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Abstract—The importance of software and web services is
changing. So it sufficed to state the software used during
scientific data processing, when publishing results in journals.
This also applies to web services, which can be methods used
in scientific work as well as results of this work. Awareness
for the evanescence of tools and services, which hinders the
reproducibility of published work, increases.

Similar to data repositories, which archive datasets and make
them citable, a service for software artifacts would enhance
sustainability of science. So we present the CiTAR (Citing &
Archiving Research) service in this paper, which enables re-
searches to preserve computational environments and make them
citable. In contrast to pure data repositories, CiTAR guarantees
the executability of archived environments by providing generic
runtimes.

Virtual Machines, Containerization, Long-term Archiving,
Preservation, Reproducibility—

I. INTRODUCTION

While the institutional introduction of infrastructure for
the collection and conservation of primary scientific data is
currently under construction or partially exists [1], a paral-
lel problem awareness arises for the associated models and
methods, in particular for data evaluation [2], [3]. However,
there is hardly any usable infrastructure and service offerings
yet. Although the DFG (The German Research Foundation)
recommendations on ”good scientific practice” currently only
suggest the retention of primary scientific data [4], the re-
mainder of the recommendation refers to mandatory records
of ”materials and methods” that are not only necessary for
comprehensible results but also for the publication process .
If scientific results are to be reproducible, for example for an
independent verification, a reconstruction of the experimental
setup is necessary. However, in the digital age, with its
extremely short life spans (and availability) of hardware and
software components, replicating a data processing workflow
that is identical in all components can not be achieved solely
on the basis of records [5]. CiTAR (Citing and Archiving Re-
search) 1 develops infrastructure to support computer assisted
research. One major outcome of this project are means to
publish, cite and provide long-term access to virtual research
environments. The aim of this project is to develop a coopera-
tive, multidisciplinary technical-organizational service in order
to support teaching and research in the further development of
”good scientific practice”. The service should provide data and
scientific methods jointly citable and reproducibly in order to

meet the requirements of modern journals. CiTAR realizes re-
use of research data and long-term availability in terms of a
modern research data management.

The developed service provides automated import of virtual
machines and popular container formats like Docker and Sin-
gularity. CiTAR assigns persistent identifiers to the imported
research environments and provides resources to re-run the
archived objects with external data.

II. RELATED WORK

Computational science communities have already recog-
nized the need for reproducible compute-based research re-
sults to improve scientific practice and to create sustainable
results [6]. While publication and citation of research data
has made progress recently, management of software-based
research methods remains an open challenge. ”Software is a
critical part of modern research and yet there is little support
across the scholarly ecosystem for its acknowledgment and
citation.” [7]. Concepts and practice of software citation are
currently discussed [8], but software also needs to be available,
i.e. retrievable from a dedicated software-archive. Currently,
several projects are working on software preservation concepts
and services [9] 1 2 3

However, if software reproducibility is defined as ”the
ability for someone to replicate a computational experiment
that was done by someone else, using the same software and
data, and then to be able to change part of it (the software
and/or the data) to better understand the experiment and its
bounds[.]”4 then just availability of software is usually not
sufficient. A software-based research process may contain
multiple individual software components. And even with de-
tailed documentation - if available at all - manually rebuilding
a complex software setup is a laborsome and error-prone
process, in particular because (implicit) operational knowledge
is lost over time. Additionally, all of the preserved softwares
dependencies also need to remain available, e.g. operating
system, libraries, build environment and a suitable hardware

1Software Deposit Guidance, https://softwaresaved.github.io/software-
deposit-guidance/

2Software Citation Principles https://www.force11.org/software-citation-
principles

3Source Code Archive https://archive.softwareheritage.org/
4https://danielskatzblog.wordpress.com/2017/02/07/is-software-

reproducibility-possible-and-practical/
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platform are necessary to run the whole software setup. Hence,
reproducible computational science requires a portable, self-
contained software setup and additionally, a defined runtime
environment.

We will shortly discuss some methods used to tackle some
parts of the reproducibility aspects stated above. Prominent
container hubs like Docker Hub 5 and Singularity Hub [10]
offer a service for storing and referencing container images.
But the hubs do not provide resources and runtimes for the
execution of containers. There is also no guarantee that future
container runtimes will run older containers. Researchers
started to containerize workflow managements systems to-
gether with explicit pipeline descriptions and make them
available via the mentioned container hubs [11], [12].

Platforms like Figshare 6 and Zenodo 7 offer repositories
for storing research data and share it with other researchers.
Figshare provides a DOI for stored projects, and thus make
it citable. Researchers currently usually use it to share their
research data and scripts. In principle also containers and
virtual machine images could be stored via these repositories.
But as for container hubs, there is no possibility to guarantee
their executability in the future.

The platform Code Ocean 8 is a cloud-based computational
reproducibility platform. It allows researchers to create so-
called ’capsules’ with pre-defined environments and run their
code on their data in these capsules. The environments are
mainly based on the popular operating systems Ubuntu. There
are also environments with often used software like R or
Python. Although one can install additional packages and soft-
ware to the pre-defined environments, CiTAR enables users to
preserve custom environments created without the limitations
of pre-defined operating systems or software versions.

III. IMPLEMENTATION

In this section we will describe in detail the implementation
of the CiTAR components and how they are composed. The
CiTAR service consists of the following components: the
graphical user interface (frontend) providing self-service user
workflows, the Emulation-as-a-Service (EaaS) backend is used
for implementing a generic container and virtual machine
runtime and an image archive faced, used to orchestrate
storage services.

A. CiTAR components

The main design goals of the CiTAR service were building
workflows and a light-weight distributed service on top of
existing storage and compute infrastructure.

1) CiTAR Container: The software stack needed by the
CiTAR service is provided as a self-contained Docker con-
tainer to simplify setup and deployment. docker-compose is
used to run the CiTAR container and starting the service.
The compose file specifies mounts for the CiTAR components

5https://hub.docker.com/
6https://figshare.com/
7https://zenodo.org/
8https://codeocean.com/

described below and the mapping of the host IP-address to the
container network interface.

2) Graphical User Interface (Frontend): CiTAR provides a
simple graphical frontend to provide self-service workflows to
the user. The user interface implements the CiTAR RESTful
API and can be implemented and deployed independently
of the CiTAR backend. Two example implementations are
currently available, an administration backend and a user-
facing landing page. Figure 2 depicts the interface elements re-
sponsible for archiving virtual machine and container images.
Figure ?? depicts a formatted environment’s landing-pageas.

3) EaaS-Server (Backend): The EaaS-server provides func-
tionality for to maintain virtual machine and container images,
e.g. normalizing images during import as well as necessary
means to run the archived archived environments. How the
images are imported, normalized and run will be explained
in detail in subsection III-B. Since running virtual machines
and containers is compute intensive, EaaS is implemented as
a scalable, distributed Cloud service. A gateway component
provides a RESTful API for the user frontend as well as
for machine-machine interaction. On demand, e.g. a request
to instantiate a virtual machine or container, the gateway is
able to allocated compute resources as needed. CiTAR can be
configured to run within a fixed size compute cluster or as a
scalable Cloud service. Currently, Google Compute, AWS and
bwCloud (OpenStack Nova) can be used to allocate compute
resources on demand.

4) Image Archive: Archival of imported virtual machine
and container images is organized by the image archive com-
ponent. The image archive provides a unified API for compute
nodes to access images as well as their technical metadata.
While the current CiTAR container ships with a simple file-
backed image archive, bit-stream storage services are not a part
of the CiTAR service. Especially for long-term preservation
there are dedicated services available. Instead CiTARs image
archive is implemented as an simple API facade, which can
be implemented for different storage backends (e.g. AWS S3)
as well as archival repositories (e.g. Preservica []). Currently
the image archive also maintains access to the archived en-
vironments technical metadata. This metadata describes the
images and their technical dependencies, such that the images
(both container and VMs) can be instantiated by the EaaS
compute nodes. Beside technical information the hypervisor
or emulator configuration the the metadata my contain further
information about input and output directories of the container,
the process to run inside the environment, and environment
variables which should be set when executing the image. In
general, CiTAR only maintains metadata that is required to re-
run containers and VMs as well as to ensure their longevity, i.e.
preservation planning, for instance, ensuring migration from an
obsolete hypervisor or emulator to a new one. Even though, the
CiTAR example UI and its backend provide infrastructure to
store and maintain also descriptive metadata, descriptive meta-
data should be maintained in respective repository systems or
library catalogs which use CiTAR as a functional backend, to
enable access to a listed research method.
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Fig. 1. Schematic depiction of CiTAR architecture and typical workflows. A User preserves a image. The preservation is started via dialog in the frontend.
The image is then normalized by the EaaS-server and stored in the image archive. B A user wants to execute an archived environment by specifying the
environment to run and additional data sources (from local machine or external). The image is first retrieved from the image archive and then started on a
hypervisor. C The output of the run is retrieved by the EaaS-server and can be downloaded via a link.

B. CiTAR Workflows

This section describes the technical workflows of archiv-
ing, citing virtual machine and container images in CiTAR.
The normalization of virtual machine images and subsequent
virtualization in the EaaS-server component are based on the
bwFLA project [13]. The methods for preserving software
containers, which are implemented in CiTAR, are derived from
earlier work [14].

1) Archiving virtual machine and container images:
Archiving forms the first application of the CiTAR project.
First, the user navigates through the user interface to the
suitable input form for virtual machine or specific container
software. For virtual machine images, the user specifies the
underlying operating system, which results in a suitable em-
ulator and configuration for the particular operating system.
The user then specifies an URL to the disk image. Allowed
disk image formats are Raw, Qemu, QCOW2, VirtualBox VDI.
The following formats just have limited support: Virtual PC
disks VHD, VMware VMDK. The user interface then sends
a POST request to the backend. The request is handled by a
Web Service Interface (SEI) implemented using JAX-WS. In
the end, curl is used to retrieve the image file from the specified
URL, followed by a conversion to QCOW2 if required. The
QCOW2 image is then started by an emulator on a hypervisor
via the EAAS-server. The screen of the virtual machine is
displayed in the browser. The user is able to test run the
machine and to further customize it to improve usability, e.g.
change passwords, auto-start applications etc. All changes are
tracked and result in versioned revisions of the machine. In the
end one can specify a description used on the landing-page of
the archived environment.

The archival procedure for software container images is

similar (See Figure 1A). The supported container formats are
the ones used by Singularity and Docker, as well as a simple
container root filesystem as .tar.gz file. For Docker containers,
the import from an DockerHub is possible by specifying the
image name and tag. For Singularity images the user can
specify the URL to an image or upload an image. The user
also specifies the process, which should be executed in the
archived environment later. This can be a simple command
or script, which is available in the container. The user can
specify two directories used as mount points for input and
output data when the container is executed. The image is then
retrieved and normalized. For Docker images, skopeo pulls the
Docker image from Docker Hub and then extracts the root file
system. For Singularity images, the create sandbox feature is
used to extract the root file system. As for virtual machine
images, the user has to provide a description of the archived
container, which is shown on the containers landing page.

2) Citing archived images: CiTAR assigns a persistent
identifier to uploaded images using the Handle system [15].
CiTAR uses an own prefix of the handle system and adds
an universally unique identifier (UUID) of the image as local
name to the prefix to build the handle. The handle points then
to the the landing-page of the imported environment and can
be used in publications to cite the preserved virtual machine
or container image.

3) Execution of archived images: CiTAR ensures the exe-
cutability of archived images by generalizing the images to a
common format and providing a runtime for this format. An
image can be executed via its landing-page. As for the import
of images, the execution of virtual machine and container
images differ. An example landing-page is shown in Figure
3.
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Fig. 2. Two screenshots of the CiTAR user interface. Left The preserved virtual machines are listed. The other tab of the ’Environments’ section lists the
preserved container images. The user can search preserved environments and visit the landing page of an environment via the ’Choose action’ box. Right
The dialog for importing a Docker container image is shown. A user specifies the name and tag of an image available on Docker Hub. Scopeo will then
retrieve this image

Fig. 3. Two screenshots of the CiTAR user interface. Left A landing-page of an preserved software container. The landing-page can be used to describe the
preserved workflow in detail. A user can execute the environment from this landing-page. Right When running a container, the user can specify external
data sources. The screenshot shows the dialog where the data source can be chosen.

Emulation based on the Emulation-as-a-Service (EaaS)
framework with a corresponding preservation strategy for gen-
eralized/normalized disk images and VMs is used as preser-
vation technology. The handle associated with the archived
VM redirects the user to a landing page describing the virtual
environment and possible interactions. Most of these machines
target specialized communities and would not be accessed
often, therefore, a visitor of the respective landing page
initiates the startup of the instance. Provisioning and startup
takes between takes at least 30 seconds, depending on the
machines size and complexity.

The main challenge for accessing workflows is the security
of archived machine. As these machines have been archived to
remain in their original state, a (permanent) internet connection
could be harmful. In order to provide (secure) network access,
all archived machines are deployed in their own private
network. The CiTAR gateway acts as a bridge between the
private network and the users network. Depending on the
security requirements and/or access infrastructure the we offer
currently three different network access options: Port forward-

ing, SOCKS, and Local-mode. For local network deployments,
network ports of an emulated server can be forwarded to a
user-accessible network. For instance, the SlaVaComp landing
page provides a Connection Information window, allowing the
user to connect directly to the web application running on the
internal port 8080.

If the machine provides multiple services (TCP ports), the
SOCKS5 mode can be used. The Connection Information
window will display necessary information for a local proxy
configuration. Optional password protection is possible. In
some scenarios, e.g. remote access, a fully private connection
is necessary. Additionally, to use an archived machine with
current research software multiple (local) network ports might
be required. For this, CiTAR offers a local connection mode.
The user has to install a small program (available for Linux,
MacOS and Windows) which registers a CiTAR network URL-
handler. Alternatively, source code and automated builds are
available on GitLab. The use-case SLAVAComp presented in
the results section states an example landing-page for each of
the three connection methods.
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Running a preserved container is slightly different. In sci-
entific context, software containers are usually used to for the
reproducible and easy deployment of tools and workflows.
When using the preserved tool, one wants to inject arbitrary
data into the container. Ideally the landing-page states which
data and format is required. In this way, it is possible to
apply archived methods to new datasets. Supported methods
are uploading datasets from the workstation, specifying URLs
to the datasets. In principle CiTAR can retrieve datasets from
research data repositories (See Figure 1B). We implemented
support for two bioinformatic data repositories: Uniprot for
sequence data and PRIDE for proteomic datasets (see Figure
3). After the process has finished, the results saved in the
containers output directory are packaged and the user can
retrieve this data by following a download link (See Figure
1C).

IV. RESULTS

As an example for perpetual access to software-based re-
search resources, we have used the outcome of the SlaVa-
Comp project (2013-2015) [16], which created an electronic
meta glossary of regional and diachronic varieties of Church
Slavonic a language that was used in the Orthodox Slavia
between the 10th and 16th centuries. Until the creation of
a digital database, researchers had to consult printed dictio-
naries, which meant that even simple lookups could take a
tremendous amount of time. Fifteen printed Church Slavonic
and Greek glossaries with various regions of origin were
combined into an easy-to-use online web-based application.
As the support for the underlying server operating system will
expire in the near future, the SlaVaComp services future is
uncertain.

Even if the operating system is upgraded to the next long-
term support version, there is no guarantee that any other
software dependency e.g. the database remains compatible
or has long-term security support, crucial for a public
online service. Furthermore, it is highly unlikely that former
employees could adapt the service to a modern software stack,
mainly because they have left after the project ended and
with them most of the specific knowledge about the software
they created. This fate is shared by numerous software
developments that emerge from scientific projects. The costs
for maintaining a server and the software after the end of a
project are usually not covered, especially if these projects
are only of interest for a small and specialized research
community. Leaving an unmaintained, outdated machine
connected to the internet poses a latent and increasing
security risk. The landing-pages for each connection method
are accessible via the following handles:
CiTAR SlaVaComp Landingpage Example:
http://hdl.handle.net/11270/52fd18be-44ec-4b1d-94b4-
887fa139142815
CiTAR SlaVaCom Landingpage (SOCKS mode)
http://hdl.handle.net/11270/62fd18be-44ec-4b1d-94b4-
887fa139142815 CiTAR SlaVaComp Landigpage (local
mode):

http://hdl.handle.net/11270/62dddddddd-44ec-4b1d-94b4-
887fa139142815

To illustrate how CiTAR works with software containers
we use a tutorial workflow provided by the developers of
OpenMS [17] for the workflow engine KNIME (Konstanz
Information Miner) [18]. OpenMS is a open-source software
used to process mass spectrometry data. With KNIME one
can create workflows by adding and connecting so-called
nodes. Nodes provide configurable functions to process data
in the workflow. The user can install additional nodes in
order to add functionality to KNIME. The OpenMS developers
created KNIME nodes that are extensively used in the example
presented here.

This use-case is a good example for a complex software
stack used by researchers for processing their datasets. It
would be difficult, if not impossible, to recreate the exact
same software stack and explicit workflow description at
some later point in time just from a written description.
Therefore archiving such software stacks together with
workflow descriptions using containers and CiTAR seems
to be a solution for long-time preservation of computational
methods. The workflow can be executed through the handle
to its landing-page:
http://hdl.handle.net/11270/188B6194-EA68-4E59-88C2-
61D652941E29

V. DISCUSSION

We implemented a service for preservation of virtual ma-
chines and containers and applied it to preserve results of a
scientific project (SlaVaComp) and scientific methods (KN-
IME workflow). The preserved environments are executable
and accessible although the original research project ended
(SlaVaComp) or the used software stack will be outdated in
the future (KNIME workflow). This is an important result,
as services and databases may not be maintained forever
and workflows tend to be irreproducible over time. Hence,
a service for the preservation of these databases and work-
flows is highly desirable. The current CiTAR workflows are
suitable for preserving single machines and containers. As we
have already implemented a virtual network and means to
orchestrate networked machines, such that the CiTAR service
is able to re-enact a networking group of virtual machines
or containers. A suitable workflow for archiving of complex
networked environments is to be implemented.

Many popular scientific applications such as machine learn-
ing frameworks highly depend on graphical devices (GPU)
in order to increase their efficiency massively. Also some
compute jobs on high performance computing (HPC) systems
are executed on a set of compute nodes. Both types of
computational methods are currently not supported by CiTAR.

Long-time access to datasets via data repositories in com-
bination with computational tools preserved by CiTAR would
in principle ensure the reproducibility of many scientific
computations. As data general purpose and field specific data
repositories are widely established, researcher should now
focus on a portable, self-contained software setup.
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