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Abstract— The paper describes a big data and AI application 

development and execution framework that was originally 

developed for MTA Cloud (an OpenStack based cloud) but could 

be used on other clouds including Amazon, OpenStack, 
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I. INTRODUCTION 

Researches in different scientific fields (Natural Sciences, 
Physics, Political Science) often require huge computational 
resources and storage capacity to handle real Big Data. 
Traditional sequential data processing algorithms are not 
sufficient to analyze this large volume of data. For efficient 
processing and analysis new approaches, techniques and tools 
are needed.  

Moreover, cloud infrastructures and services are becoming 
even more popular and are playing an appropriate and widely 
used role to address the computation need of many scientific 
and commercial Big Data applications. Their widespread usage 
is a consequence of the dynamic and scalable nature of the 
services provided by cloud providers. 

However, the data scientists face several problems once 
they start planning the use or deployment of any Big Data 
platform on cloud(s). On one hand, the selection of the 
appropriate cloud provider(s) is always a cumbersome process 
since the potential user community has to take into 
consideration several factors and trade-offs even if they need 
only a generic Infrastructure-as-a-Service (IaaS) provider: 
private institutional (e.g. SZTAKI Cloud [1], federated cloud 
(e.g. MTA Cloud [2] or pan-European EGI FedCloud [3]) or 
public cloud (e.g. Amazon [4]). 

The Hungarian Academy of Sciences (MTA) provides free 
IaaS cloud (MTA cloud) services for research communities and 
easy to use, dynamic infrastructures adapted to the actual 
project requirements. MTA Cloud was established to accelerate 

research for the scientists of MTA. Nearly 100 projects have 
been run on MTA Cloud since its opening and more and more 
projects require to use Big Data and machine learning 
applications. However, the large number of AI tools available 
for clouds are very complex and their proper deployment and 
configuration requires significant learning of both the tools and 
the underlying cloud. Furthermore, tools supporting different 
layers like user interface layer, language layer, machine 
learning layer, deep learning layer are not always compatible 
and hence it requires further skill to select the right tools from 
each layer in a way that they should be able to work together in 
an AI environment. 

Recognizing this problem, we have decided to develop so-
called AI reference architectures that can support the solution 
of certail AI application classes and can run in the cloud in a 
reliable and robust way and can easily be deployed and used by 
the end-user scientists. The ultimate goal is to develop a large 
set of AI reference architectures for a large set of various AI 
problem classes. 

The AI reference architectures have been created in three 
steps: 

1. Development and publication of a cloud orchestrator
called Occopus that enables the fast creation of
complex application frameworks in the cloud based on
Occopus infrastructure descriptors even by novice
cloud users.

2. Development and publication of the Occopus
infrastructure descriptors for generic AI reference
architectures like for example: Jupyter, Python, Spark
ml, Spark cluster and HDFS.

3. Development and publication of application-oriented
environments for various AI application domains.

To demonstrate the third step, we use a text classification 
application provided by the POLTEXT (Text Mining of 
Political and Legal Texts) Incubator Project of MTA Centre for 
Social Sciences. This problem is complex enough to 
demonstrate the advantages of using the framework we have 
created for supporting big data and AI applications. 
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The structure of the paper is as follows. The next section 

introduces the IaaS MTA cloud and its major services to create 
the big data and AI development and execution framework. 
Section III. introduces our text-classification example with 
detailed stepwise specification. Section IV. summarizes the 
lessons learned from this real use case performed on MTA 
community cloud. 

II. COMPONENTS AND SERVICES OF THE BIG DATA AND AI 

FRAMEWORK 

A. MTA cloud and Occopus 

MTA Cloud was founded in 2015, when the Wigner Data 
Center and the Institute for Computer Science and Control 
(MTA SZTAKI) collaborated to establish a community Cloud 
for the member institutes of the Hungarian Academy of 
Sciences. MTA Cloud has currently more than 80 active 
projects from over 20 research institutes including among 
others the Institute for Nuclear Research, the Research Centre 
for Astronomy and Earth Sciences and other academic and 
research institutes. 

In order to raise the abstraction level of the IaaS MTA 
Cloud we have developed Occopus a cloud orchestrator and 
manager tool by which complex infrastructures like Hadoop or 
Spark clusters can easily be built based on predeveloped and 
published Occopus infrastructure descriptors. The Occopus 
cloud orchestrator can be deployed in MTA Cloud by any user 
and once Occopus is deployed it can be used to build the 
selected infrastructure (e.g. Spark cluster) in MTA Cloud. A 
tutorial explaining the deployment of Occopus is available on 
the web page of MTA Cloud (in Hungarian) [2]. The novelty of 
Occopus was described and compared with similar cloud 
orchestrators in [6]. Here we mention only one of its main 
advantages. Its plugin architecture enables the use of plugins 
for various cloud systems and hence AI reference architectures 
created by Occopus are easily portable among various cloud 
systems like Amazon, Azure, OpenStack, OpenNebula and 
CloudSigma. 

B. Support for parallel data storage and processing – Apache 

Hadoop 

Apache Hadoop is an open source software platform for 
distributed storage and processing of very large data sets on 
computer clusters. Due to the special storage method, which is 
based on a distributed file system (HDFS, Hadoop Distributed 
File System [7]) Hadoop can process efficiently terabytes of 
data in just minutes, and even petabytes in hours.  

HDFS uses the MapReduce [8] paradigm that was proposed 
by Google and found wide-spread popularity. HDFS has a 
master/slave architecture. It means that the nodes apart from 
the Client machine are Master nodes and Slave nodes. Master 
node supervises the mechanism of data storing in HDFS and 
running parallel computations (Map Reduce) on all that data. 
An HDFS cluster consists of a single NameNode, a number of 
DataNodes, usually one per node in the cluster, which manage 
storage attached to the nodes that they run on. The NameNode 
oversees and coordinates the data storage function. Internally, a 

file is split into one or more blocks, which are stored in a set of 
DataNodes. NameNode provides a map of where the data 
blocks are in the cluster. JobTracker oversees and coordinates 
the parallel processing of data using MapReduce. Slave Nodes 
make up the vast majority of machines, they store the data and 
run the computations. Each slave runs both a DataNode and a 
TaskTracker daemon that communicate with and receive 
instructions from their Master nodes.  

The Occopus infrastructure descriptors for such a 
Hadoop/HDFS cluster have been developed in SZTAKI and 
are published on the web page of MTA Cloud [2] as well as on 
the web page of Occopus [9]. 

 

C. Support for high performance, distributed data processing 

-Apache Spark 

Apache Spark [10] is an open source, fast and general-

purpose cluster framework, designed to run high performance 

data analysis applications. Instead of the Apache Hadoop’s 

Map Reduce programming paradigm [8], it performs internal 

computational data processing that results in a more flexible 

and faster run. The module uses a parallel data processing 

framework that stores data in memory and, if necessary, on 

disk. This type of approach exceeds up to ten times the speed 

of Hadoop Map Reduce data processing [8]. 

Apache Spark was written in Scala, and the most important 

of its favorite features are its highly developed easy-to-use 

APIs, such as Scala, Java, Python and R, designed specifically 

for handling large data sets. From an engineering perspective 

these APIs provide the biggest advantages and reason why 

choosing the Spark framework. In addition to the Spark Core 

API, there are other libraries in the Spark Ecosystem, 

providing additional opportunities for large data analysis and 

machine learning. These include Spark SQL for structured 

data processing, MLlib [11] for Machine Learning, etc.   

 

It is important to emphasize that Apache Spark is not a 

substitute for Apache Hadoop, but a kind of extension of it. 

Spark has been designed to be able to read and write data from 

Hadoop’s own distributed file system (HDFS), and other 

storage systems such as HBase or Amazon S3.  

D. Spark Machine learning library 

Apache Spark MLlib [11] is the Apache Spark machine 

learning library consisting of common learning algorithms and 

utilities.  As the core component library in Apache Spark, 

MLlib offers numerous supervised and unsupervised learning 

algorithms, from Logistic Regression to k-means and 

clustering, collaborative filtering, dimensionality reduction, 

and underlying optimization primitives. 

As the next step of building a Big Data and AI oriented 

environment for MTA Cloud users we have developed the 

Occopus infrastructure descriptors for Spark/HDFS clusters 

and published them both on the web page of MTA Cloud [2] 

and on the web page of Occopus [9] 
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E. Interactive Development Environments 

With the above-mentioned frameworks big data and machine 

learning algorithms can easily be executed in a parallel 

manner. In order to support scientists from different research 

fields we also support interactive development environments 

that are easy to use with various programming languages and 

are very popular among the research communities. 

RStudio [12] is an integrated development environment 

(IDE) for R. It includes a console, syntax-highlighting editor 

that supports direct code execution, as well as tools for 

plotting, history, debugging and work space management. 

RStudio Desktop is a standalone desktop application that in no 

way requires or connects to the RStudio Server.  

RStudio Web Server is a Linux server application that 

provides a web browser/based interface to the version of R 

running on the server. Deploying R and RStudio on a server 

has a number of benefits: the ability to access R workspace 

from any computer at any location; sharing of code, data, and 

other files with colleagues; allowing multiple users to share 

access to the more powerful computing resources available on 

a server; control access to data in a centralized manner; 

centralized installation and configuration of R, R packages and 

other libraries.  

Jupyter Notebooks [13] are starting to become extremely 

popular especially in education and field of empirical research. 

The reason for Jupyter’s great success stems from the clear 

advantages of literate programming and improved web 

browser technologies. Literate programming is a software 

development style pioneered by Stanford computer scientist, 

Donald Knuth. Literate programming allows users to 

formulate and describe their thoughts with prose, 

supplemented by mathematical equations, as they prepare to 

write code blocks. It excels at demonstration, research, and 

teaching objectives especially for science.   

There are a lot of free and open source Jupyter Notebook 

codes on numerous topics in many scientific disciplines, such 

as machine learning, social sciences, physics, computer 

science, etc. They have LaTeX support for mathematical 

equations with MathJax, a web browser enhancement for 

display of mathematics. These notebooks can be saved and 

easily shared in ipynb JSON format. They can also be 

committed to version control repositories such as git and the 

code sharing site github. 

 

Jupyter notebooks can be viewed with nbviewer technology 

which is supported by github. Moreover, because these 

notebook environments are for writing and developing code, 

they offer many niceties available in typical Interactive 

Development Environments (IDEs) such as code completion 

and easy access to help. 

As part of the second step of providing generic big data 

and AI platforms for scientists we have extended the 

Spark/HDFS cluster with both RStudio Web Server and 

Jupyter Notebook and created the necessary Occopus 

infrastructure descriptors. As a result, two types of Spark- 

oriented reference architecture can be deployed by Occopus 

on MTA Cloud depending on the actual needs of the users: 

1. RStudio Web Server, Spark, HDFS for R users 

2. Jupyter Notebook, Spark, HDFS for Python, Scala 

and Java (from version 9) users 

These reference architectures are the starting points for the 

actual big data or AI applications. 

 

III. TEXT CLASSIFICATION SCENARIO 

 

The third step was the usage of the developed reference 

architectures for various big data and AI application domains. 

In this paper we have selected the text classification domain to 

illustrate the usage of the Spark-oriented reference 

architecture. 

MTA Centre for Social Sciences wanted to solve the following 

problem on MTA Cloud: The coding of public policy major 

topics on various legal and media corpora serves as an 

important input for testing a wide range of hypotheses and 

models in political science. This fundamental work has till 

recently mostly been conducted by double-blind human 

coding, which is still considered the gold-standard for 

categorizing text in this field. This method, however, is both 

rather expensive and increasingly unfeasible with the growing 

size of available corpora. Different forms of automated 

coding, such as dictionary-based and supervised learning 

methods, offer a solution to these problems. But these methods 

are themselves also reliant on appropriate dictionaries and/or 

training sets, which need to be compiled and developed first.   

 

We have provided the architecture for them described in 

Section II/E and at the same time demonstrated for them how 

to use this architecture for solving their problem. After the 

demonstration they started to use the RStudio version of the 

framework meanwhile we have also investigated possible 

solutions for the problem using the Jupyter Notebook version. 

Here we show our approach to solve the problem. The steps of 

solving the above described text classification problem are 

shown in Figure 1. This simple figure in fact, represents 

several different execution pipelines depending on the choice 

of the user. With the use of the Jupyter Notebook, Spark, 

HDFS architecture we were able to execute and evaluate the 

different classification pipelines in parallel. In the next 

paragraphs the different stages of our Spark-based pipelines 

are detailed. 

 

1) Disribute the data 

 

The first stage is to upload the data (text) into the HDFS 

system in an appropriate form. At first a Resilient Distributed 

Dataset is built, which is the basic data structure of Spark by 

dividing the dataset into logical partitions. These partitions 

may be computed in parallel on different nodes of the cluster. 
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Figure 1 Text processing pipeline 

 

 

2) Data structuring 

 

The second stage is the data structuring step. Apache Spark 

SQL is a module for structured data processing in Spark. 

Spark SQL module supports operating on a variety of data 

sources through the DataFrame API. DataFrame is a 

distributed collection of data organized into named columns. 

Actually, it is equal to the table concept in relational database 

systems or a dataframe in R/Python. DataFrame contains rows 

with Schema. It can scale from kilobytes of data on the single 

laptop to petabytes of data on a large cluster. A DataFrame 

can be operated on using relational transformations such as 

filter, select, group by, sort, etc. Like Apache Spark in general, 

Spark SQL in particular is all about distributed in-memory 

computations on scale. 

 

3) Text pre-processing 

 

The stored and structured data should be transformed into an 

appropriate input form for the machine learning algorithm 

(e.g.: neural networks). This is called text pre-processing. The 

next stage is therefore the text pre-processing which can have 

several sub-steps including tokenization, stop-word, 

stemming. We restricted our pipeline to use only the 

tokenization sub-step. 

Tokenization is the process of demarcating and possibly 

classifying sections of a string of input characters. For 

example, in the text string of a sentence the raw input (series 

of characters) must be explicitly split into tokens with a given 

space delimiter in the same way as a natural language speaker 

would do. Spark machine learning library (mllib) has a lot of 

built in functions for text mining such as RegexTokenizer. 

Therefore, users of the Spark environment shown in Figure 1 

do not have to develop any new software for tokenization, just 

use the Spark ML RegexTokenizer function. 

 

4) Feature vectorization 

 

Features in our text-classification problems mean to find 

words, or terms that can represent some special characteristics 

of the input text. Of course, this feature should be represented 

in a form of a vector. Accordingly, the next stage in our 

pipeline of Fig. 1 is feature vectorization. There are different 

kinds of feature vectorization algorithms and many of them 

are supported by the SparkML library. In the next paragraphs 

the applied feature vectorization and word embedding 

methods are briefly introduced.  

 

a) Bag-of-Words 

The bag-of-words (BOW) algorithm provides feature 

extraction capabilities. As the name suggests, it does not keep 

the words structured just a “bag” of words. It gives back a 

histogram of the words within the text, i.e., considering each 

word count as a feature. The algorithm consists of two phases: 

first it builds a vocabulary of the known words and then it 

measures the presence of these words in the different 

documents related to the corpora. 

CountVectorizer function of Spark ML implements this 

concept by converting a collection of text documents to 

vectors of token counts. It can be used to extract the 

vocabulary and to generate an array of strings from the 

document.  

 

b) TF-IDF 

Term frequency-inverse document frequency (TF-IDF) is a 

feature vectorization method widely used in text mining to 

reflect the importance of a term to a document in the corpus. 

Terms with high frequency within a document have high 

weights. In addition, terms frequently appearing in all 

documents of the document corpus have lower weights. TF-

IDF has been traditionally applied in information retrieval 

systems, because it is capable highlight documents that are 

closely related to a term but not to an exact string-match. 

Spark ML function that supports this method is IDF. 

 

c) Word2Vec 

 Bag-of-Words and TF-IDF hold no information about the 

meaning of the word, how it is used in language and what is 

its usual context (i.e. what other words it generally appears 

close to). Word embeddings try to “compress” large one-hot 

word vectors into much smaller vectors (a few hundred 

elements) which preserve some of the meaning and context of 

the word.  

Word2Vec is a sophisticated word embedding technique, 

which is based on the idea that words that occur in the 

same contexts tend to have similar meanings. The training 

objective of Word2Vec is to learn word representations that 

can predict its context in the same sentence or in the given 

corpus. This model maps each word to a unique and fixed-size 

vector that can be used as features for document similarity 

calculations and classification respectively. 

The context of the word is the key measure of meaning that is 

utilized in Word2Vec.  Words which have similar contexts 

share meaning under Word2Vec, and their reduced vector 

representations will be similar.  The built-in word2vec 
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algorithm uses the skip-gram neural network model. In the 

skip-gram model version of Word2Vec, the goal is to take a 

target word i.e. “sat” and predict the surrounding context 

words.  This involves an iterative learning process, that was 

performed by a neural network with one hidden layer 

consisting of 300 neurons. 

 

The end product of this learning will be an embedding layer in 

a network – this embedding layer is a kind of lookup table – 

the rows are vector representations of each word in our 

vocabulary. 

 

5) ML methods in text classification  - supervised learning 

 

In this phase of the work we use the different built-in machine 

learning algorithms, that are shortly introduced in the next 

paragraphs.  

 

a) Random Forest 

Random forests are ensembles of decision trees [14]. Decision 

trees and their ensembles are very popular methods 

classification and regression type tasks, since they are easy to 

interpret, handle categorical features, can be extended to the 

multiclass classification setting, and are able to capture non-

linearities and feature interactions.  

The spark.ml implementation supports decision trees for 

binary and multiclass classification and for regression, using 

both continuous and categorical features. The implementation 

partitions data by rows, allowing distributed training with 

millions or even billions of instances. 

In spark.ml Decision Tree classifier is available via the 

DecisionTreeClassifier() method [15]. 

 

Random forests combine many decision trees in order to 

reduce the risk of overfitting. Random forests train a set of 

decision trees separately, so the training can be done in 

parallel.  The algorithm injects randomness into the training 

process so that each decision tree is a bit different. Combining 

the predictions from each tree reduces the variance of the 

predictions, improving the performance on test data. 

In spark.ml implementation random forests is available via 

RandomForest() method [16]. 

 

b) Naïve Bayes 

“Bayes” is named from the famous Bayes’ Theorem in 

probability, and “Naive” is because of the strong (naive) 

independence assumptions between every pair of features. 

A feature’s value is the frequency of the word (in multinomial 

Naive Bayes) or a zero or one indicating whether the word 

was found in the document. Naïve Bayes method in Spark 

computes the conditional probability distribution of each 

feature given each label. It applies Bayes’ theorem to compute 

the conditional probability distribution of each label given an 

observation [15].  

 

c) Multinomial logistic regression 

In terms of its structure, logistic regression can be thought as a 

neural network with no hidden layer, and just one output node. 

Instead of fitting a straight line or hyperplane, the logistic 

regression model uses the logistic function to squeeze the 

output of a linear equation between 0 and 1. In our case the 

number of inputs were equal with the number of words 

coming from the bag of words, the tf-idf model [15].  

 

d) Multi Layer Perceptron (Neural Network) 

We have aggregated the word vectors of each word in a 

document, calculating mean to get one vector representation of 

each document. Now each document is represented by a 

vector with 300 dimensions. The values of the vectors are the 

inputs of or fully connected neural network (or feedforward 

artificial neural network). 

Neural net consists of multiple layers of nodes. The layers are 

fully connected to the next layer in the network. 

The input layer represents the input data. All other nodes map 

inputs to outputs by a linear combination of the inputs with the 

node’s weights w and bias b after then applying an activation 

function. In spark the nodes in intermediate layers use sigmoid 

(logistic) function, and this property is not changeable. The 

last nodes in the output layer use softmax function where the 

number of nodes in the output layer corresponds to the number 

of classes. 

 

e) Convolutional Nerual Net (CNN) 

In order to feed data to a CNN, we have to ensure that each 

word vector is fed to the model in a sequence that matches the 

original document. The dimension of the vector we have for 

the whole document is the length (or the number of words in 

the document) times the dimension of the vector (in our case 

300) which represents the current word. It is important to note 

that each word has a fix and same length of vector 

representation. 

 

A neural network model will expect all the data to have the 

same dimension, but in case of different documents, they have 

different lengths. This can be handled with padding. 

By padding the inputs, we decide the maximum length of 

words in a document, then zero pads the rest, if the input 

length is shorter than the designated length. In the case where 

it exceeds the maximum length, then it also truncates either 

from the beginning or from the end. In other words, each 

document is represented as a matrix, where rows are the words 

and the columns are the Word2Vec features. This 

transormation enables our data to be fed into a Convolutional 

Neural Net (CNN). 

 

6) Evaluation 

 

The final stage is testing, measuring, evaluating and ranking of 

the classification models and then to choose the best algorithm 

to classify the new incoming document.  
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In our experiment we were able to combine all the feature 

vectorization methods with all machine learning algorithms 

(shown in Fig. 1) with 2 exceptions: 

A) In Naïve Bayes method feature values must be non-

negative while the Word2Vec method produces real numbers. 

B) Convolution neural net as a classifier can handle data 

which have the same size of dimensions. As we discussed 

earlier only the word2vec method can produce a proper input 

for convolutional net, the bag-of-word, and tf-idf methods 

cannot. 

All the experiments were conducted on eleven-node-cluster, 

with one master and ten worker nodes. Each node has 8 virtual 

CPU cores and 16GB of RAM. The overall computing 

capacity consisted of 80 virtual CPUs and 160GB of RAM. 

We found that the Word2Vec feature combined with 

Convolutional Neural Net machine learning algorithm gave 

the best performance. 

IV. CONCLUSION 

We have developed a big data and AI application development 

and execution framework that needs three major steps to be 

created: 

1. Occopus to define and deploy the required 

infrastructure in the target cloud. This was created by 

SZTAKI. 

2. Occopus infrastructure descriptors for the generic big 

data and AI tools and environments like Hadoop, 

HDFS, Spark, Jupyter Notebook, RStudio Web 

Server. These are provided as AI reference 

architectures developed by SZTAKI and can be used 

in according to the actual AI application class. 

3. A concrete application-oriented big data and AI 

application development and execution framework 

that is built by Occopus according to the Occopus 

infrastructure descriptors that are selected, 

customized and parameterized by the user. The 

customization and parameterization process is 

described in detail in the tutorials on the reference 

architectures provided at the Occopus web page. 

In this paper we have demonstrated how to use a big data and 

AI application development and execution reference 

architecture tailored for text classification applications. Due to 

the fast creation of the required Spark environment and the 

available resources in MTA Cloud we were able to try and test 

all the possible text classification pipelines that are presented 

in Fig 1. 

Although the presented big data and AI application 

development and execution framework was created and tested 

on MTA Cloud it can be used on other clouds including 

Amazon, Azure, OpenStack, OpenNebula and CloudSigma 

due to the plugin architecture of the underlying Occopus cloud 

orchestrator [6]. Many components of the described AI 

reference architectures are available on the Occopus web page 

as executable tutorials and the following two Spark-oriented 

reference architectures are available at the MTA Cloud web 

page as tutorials: 

1. RStudio Web Server, Spark, HDFS for R users 

2. Jupyter Notebook, Spark, HDFS for Python, Scala 

and Java (from version 9) users 

Future work will intend to create further AI reference 

architectures to cover further AI application classes. 
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