
Likely-Occurring Itemsets for Pattern Mining

Tatiana Makhalova, Sergei O. Kuznetsov, and Amedeo Napoli
1 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

tatiana.makhalova@inria.fr
2 National Research University Higher School of Economics, Moscow, Russia

skuznetsov@hse.ru
3 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

amedeo.napoli@loria.fr

Abstract. We consider the itemset mining problem in general settings,
e.g., mining association rules and itemset selection. We introduce the
notion of likely-occurring itemsets and propose a greedy approach to
itemset search space discovery that allows for reducing the number of
arbitrary or closed itemsets. This method provides itemsets that are
useful for different objectives and can be used as an additional constraint
to curb the itemset explosion. In experiments, we show that the method
is useful both for compression-based itemset mining and for computing
good-quality association rules.

1 Introduction

A generic objective of itemset mining is to discover a small set of non-redundant
and interesting itemsets that describe together a large portion of data and that
can be easily interpreted [1].

Itemset mining can be summarized into two steps: (i) discovering itemset
search space and (ii) selecting interesting itemsets among the discovered ones.

This paper is devoted to the first step, i.e., the itemset search space discov-
ery. Since the itemset search space contains exponentially many elements, it is
important to discover as few useless itemsets as possible.

There are several approaches to discover the itemset search space: (i) an ex-
haustive enumeration of all itemsets followed by a selection of those satisfying
imposed constraints [19], (ii) a gradual enumeration of some itemsets guided
by an objective (or by constraints) [17], (iii) mining top-k itemsets w.r.t. con-
straints [15], (iv) sampling a subset of itemsets w.r.t. a probability distribution
that conforms to an interestingness measure [6,7]. To reduce redundancy when
enumerating itemsets, the search space can be shrunk to closed itemsets, i.e., the
maximal itemsets among those that are associated with a given set of objects
(support).

The exhaustive enumeration is the most universal way to discover itemset
search space. There exists a lot of very efficient algorithms for its enumeration,
e.g., CbO [12], In-Close [3], LCM [18], Alpine [11], and others [13].

Copyright c©2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

Despite its wide usage and applicability for a large spectrum of interest-
ingness measures, the exhaustive enumerators usually mine itemsets w.r.t. fre-
quency, which results in the following issues: using too high frequency threshold
results in a considerable amount of not interesting itemsets, while too low fre-
quency threshold results in itemset explosion and intractability of itemset mining
methods in practice.

However, considering the itemset mining problem in more general settings,
e.g., mining association rules and implications, the exhaustive enumeration of
frequent itemsets is usually the only (universal) remedy for the pattern explosion
problem.

In this paper, we revisit the notion of likely-occurring itemsets introduced
in [14] and propose a greedy approach to itemset search space discovery that al-
lows for reducing the number of closed itemsets. This method provides itemsets
that are useful for different objectives and can be used as an additional constraint
to curb the itemset explosion. In experiments we show that the method is use-
ful both for compression-based itemset mining and for computing good-quality
association rules.

2 Preliminaries

We deal with binary datasets within the FCA framework [10].
A formal context is a triple K = (G,M, I), where G is a set of objects, M is

a set of attributes and I ⊆ G × M is the incidence relation, i.e., (g,m) ∈ I if
object g has attribute m.

Two derivation operators (·)′ are defined for A ⊆ G and B ⊆ M as follows:

A′ = {m ∈ M | ∀g ∈ A : gIm} , B′ = {g ∈ G | ∀m ∈ B : gIm} .

For A ⊆ G, B ⊆ M , a pair (A,B) such that A′ = B and B′ = A, is called
a formal concept, then A and B are closed sets and called extent and intent (or
closed itemsets), respectively.

The (empirical or observed) probability of an itemset X ⊆ M is given by
P (X) = fr(X) = |X ′|/|G|.

3 Likely-occurring itemsets

To reduce the itemset search space, we propose an additional constraint that
consists in considering only the itemsets whose observed probability is greater
than the estimated one. The estimated probability is computed under the inde-
pendence model. We give the details on the chosen independence model below.

Definition 1. A closed itemset X ⊆ M is called likely-occurring closed (LOC)
if there exists m ∈ X and Y ⊆ X \ {m}, (Y ∪ {m})′′ = X such that P (X) >
Q · P (Y) · P ({m}), and Q ≥ 1.

g1 a b c d e
g2 a b c d e
g3 a b c d e
g4 a b c
g5 a b c
g6 c
g7 a b
g8 a b d
g9 a d e
g10 a

(a)

a

ab

1

2

3

abd
4

7
abde

5 6

c

abcdead

the node was created at the step i

8
ade

i

(b)

Fig. 1: A binary dataset and the execution tree of Algorithm 1 for this dataset

The empty itemset ∅ is considered to be likely-occurring by default. The
parameter Q controls how large the difference between the observed probability
P (X) and the estimated probability P (Y) ·P ({m}), Y ⊆ X \{m} of the itemset
X may be. The least restrictive constraint, i.e., Q = 1, requires the observed
probability to be greater than the estimated one. The larger values of Q are
more restrictive, i.e., they require the observed probability to be much larger
than the estimated one.

According to the definition above, at most |X| splittings should be enumer-
ated to check whether an itemset X is LOC or not. To make it more tractable
in practice, we propose a relaxation of the LOC itemset and a greedy approach
for its computing, where one needs to check only one splitting per itemset. Let
us proceed to this definition.

Definition 2. Let {m1,m2, · · · ,mk} be a set of attributes arranged in order of
decreasing frequency, i.e., fr(mi) ≥ fr(mj) for any i ≤ j. A closed itemset
X is likely-occurring closed (LOC) if there exists a LOC itemset Y ⊂ X and
m ∈ X \ Y such that fr(m) ≥ minm∗∈Y fr(m∗), X = (Y ∪ {m})′′ and P (X) >
Q · P (Y) · P ({m}).
Example. Let us consider a running example from Fig. 1a, where the attributes
are arranged by decreasing frequency. Itemset ab is an LOC itemset because a is
an LOC itemset and P (ab) > P (a) · P ({b}), the same for abd, namely, abd is an
LOC itemset because ab is an LOC itemset and P (abd) > P (ab) · P ({d}), etc.

We propose an algorithm to compute LOC itemsets using Definition 2, its
pseudocode is given in Algorithm 1. This algorithm computes gradually LOC
itemsets by considering one by one attributes of decreasing frequency. Apart from
the threshold Q on the difference in probabilities, the algorithm also supports
threshold F on frequency. By default, we use minimal restrictions, namely Q = 1
(we require the observed probability to be greater than the estimated one) and
F = 0 (we do not impose any frequency constraints).

Algorithm 1 ComputeLOC
Procedure Merge (node,candidate)
Input: node, current node

candidate, candidate node
1: In ← node.itemset
2: Ic ← candidate.itemset
3: if |In \ Ic| > 0 then
4: extent← (Ic ∪ In)

′ {computing shared objects}
5: if extent = I ′c then
6: In ← In ∪ Ic {if In is included into all objects as In, just extend Ic}
7: else if

(
|extent|

|G| > Q · |I
′
c|

|G|
|I′n|
|G|

)
and |extent| ≥ F then

8: for all child ∈ node.children do
9: merge(child, candidate)

10: end for
11: if candidate /∈ T then
12: node.children.add(candidate)
13: end if
14: end if
15: end if

Input: (G,M, I) formal context
F , frequency threshold
Q, threshold on LOC

Output: T , a tree composed of LO/LOC-itemsets
1: T ← createEmptyTree()
2: root← T .getRoot()
3: M∗ ← sortByDescendingFrequency(M)
4: for all m ∈M∗ do
5: candidate← m′′ {for LOC itemsets}
6: for all child ∈ root.children do
7: merge(child, candidate)
8: if candidate /∈ T then
9: root.children.add(candidate)

10: end if
11: end for
12: end for
13: return T

Example. Let us consider the execution tree of the algorithm for a dataset
from Fig. 1a. The algorithm starts constructing a tree adding the attributes of
decreasing frequency. The order in which itemsets are enumerated is specified in
the corresponding nodes.

4 Likely-occurring itemsets and related notions

Probability-based models are common in itemset and association rule mining.
In this section we consider two widespread approaches to assess itemsets and

association rules, and discuss how they are related to likely-occurring closed
itemsets.

Independence model and lift. The models based on the comparison of estimated
and observed probabilities of itemsets are quite common in the scientific lit-
erature. The simplest model is the attribute independence model. Under this
model, all items (attributes) are assumed to be independent. Attribute prob-
ability is approximated straightforwardly using the attribute frequency. Then,
the probability of an itemset X is computed as follows:

Pind(X) =
∏

x∈X

P (x) =
∏

x∈X

fr(x).

Despite its simplicity, this model is widely used in machine learning, e.g., Naïve
Bayes classifiers are based on it. A natural extension of the attribute indepen-
dence model is the partition independence model, where some partitions of X
are assumed to be independent. Lift [8] is one of the most common measures to
assess association rules under the partition independence model.

Definition 3. Let X → Y be an association rule, then lift is given by

lift(X → Y) =
P (XY)

P (X)P (Y)
=

fr(XY)

fr(X)fr(Y)
.

Apart from lift, there is a lot of other measures (indices) based on the
comparison of the antecedent and consequent supports, e.g., redundancy con-
straints [4,22], minimum improvement [5], etc. They are commonly used to select
association rules.

The notion of lift can be also adapted in different ways for itemset assessment.
For example, one may assess the probability of an itemset under the assumption
that any partition of the itemset into two disjoint sets is independent. If the ob-
served probability is greater than all the estimated probabilities obtained under
this model, then the itemset is called productive [21].

The introduced above LOC itemsets, in a certain sense, represent a particular
case of productive itemsets. Instead of considering all possible partitions of X
into two sets of items, we consider only its proper subset Y and attribute m ∈
X\Y . Reformulating the definition of LOC in terms of lift (for association rules),
LOC itemset X is an itemset that consists of LOC itemset Y and attribute m
such that Y ∪ {m} is the generator of X, and lift(X → m) > Q, Q ≥ 1. Since
Y is also LOC, this reasoning can be done recursively.

If it is needed, one may reduce further the size of the discovered LOC itemsets
by putting more tighter constraints, i.e., setting higher values for Q (in line 7 of
the Merge procedure given in Algorithm 1):

|(Ic ∪ In)
′|

|G| > Q · |I
′
c|

|G| ·
|I ′n|
|G| .

The constraint above is equivalent to the constraint on lift of the association
rule In → Ic, i.e.,

lift(In → Ic) =
P (In ∪ Ic)

P (In) · P (Ic)
> Q.

Moreover, because of the greedy strategy, the constraints hold recursively,
i.e., there exist two disjoint subsets I∗n, I∗c ⊆ In such that lift(I∗n → I∗c) > Q.
In experiments we consider how the proposed greedy strategy works for mining
association rules on real-world datasets. Since the computing strategy is greedy,
there are no guarantees that all LOC itemsets (see Definitions 1) will be enu-
merated.

Itemset mining through compression Likely-occurring itemsets may be also useful
for selection of itemsets. We consider the relation between the itemsets selected
by a compression-based itemset miner Krimp [20] and LOC itemsets.

In Krimp, and similar methods, the length of the code word corresponding
to an itemset X is given by length(X) = − logP (X). Hence the compression
is achieved by replacing several code words representing the itemsets B with a
single code word, such that length(B) <

∑
X∈cover(B) length(X). The latter is

equivalent to logP (B) > log(
∏

X∈cover(B) P (X)). Thus, we obtain the inequality
P (B) >

∏
X∈cover(B) P (X), which is very similar to one from the definition of

the LOC itemsets.
Intuitively, in both cases, an itemset is considered optimal if its observed

probability is greater than the estimated one. However, there are important dif-
ferences between the models underlying the definition of “itemset optimality”
(for the LOC itemsets and the model used in Krimp):

1. the both methods use different probability estimates of itemsets, namely,
P (X) = fr(X) (for the LOC estimates) and P (X) = usage(X)∑

Y ∈P usage(Y) (for the
Krimp-like models), where usage(X) is frequency of X in the coverage, and
P is the set of patterns;

2. the “optimality” of an itemset X in the compression-based model used in
Krimp is evaluated not only w.r.t. the dataset but also w.r.t. the other
itemsets selected so far.

Thus, LOC itemsets may provide better results than the commonly used fre-
quent closed itemsets, which are used by Krimp. We compare different strategies
for discovering itemset search space on real-world datasets in the next section.

5 Experiments
We use the discretized datasets from the LUCS-KDD repository [9] and study
LOC itemsets4 for two tasks, namely association rule and itemset mining.

Association rule mining. Frequent (closed) itemsets are commonly used to mine
association rules. We study how useful LOC itemsets compared to frequent closed
itemsets. In experiments we use 2 different sets of itemsets to compute rules: fre-
quent closed (FR.CL.) and likely-occurring closed (LOC) itemsets. The itemsets
are evaluated on 10 datasets, their parameters are given in Table 1. The number
of objects and attributes is denoted by |G| and |M |, respectively. The density of
datasets (the ratio of 1’s) is given in the column “density”. The total number of
closed itemsets is reported in the column “#CL”. The total number of arbitrary
itemset has not been computed.

Table 1: Parameters of datasets and the studied sets of itemsets

name data description closed itemsets time (for itemsets) #rules
|G| |M | density #CL #LOC #FR.CL. fr.thr. LOC FR LOC FR.CL

breast 699 14 0.64 360 74 74 0.33 0.01 0.12 4292 3980
ecoli 327 24 0.29 424 120 120 0.06 0.02 0.60 4768 2950
glass 214 40 0.22 3211 887 955 0.06 0.10 10.85 55262 18454
heart-dis. 303 45 0.29 25511 1928 1973 0.17 0.28 1.43 862252 22222
iris 150 16 0.25 106 45 47 0.05 0.00 0.03 274 320
led7 3200 14 0.50 1936 150 150 0.19 0.01 0.05 1484 1120
pima 768 36 0.22 1608 317 317 0.10 0.06 4.57 21294 7528
ticTacToe 958 27 0.33 42684 1880 1908 0.03 0.11 14.90 53816 13016
wine 178 65 0.20 13169 4914 5647 0.03 1.20 520.43 1771852 189378
zoo 101 35 0.46 4552 610 621 0.33 0.10 1.14 1609108 24736
average 690 32 0.34 9356 1093 1181 0.14 0.19 55.41 438440 28370

For each dataset we generate the whole set of LOC itemsets (Q = 1, F = 0),
the sizes of these sets are indicated in the column “#LOC”.

We chose the frequency threshold for closed itemsets in such a way that
the number of closed itemsets is equal to the number of the LOC itemsets.
The frequency threshold is indicated in the column “fr.thr.” for closed itemsets.
The frequency threshold varies a lot from dataset to dataset. For example, the
smallest threshold is 0.06 for “ecoli” and “glass” datasets and the largest one is
0.33 for “breast” and “zoo” dataset. As we can see from the table, the sizes of
“#LOC” and “#FR.CL.” are quite close one to another.

To compute association rules we use a miner from MLxtent library imple-
mented in Python5. The number of rules generated based on LOC and frequent
closed (FR.CL.) is reported in the column “#rules”.
4 The source code for computing LOC itemsets is available at https:

//github.com/makhalova/pattern_mining_tools/blob/master/modules/binary/
likely_occurring_itemsets.py

5 http://rasbt.github.io/mlxtend/

The number of rules generated based on the LOC itemsets is higher than the
number of rules generated based on frequent closed itemsets. For example, for
the “ecoli” dataset, the number of rules computed on 120 LOC and 120 frequent
closed itemsets is 4768 and 2950, respectively. It can be explained by the fact
that the size of the LOC itemsets is usually larger than the size of frequent
closed itemsets. Thus, a larger amount of rules can be built on LOC itemsets by
splitting each itemset into an antecedent and consequent.

To evaluate their quality, we consider the most common quality measures for
the association rules, namely support, confidence, lift, leverage, and conviction.
We recall them below.

Let X → Y be an association rule with the antecedent X and the consequent
Y , then the rule support is given by

support(X → Y) = support(X ∪ Y) =
(X ∪ Y)′

|G| ∈ [0, 1].

Confidence [2] of a rule X → Y is the conditional probability of X ∪Y given
X. It is defined as follows:

confidence(X → Y) =
support(X → Y)

support(X)
∈ [0, 1].

The maximal value is achieved when Y always occurs with X.
Lift [8] was discussed in the previous section. We recall it below. For a rule

X → Y lift is given by

lift(X → Y) =
support(X → Y)

support(X) · support(Y)
∈ [0,∞).

Leverage [16], like lift, is based on the comparison of the observed probability
(frequency) of the rule and the probability estimated under the assumption that
the antecedent and consequent are independent. Leverage is given as follows:

leverage(X → Y) = support(X → Y)− support(X) · support(Y) ∈ [−1, 1].

For independent X and Y leverage is equal to 0.
Let us proceed to the results of the experiments.
For the generated rules we consider mean values of the aforementioned qual-

ity measures as well as the 75th, 90th, and 95th percentiles. Considering the
percentiles allows us to focus on the quality of the best itemsets, which are usu-
ally of interest to analysts. The averaged over 10 dataset values are reported in
Fig. 2.

Since we do not set any frequency threshold for LOC, the support of LOC-
based rules, as expected, is lower than the support of the rules based on frequent
closed itemsets (FR.CL.). The top n% of LOC-based rules have higher values
than the top n% of FR.CL.-based ones. For example, the top 10% values (the
90th percentile) of confidence are at least 0.935 for the LOC-based rules, and

Fig. 2: The averaged quality for 2 types of rules: computed based on frequent
closed (FR.CL.) and LOC itemsets. The quality is measured by support, confi-
dence, lift, and leverage. For each type of rules and each quality measure, the
average values of mean, the 75th, 90th, and 95th percentiles over 10 datasets
from Table 1 are reported

only 0.885 for FR.CL.-based rules, respectively. Thus, considering the top rules,
the LOC-based rules have higher confidence.

Regarding lift, LOC-based rules provide the best results. The difference in
values is especially noticeable for the top 5% of rules (the 95th percentile). Top
5% LOC-rules have the highest values of lift, on average, 91.38. However, the
lift values of the top 5% of rules vary a lot from dataset to dataset (the standard
deviation is shown in plots by horizontal lines). Nevertheless, the quality, mea-
sured by lift, is consistently higher for LOC-based rules than for FR.CL.-based
rules.

The leverage is higher for FR.Cl.-based rules. Despite the fact that lift and
leverage differ only in the mathematical operations they use to compare the
observed and estimated supports of rules and their parts, the analysis of rules
based on these measures may lead to very different results. The high values of
leverage (and low values of lift) for FR.CL.-based rules are caused by a different
order of magnitude of the supports. Very low supports (that is the case of LOC-
based rules) result in high values of lift and low values of leverage.

Thus, the analysis of the generated rules allows us to conclude that rules gen-
erated based on LOC itemsets have better quality than the rules generated using
roughly the same amount of frequent arbitrary and closed itemsets, respectively.

Compression quality. In Section 4 we discussed the relation between LOC item-
sets and the itemsets ensuring good compression in Krimp.

In this section we study the applicability of LOC itemsets for this task and
compare them with closed itemsets (used in the original version of Krimp. We
emphasize that, in the compared approaches, the itemset search space is discov-
ered independently of the itemset mining process.

To evaluate the ability of the itemsets to compress data, we consider how
many itemsets we need to obtain a certain compression ratio. Fig. 3 shows how
the compression ratio changes w.r.t. the number of considered itemsets. The

Fig. 3: Compression quality of closed (FR.CL.) and LOC itemsets. The lower
values are better

initial state corresponds to the point (0,1), meaning that 0 itemsets have been
used to compress data, and the compression ratio is maximal and equal to 1.
The curves that are closer to the point (0,0) correspond to the best strategies
of itemset search space discovery (i.e., the itemset set allows for compressing
data better with a lower number of itemsets). The experiments show that for
“car evaluation”, “wine” and “nursery” datasets the LOC itemsets do not pro-
vide any benefits over the closed itemsets. For the majority of datasets, the
number of LOC is too small to ensure as good compression as with the whole
set of closed itemsets, e.g., “adult”, “breast”, “led7”, and others. Among some
of these datasets, we may still observe better behavior of LOC itemsets, e.g.,
for “hepatitis”, “mushroom”, “letter recognition”, and “page blocks”. There are
also datasets where with the LOC itemsets we achieve as good compression as
with the closed ones, but use a much lower number of itemsets, e.g., “auto”,
“hepatitis”, “soybean”, “zoo”.

In general, LOC itemsets may be quite useful for itemset selection based on
compression.

6 Conclusion

In this paper we studied likely-occurring closed itemsets in the context of asso-
ciation rule mining and itemset selection. In our experiments we show that the
number of frequent enumerated LOC itemsets is much lower than the number
of frequent closed itemsets. However, with LOC itemsets, we obtain association
rules of better quality. The proposed approach may be useful for compression as
well, however, it does not outperform the methods where itemsets are discovered
towards the direction minimizing the total description length.

References

1. Aggarwal, C.C., Han, J. (eds.): Frequent Pattern Mining. Springer (2014)
2. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of

items in large databases. In: Proceedings of the International Conference on Man-
agement of Data. vol. 22, pp. 207–216. ACM SIGMOD (1993)

3. Andrews, S.: A partial-closure canonicity test to increase the efficiency of CbO-
type algorithms. In: International Conference on Conceptual Structures. pp. 37–50.
Springer (2014)

4. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent pat-
terns with counting inference. In: ACM SIGKDD Explorations Newsletter. vol. 2.
ACM SIGKDD (2000)

5. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large,
dense databases. Data Mining and Knowledge Discovery 4(2-3), 217–240 (2000)

6. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling
by efficient two-step random procedures. In: Proceedings of the 17th International
Conference on Knowledge discovery and Data Mining. pp. 582–590. ACM SIGKDD
(2011)

7. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using
coupling from the past. In: Proceedings of the 18th International Conference on
Knowledge Discovery and Data Mining. pp. 69–77. ACM (2012)

8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and impli-
cation rules for market basket data. In: Proceedings of the International Conference
on Management of Data. pp. 255–264. ACM SIGMOD (1997)

9. Coenen, F.: The LUCS-KDD discretised/normalised ARM and CARM data li-
brary. http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN (2003)

10. Ganter, B., Wille, R.: Formal Concept Analysis. Springer Berlin Heidel-
berg (1999). https://doi.org/10.1007/978-3-642-59830-2, http://dx.doi.org/10.
1007/978-3-642-59830-2

11. Hu, Q., Imielinski, T.: Alpine: Progressive itemset mining with definite guarantees.
In: Proceedings of the International Conference on Data Mining. pp. 63–71. SIAM
(2017)

12. Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects
from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-
Informatsionnye Protsessy i Sistemy (1), 17–20 (1993)

13. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gener-
ating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence
14(2-3), 189–216 (2002)

14. Makhalova, T., Kuznetsov, S.O., Napoli, A.: On coupling FCA and MDL in pattern
mining. In: Proceedings of the 15th International Conference on Formal Concept
Analysis. pp. 332–340. Springer (2019)

15. Mampaey, M., Vreeken, J., Tatti, N.: Summarizing data succinctly with the most
informative itemsets. ACM Transactions on Knowledge Discovery from Data 6(4),
16 (2012)

16. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. Knowl-
edge Discovery in Databases pp. 229–238 (1991)

17. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: Proceedings
of the International Conference on Data Mining. pp. 236–247. SIAM (2012)

18. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In: Proceedings of the 7th International
Conference on Discovery Science. pp. 16–31. Springer (2004)

19. Vreeken, J., Tatti, N.: Interesting patterns. In: Aggarwal, C.C., Han, J. (eds.)
Frequent Pattern Mining, pp. 105–134. Springer (2014)

20. Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)

21. Webb, G.I.: Self-sufficient itemsets: An approach to screening potentially interest-
ing associations between items. ACM Transactions on Knowledge Discovery from
Data 4(1), 1–20 (2010)

22. Zaki, M.J.: Generating non-redundant association rules. In: Proceedings of the 6th
International Conference on Knowledge Discovery and Data Mining. pp. 34–43.
ACM SIGKDD (2000)

	Likely-occurring itemsets for pattern mining?

