CEUR-WS.org/Vol-2973/paper_274.pdf

A Resource Manager for Advanced Resource
Management and Allocation in Processes

Sven Thde!, Maximilian Volker!, Luise Pufahl? and Mathias Weske!

"Hasso Plattner Institut, University of Potsdam, Potsdam, Germany

?Software & Business Engineering, Technische Universitaet Berlin, Berlin, Germany

Abstract

Resources play an essential role in the execution of business processes as they perform the work of the
business steps. Thus, resource management and allocation has a high impact on the effectiveness and
efficiency of the business processes. In existing process execution systems, the capabilities of managing
and allocating resources are limited. In this demo, we present a resource manager, Rembrandt, that
supports to specify resources with the help of hierarchies and attributes, as well as resource allocation
recipes. The allocation recipes can also be executed, whereby advanced allocation algorithms of any
programming languages can be integrated. Rembrandt offers a front-end and REST APIs that can be
used by practitioners and researchers to apply its capabilities in process execution systems or simulators.

1. Introduction

Resources are essential for the process execution (human and non-human) ensuring the process
progress by executing the tasks of a process case. Often resources are limited and expensive such
that companies strive to optimize their resource utilization whenever possible [1]. Traditional
process execution engines, such as Camunda’, offer only limited techniques for resource man-
agement, where resources are grouped into roles and allocated in a simple rule-based manner.
However, rule-based approaches can lead to sub-optimal solutions [2]. An effective and efficient
process execution needs more complex resource management with a problem-oriented resource
allocation [1, 3].

In this demo, we present an open-source resource manager, called Rembrandt?, enhancing
process execution engines or process simulators by advanced resource management and alloca-
tion capabilities. Rembrandt enables users, on the one hand, to represent the organization’s
resources and resource hierarchies and specify their attributes. On the other hand, resource
allocation plans (i.e. allocation recipes) can be defined where the input, all available resources,
and the output, the allocated resources, can be specified. For running these plans, one or

Proceedings of the Demonstration & Resources Track, Best BPM Dissertation Award, and Doctoral Consortium at BPM
2021 co-located with the 19th International Conference on Business Process Management, BPM 2021, Rome, Italy,
September 6-10, 2021
& sven.ihde@hpi.de (S. Thde); maximilian.voelker@hpi.de (M. Vélker); luise.pufahl@tu-berlin.de (L. Pufahl);
mathias.weske@hpi.de (M. Weske)
© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
—=1 CEUR Workshop Proceedings (CEUR-WS.org)

Thttps://github.com/camunda/camunda-bpm-platform
2Code: https://github.com/bptlab/rembrandt

Documentation including Screencast: https://rembrandt.gitbook.io/docs/

mailto:sven.ihde@hpi.de
mailto:maximilian.voelker@hpi.de
mailto:luise.pufahl@tu-berlin.de
mailto:mathias.weske@hpi.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/camunda/camunda-bpm-platform
https://github.com/bptlab/rembrandt
https://rembrandt.gitbook.io/docs/

Sven Ihde et al. CEUR Workshop Proceedings 1-5

several techniques or heuristics (e.g., the Munkres algorithm [4]) from other domains, such
as operations management, can be specified by the user. They can be specified in any coding
language, as Rembrandt uses docker® for executing the allocation algorithms.

In the remainder, we present the main functionalities in more detail. To show the maturity of
the approach, we demonstrate two integrations of the tool.

2. Main functionality

Rembrandt Back-End
Rembrandt R,.’\
Front-End A
Resource HTTP (REST) Resqurc_e
Expert Organization
R
Process ~
Modeler \J
(e.g.Gryphon) HTTP (REST)
R P>
Process ~
Engine Nt
(e.g.Chimera) HTTP (REST)
- e - ————— \\
|I Declser \< > Resource
| Docker : ~ Optimization
! Container] L
A ;s Filesystem
\\ ________ 7

Figure 1: General architecture of the resource manager Rembrandt. Additionally showing possible
integrations with external tools

The resource manager Rembrandt can be used to create, store, and delete resources and is
able to integrate optimization algorithms to use them for the advanced allocation of resources.
The back-end consists of two components as shown in the architecture in Fig. 1, the resource
organization and the resource optimization. The resource manager provides different
interfaces to connect to, a user interface for human operators and a REST API for other systems,
such as Camunda.

2.1. Resource Organization

In this component, resource types and instances can be defined, either via the Rembrandt
front-end or the provided REST APL

Rembrandt allows to define hierarchies between resource types. As shown in Fig. 2, Letter
and Parcel can be modelled as sub-types of a Shipment type, and therefore share the attributes
receiver, sender, and delivered, but the attributes dimensions and weight are exclusive to parcels.

*https://www.docker.com/

https://www.docker.com/

Sven Ihde et al. CEUR Workshop Proceedings 1-5

2.2. Resource Optimization

In this component, resource recipes can be

defined, that are executed during run-time Shipment
via the provided REST API to receive an op- + receiver: address
timized resource allocation for a process ac- + sender: address
tiVity. + delivered: bool

7

Allocation recipes. Resource allocations

first need to define the resources required Letter Parcel
as well as additional constraints. This can |+ stampType: string + weight: integer
be specified via so-called allocation recipes *+ dimensions: string

in Rembrandt. They contain step-by-step in-
structions executed by the resource optimiza-
tion component as soon as the corresponding
optimization is requested. Rembrandt offers in its front-end a user interface for the creation of
recipes as depicted in Fig. 3. It is a block based plug-in system with four different types of basic
blocks, called ingredients: Ingredients are independent parts of the recipe that are self-contained,
reusable components. Each recipe starts with at least one input ingredient, which is one of
the predefined resource types. They are used to gather all resource instances of this specific
resource type. In front and behind of optimization algorithms, transformer ingredients can be
used. They offer functionality to modify resources to fit the respective needs of the following
building block. Transformers can change values of resource attributes, filter the list of resources,
or even change the type of the object they are working on. The most important ingredient is
the optimization ingredient. It symbolizes a concrete optimization algorithm created by the
optimization expert and has an arbitrary number of input ports and output ports, depending on
the number of defined inputs and outputs when registering the algorithm to the platform via a
docker container. At the end of each recipe an output ingredient is placed which contains the
result of the optimization. Each output ingredient saves its result in the resource manager as
one resource instance of the respective type so that the platform can continue working with
it. Furthermore, recipes can be reused within other recipes to build upon previous work and
merge common steps into one block. This allows combining multiple smaller solutions to one
complex optimization pipeline, without loss of structure and clarity.

Figure 2: Example of a class hierarchy of ship-
ment resources

Resource Allocation Resource allocation is responsible for taking resource allocation re-
quests, e.g., from a process execution system, collecting them, and executing recipes inside the
resource manager. A resource allocation requests describes the requested type of resource(s) and
the needed allocation recipe. During execution, all resource instances of all input resource types
for this recipe are gathered first. Secondly, transformers are applied to the collected resource
instances and subsequently, their results are passed to the algorithm which is executed using
the respective docker container. Lastly, the output of it is stored as a new or modified resource
instance and returned to the requestor.

Sven Ihde et al. CEUR Workshop Proceedings 1-5

Algorithms Transformers Executions a

Please model your recipe below:

< Go Back

TRANSFORMERS

Tupvrs OPTIMIZATION

ovTPUT

Figure 3: Annotated screenshot of Rembrandt illustrating the recipe definition for defining an alloca-
tion mechanism in the Resource Optimization component.

2.3. Resource Manager Workflow

Working with the platform follows a clear sequence of steps. To execute a complete resource
management cycle, a few steps have to be performed: First, the general structure of resources has
to be modelled by creating a type hierarchy. As soon as this is done, concrete resource represen-
tations can be instantiated and later modified. In parallel to the instantiation, the resource allo-
cation can be defined. This includes registering the available optimization algorithms, matching
them to corresponding resources as inputs and outputs, and creating appropriate recipes. Lastly,
resource allocations can be initiated by a process execution engine or a simulator. The concrete
step-by-step guide can be found here: https://rembrandt.gitbook.io/docs/use-case-guide/set-up.

3. Demonstration

As mentioned before, our tool is stand-alone and thus runs separately from any process engine.
However, to fully leverage the benefits of our tool, an integration into an existing process
execution engine or simulator is necessary. The tool can be integrated into existing approaches
by using the documented application programming interface (API) based on REST/HTTP. For
demonstration purposes, we have integrated Rembrandt with the process engine Chimera®, the
process modeler Gryphon® and the simulation tool Scylla® as shown in the following.

Integration with a Process Execution Engine In the first use case, we integrated Rem-
brandt with the process engine Chimera [5]. Based on the use case of a last mile parcel
delivery [6], we observed the need to extend existing BPMS in our past work [3]. We extended

*https://bptlab.github.io/chimera
*https://bptlab.github.io/gryphon
Shttps://bptlab.github.io/scylla

https://rembrandt.gitbook.io/docs/use-case-guide/set-up
https://bptlab.github.io/chimera
https://bptlab.github.io/gryphon
https://bptlab.github.io/scylla

Sven Ihde et al. CEUR Workshop Proceedings 1-5

the BPMS in two ways: First, we extended the process modeler, so that resource type information
and goals for the optimization can be configured in the model for each task if necessary. Second,
we extended the execution engine so that a request is sent via an extended Service Task that
calls the REST interface of Rembrandt and triggers the resource allocation’.

Integration with a Process Simulator We integrated the functionalities of Rembrandt® into
an extensible process simulator, called Scylla [7], to demonstrate that it can enhance process
analysis capabilities of simulators. Traditionally, simulators only provide simplistic resource
allocations. We extended this behaviour’, so that more sophisticated algorithms can be used,
therefore allowing for example to identify the impact of different resource allocations in a
process.

Acknowledgments

The research leading to these results has been partly funded by the BMWi under grant agreement
01MD18012C, Project SMile.
http://smile-project.de

References

[1] C. Cabanillas, Process-and resource-aware information systems, in: EDOC, 2016 IEEE 20th
International, IEEE, 2016, pp. 1-10.

[2] G.Havur, C. Cabanillas, J. Mendling, A. Polleres, Resource allocation with dependencies in
business process management systems, in: BPM, Springer, 2016, pp. 3-19.

[3] S.Ihde, L. Pufahl, M.-B. Lin, A. Goel, M. Weske, Optimized resource allocations in business
process models, in: Business Process Management Forum. BPM 2019., Springer, 2019, pp.
55-71.

[4] J. Munkres, Algorithms for the assignment and transportation problems, Journal of the
society for industrial and applied mathematics 5 (1957) 32-38.

[5] S.Haarmann, N. Podlesny, M. Hewelt, A. Meyer, M. Weske, Production case management:
A prototypical process engine to execute flexible business processes., in: BPM (Demos),
2015, pp. 110-114.

[6] L.Pufahl S.Ihde, M. Glockner, B. Franczyk, B. Paulus, M. Weske, Countering congestion:
A white-label platform for the last mile parcel delivery, in: 23rd International Conference
on Business Information Systems, Springer, 2020, pp. 210-223.

[7] L. Pufahl, T. Y. Wong, M. Weske, Design of an extensible bpmn process simulator, in:
International conference on business process management, Springer, 2017, pp. 782-795.

"https://rembrandt.gitbook.io/docs/user-guide-1/resource-allocation
8https://github.com/bptlab/rembrandt-backend/tree/feature/BPST- Analysis
*https://github.com/bptlab/scylla/tree/rembrandt

http://smile-project.de
https://rembrandt.gitbook.io/docs/user-guide-1/resource-allocation
https://github.com/bptlab/rembrandt-backend/tree/feature/BPST-Analysis
https://github.com/bptlab/scylla/tree/rembrandt

	1 Introduction
	2 Main functionality
	2.1 Resource Organization
	2.2 Resource Optimization
	2.3 Resource Manager Workflow

	3 Demonstration

