]. Furthermore, Formica [12] and
Rouane-Hacene et al. [17] extend FCA to respectively support formal ontology con-
structions in presence of uncertain data and to process multi-relational datasets.

KG Compression Techniques: In terms of knowledge graph compression techniques,
several paradigms have been explored. In [9], the authors list the basic and naive tech-
niques to compress an RDF graph. Later, solutions involving pre-processing and re-
writing of the graph were proposed: for instance, the HDT representation of RDF triples
was suggested [10]. Others describe methods to search the KGs for frequent patterns to
factorise them [15]. Additionally, some solutions4 summarise the KG hence compress-
ing it, e.g. [23] compresses parts of a KG considering a set of user-selected queries.

KG Versioning: The literature has been focused on designing systems able to deal
with many knowledge graph versions by computing deltas of triples e.g. OSTRICH [18].
Closer to our strategy, Cuevas & Hogan explored solutions for representing archives of
versioned RDF data using the SPARQL standard [6].

7 Conclusion and Future Work

In this article, we described an architecture to enable the compression of a set of knowl-
edge graph versions into a compressed one, while guaranteeing no loss of information.
Furthermore, we presented how such a compressed knowledge graph can be queried
directly without decompression, using any existing SPARQL-compliant endpoint.

To strengthen our solution, we will identify and evaluate more robust characters as
delimiters for the version parameters and the concatenated object IRIs. This is because
the “#” character could be present also in the original (non-concatenated) IRIs, and the
“,” and “−” characters could break our parser when parsing the version numbers em-
bedded in the predicates. Potentially, the proposed approach generates a high number
of unique predicates and unique objects. This could create some performance issues at
query time if the data is loaded into a triplestore, as these engines are not usually op-
timised for such conditions (the RDF Singleton Property model also suffers from the
same issue). In the near future, we could allow the configuration of the threshold for the
similarity metric and thereby open the discussion towards uncertain data as the zipped
KG could be carrying triples whose subjects were considered equal. Finally, an evalua-
tion on real and large datasets will be conducted.
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4 See [5] for a survey on summarizing semantic graphs.
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