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Abstract. Ensembles of decision trees, like Random Forests are efficient
machine learning models with state-of-the-art prediction quality. How-
ever, their predictions are much less transparent than those of a single
decision tree. In this paper, we describe a prediction model based on a
single decision tree in terms of Formal Concept Analysis. We define a
differential way to describing a decision rule. We conclude by present-
ing an approach to summing an ensemble of decision trees into a single
decision semilattice with the same predictions.
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1 Introduction

A decision tree [4] is a popular machine learning model. It can help face the chal-
lenge of interpretable machine learning. However, usually it is too simplistic to
show good learning performance. Ensembles of decision trees show better learn-
ing quality. Some of them – such as random forest [3] and gradient boosting [7] –
are considered state-of-the-art. However, ensembles miss the high interpretability
of a single decision tree.

Formal Concept Analysis (FCA) [8] is a mathematically well-founded theory
aimed at data analysis. In [1], [2], [9], [10], researchers show the connection
between decision trees and FCA.

This paper continues our study on the connection between FCA and decision
trees started in [6]. In that paper, we have presented the following pipeline. First,
we convert a decision tree into a concept lattice. Second, we fuse an ensemble
of concept lattices into a single concept lattice. Third, we convert a concept
lattice into a decision (semi)lattice: a supervised machine learning model with
prediction quality non-inferior to that of ensembles of decision trees.

In what follows, we present a method for constructing a decision semilattice
that outputs the same predictions as an ensemble of decision trees. We propose
a differential way for describing a decision rule and, consequently, a decision tree
and a decision semilattice. We finish by summing the ensemble of decision trees
into a single decision semilattice.
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2 Basic definitions

For standard definitions of FCA and decision trees, we refer the reader to [8]
and [4], respectively.

Here we use binary attributes to describe the algorithms. In the experimental
section, we extend the algorithm to processing numerical data with interval
pattern structures [11].

The standard FCA framework operates with a set M of binary attributes.
In what follows we often replace a set of attributes M by a set M? that consists
both of attributes m ∈M and their complements m (“not m”):

M? = M ∪ {m | ∀m ∈M} (1)

3 The proposed approach

3.1 Decision tree and decision semilattice

Definition 1. A decision rule (p, t) is a pair of a subset of attributes p ⊆ M?

called a premise and a real number t ∈ R called a target. The attributes in the
premise p are non-complementary, i.e. ∀m ∈M? : if m ∈ p then m /∈ p .

Given a description x ⊆M?, a decision rule can be expressed as “if x contains
p: p ⊆ x then predict t”.

We order decision rules (p, t), (p̃, t̃) by the reverse inclusion of their premises:

(p, t) < (p̃, t̃)⇔ p ⊃ p̃ (2)

We cannot apply a single decision rule to any possible description x ⊆ M?.
Therefore, we should use a set of decision rules. A popular means of structuring
decision rules in a set is a decision tree DT .

Definition 2. Decision tree DT is an ordered set of decision rules satisfying the
following properties: (a) each premise in DT is unique, (b) DT contains a root
decision rule with the empty premise, (c) each non-root decision rule in DT has
exactly one direct bigger neighbour (“parent”), and one direct smaller neighbour
of a parent (“sibling”) which differ by one complementary attribute:

a) ∀(p, t) ∈ DT @t̃ ∈ R, t̃ 6= t : (p, t̃) ∈ DT (3)

b) ∃t ∈ R : (∅, t) ∈ DT (4)

c) ∀(p, t) ∈ DT, p 6= ∅, ∃!(ppar, tpar), (psib, tsib) ∈ DT,m ∈ p : (5)

(ppar, tpar) � (p, t), (ppar, tpar) � (psib, tsib), psib 6= p

ppar = p \ {m}, psib = p \ {m} ∪ {m}

We propose a more general type of the ordered set of decision rules: a decision
semilattice DSL. To define it, we relax the property ”c” of a decision tree DT .



Definition 3. Decision semilattice DSL is an ordered set of decision rules sat-
isfying properties a-b (eq. 3-4) from Definition 2.

A decision tree DT is a special case of a decision semilattice DSL. Thus,
any operation defined for a decision semilattice can also be applied to a decision
tree.

We define a “prediction” function φ(DSL, x) as a function outputting a single
target prediction for a description x ⊆M? based on a decision semilattice DSL:

φ(DSL, x) =
1

|DSLxmin|
∑

(p,t)∈DSLx
min

t (6)

where DSLxmin = {(p, t) ∈ DSLx | @(p̃, t̃) ∈ DSLx : (p̃, t̃) < (p, t)} (7)

DSLx = {(p, t) ∈ DSL | p ⊆ x} (8)

3.2 Differential decision tree

In this subsection we define a “differential” way for describing a decision rule:
(given a prior prediction ŷ ∈ R) “if x contains p : p ⊆ x then add t to the
prediction ŷ”.

We define a function φ∆(DSL, x) which outputs a single target prediction
for a description x ⊆ M? based on a decision semilattice DSL and differential
approach:

φ∆(DSL, x) =
∑

(p,t)∈DSLx

t (9)

It is unclear how to construct “differential” decision trees and semilattices.
We suggest a solution to the former task. To construct a differential decision
tree, one can construct a decision tree DT and then “differentiate” it with a
function δ:

δ(DT ) = {(p, t− t̃) | (p, t), (p̃, t̃) ∈ DT : (p, t) ≺ (p̃, t̃)} ∪ {(∅, t) ∈ DT} (10)

Proposition 1. For a decision tree DTa prediction φ(DT, x) matches the pre-
diction φ∆(δ(DT ), x) for any x.

Proof. The proof is derived from two facts: (i) a decision tree DT always uses
only one decision rule to make a final prediction: |DT xmin| = 1,∀x ⊆M? (ii) each
target of a decision rule in δ(DT ) represents the difference between the target
of the corresponding decision rule in DT and the target of its parent.

3.3 Summation of differential decision semilattices

We define an addition operation on decision semilattices in the following way:

DSL1 +DSL2 = {(p, t1 + t2) | ∀(p, t1) ∈ DSL1, t2 ∈ R : (p, t2) ∈ DSL2}
∪ {(p, t1) ∈ DSL1 | ∀t2 ∈ R : (p, t2) /∈ DSL2}
∪ {(p, t2) ∈ DSL2 | ∀t1 ∈ R : (p, t1) /∈ DSL1}

(11)

The addition operation leads to an important proposition:



Proposition 2. Given a set of n decision semilattices {DSLi}ni=1, the “differ-
ential” prediction of the sum of decision semilattices matches the sum of “dif-
ferential” predictions of the summand decision semilattices :

φ∆(
n∑

i=1

DSLi, x) =
n∑

i=1

φ∆(DSLi, x), ∀x ⊆M? (12)

Proof. The proof follows from the definitions of the addition operation (eq. 11)
and the function φ∆ (eq. 9).

The summation of several identical decision semilattices can be represented
as multiplication by a real number:

DSL ∗ k =
k∑

i=1

DSL = {(p, t ∗ k) | (p, t) ∈ DSL}, ∀k ∈ R (13)

3.4 Ensembles of decision trees as decision semilattices

Random forest RF and gradient boosting GB are state-of-the-art ensembles of
decision trees. They both operate with a set of decision trees {DTi}ni=1 and,
optionally, real-valued hyperparameters. Although the ensembles construct the
set of decision trees differently, their prediction functions φRF and φGB are
similar as they both sum the predictions of the underlying decision trees:

φRF ({DT}ni=1, x) =
1

n

n∑

i=1

φ(DTi, x) (14)

φGB (({DT}ni=1, α, λ), x) = α+ λ

n∑

i=1

φ(DTi, x), α, λ ∈ R (15)

Proposition 3. Given a set of n decision trees {DTi}ni=1 and real numbers
α, λ ∈ R, there is (i) a decision semilattice DSLRF such that the prediction
φ∆(DSLRF , x) matches the prediction φRF ({DTi}ni=1, x) for any description x ⊆
M?; (ii) a decision semilattice DSLGB such that the prediction φ∆(DSLGB , x)
matches the prediction φGB({DTi}ni=1, x) for any description x ⊆M?:

1) ∀x ⊆M? φ∆(DSLRF , x) = φRF ({DTi}ni=1, x) (16)

DSLRF =
1

n

n∑

i=1

δ(DTi) (17)

2) ∀x ⊆M? φ∆(DSLGB , x) = φGB
(
({DTi}ni=1, α, λ), x

)
(18)

DSLGB = {(∅, α)}+ λ
n∑

i=1

δ(DTi) (19)

Proof. (i) By proposition 1, for any decision tree DTi, there is a differential
decision tree δ(DTi) : φ(DTi, x) = φ∆(δ(DTi), x), ∀x ⊆M?, (ii) By proposition
2, one can sum a set of differential decision trees into a single differential decision
semilattice keeping predictions unchanged.



4 Experiments

This section presents an empirical proof that a decision semilattice can produce
the same predictions as ensembles of decision trees. The experiments are run via
FCApy1 python package.

The experimental setup is as follows. First, we construct the “base” models:
a decision tree, a random forest, a gradient boosting from sci-kit learn pack-
age [12], and a gradient boosting from XGBoost package [5]. Then we convert
each decision tree of these models into a unified decision tree format used in
FCApy. Finally, we aggregate the unified decision trees of ensemble models into
a decision semilattice as defined in equations 17, 19.

We use three real-world datasets for regression to compare the models. They
are: Boston Housing Data2(“Bost.”), California Housing dataset3(“Cal.”), Dia-
betes Data4(“Diab.”).

To construct each decision semilattice in less than a minute (on average), we
limit each ensemble model by only ten decision trees with a maximum depth of
six. The sole decision tree models are limited by a maximal depth of ten.

Table 1 shows the weighted average percentage error (WAPE) of the decision
semilattices copying the predictions of the base models on both train and test
parts of a dataset. The error does not exceed 1.9%.

The slight difference in the errors comes from the real-valued nature of the
datasets. The premises of decision trees built on such data are of the form either
“is m ≤ θ” or “is m > θ” where m is a real-valued attribute and θ ∈ R. These
premises are sensitive to the precision of θ. They also use both closed and open
intervals, while our FCA-based implementation operates only the former ones.
We replace each premise of the form “is m > θ” by the premise “is m ≥ θ+10−9”.

Base model DecisionTree GradientBoosting RandomForest XGBoost

Dataset Bost. Cal. Diab. Bost. Cal. Diab. Bost. Cal. Diab. Bost. Cal. Diab.

Train error 0.00 0.00 0.00 0.44 0.00 0.35 0.88 1.75 0.10 0.00 0.00 0.00

Test error 0.02 0.01 0.25 0.63 0.00 0.31 0.84 1.88 0.30 0.22 0.03 0.59

Table 1. WAPE (in %) of the decision semilattices copying the predictions of the base
models

5 Conclusion

In this paper, we have introduced a method for summing an ensemble of decision
trees into a single decision semilattice model with the same predictions. To do so,

1 https://github.com/EgorDudyrev/FCApy
2 https://archive.ics.uci.edu/ml/machine-learning-databases/housing
3 https://scikit-learn.org/stable/datasets/real world.html#california-housing-dataset
4 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html



we have presented a “differential” way to describe decision rules and a function
for differentiating a single decision tree.

In the future work, we plan to extend this approach to decision semilat-
tices. We also plan to study the application of decision semilattice to improving
interpretability of ensembles of decision trees.
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