
11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

Big data and machine learning framework for clouds

and its usage for text classification

István Pintye, Eszter Kail, Péter Kacsuk

Institute for Computer Science and Control

Hungarian Academy of Sciences

Budapest, Hungary

pintye.istvan@sztaki.mta.hu

Péter Kacsuk

University of Westminster

London, UK

P.Kacsuk@westminster.ac.uk

Abstract— The paper describes a big data and AI application

development and execution framework that was originally

developed for MTA Cloud (an OpenStack based cloud) but could

be used on other clouds including Amazon, OpenStack,

OpenNebula and CloudSigma. The paper explains the concept

and components of the big data and AI environment and

illustrates its usage by a text classification application.

Keywords—machine learning; big data; parallel and distributed

execution; cloud;

I. INTRODUCTION

Researches in different scientific fields (Natural Sciences,
Physics, Political Science) often require huge computational
resources and storage capacity to handle real Big Data.
Traditional sequential data processing algorithms are not
sufficient to analyze this large volume of data. For efficient
processing and analysis new approaches, techniques and tools
are needed.

Moreover, cloud infrastructures and services are becoming
even more popular and are playing an appropriate and widely
used role to address the computation need of many scientific
and commercial Big Data applications. Their widespread usage
is a consequence of the dynamic and scalable nature of the
services provided by cloud providers.

However, the data scientists face several problems once
they start planning the use or deployment of any Big Data
platform on cloud(s). On one hand, the selection of the
appropriate cloud provider(s) is always a cumbersome process
since the potential user community has to take into
consideration several factors and trade-offs even if they need
only a generic Infrastructure-as-a-Service (IaaS) provider:
private institutional (e.g. SZTAKI Cloud [1], federated cloud
(e.g. MTA Cloud [2] or pan-European EGI FedCloud [3]) or
public cloud (e.g. Amazon [4]).

The Hungarian Academy of Sciences (MTA) provides free
IaaS cloud (MTA cloud) services for research communities and
easy to use, dynamic infrastructures adapted to the actual
project requirements. MTA Cloud was established to accelerate

research for the scientists of MTA. Nearly 100 projects have
been run on MTA Cloud since its opening and more and more
projects require to use Big Data and machine learning
applications. However, the large number of AI tools available
for clouds are very complex and their proper deployment and
configuration requires significant learning of both the tools and
the underlying cloud. Furthermore, tools supporting different
layers like user interface layer, language layer, machine
learning layer, deep learning layer are not always compatible
and hence it requires further skill to select the right tools from
each layer in a way that they should be able to work together in
an AI environment.

Recognizing this problem, we have decided to develop so-
called AI reference architectures that can support the solution
of certail AI application classes and can run in the cloud in a
reliable and robust way and can easily be deployed and used by
the end-user scientists. The ultimate goal is to develop a large
set of AI reference architectures for a large set of various AI
problem classes.

The AI reference architectures have been created in three
steps:

1. Development and publication of a cloud orchestrator
called Occopus that enables the fast creation of
complex application frameworks in the cloud based on
Occopus infrastructure descriptors even by novice
cloud users.

2. Development and publication of the Occopus
infrastructure descriptors for generic AI reference
architectures like for example: Jupyter, Python, Spark
ml, Spark cluster and HDFS.

3. Development and publication of application-oriented
environments for various AI application domains.

To demonstrate the third step, we use a text classification
application provided by the POLTEXT (Text Mining of
Political and Legal Texts) Incubator Project of MTA Centre for
Social Sciences. This problem is complex enough to
demonstrate the advantages of using the framework we have
created for supporting big data and AI applications.

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

The structure of the paper is as follows. The next section

introduces the IaaS MTA cloud and its major services to create
the big data and AI development and execution framework.
Section III. introduces our text-classification example with
detailed stepwise specification. Section IV. summarizes the
lessons learned from this real use case performed on MTA
community cloud.

II. COMPONENTS AND SERVICES OF THE BIG DATA AND AI

FRAMEWORK

A. MTA cloud and Occopus

MTA Cloud was founded in 2015, when the Wigner Data
Center and the Institute for Computer Science and Control
(MTA SZTAKI) collaborated to establish a community Cloud
for the member institutes of the Hungarian Academy of
Sciences. MTA Cloud has currently more than 80 active
projects from over 20 research institutes including among
others the Institute for Nuclear Research, the Research Centre
for Astronomy and Earth Sciences and other academic and
research institutes.

In order to raise the abstraction level of the IaaS MTA
Cloud we have developed Occopus a cloud orchestrator and
manager tool by which complex infrastructures like Hadoop or
Spark clusters can easily be built based on predeveloped and
published Occopus infrastructure descriptors. The Occopus
cloud orchestrator can be deployed in MTA Cloud by any user
and once Occopus is deployed it can be used to build the
selected infrastructure (e.g. Spark cluster) in MTA Cloud. A
tutorial explaining the deployment of Occopus is available on
the web page of MTA Cloud (in Hungarian) [2]. The novelty of
Occopus was described and compared with similar cloud
orchestrators in [6]. Here we mention only one of its main
advantages. Its plugin architecture enables the use of plugins
for various cloud systems and hence AI reference architectures
created by Occopus are easily portable among various cloud
systems like Amazon, Azure, OpenStack, OpenNebula and
CloudSigma.

B. Support for parallel data storage and processing – Apache

Hadoop

Apache Hadoop is an open source software platform for
distributed storage and processing of very large data sets on
computer clusters. Due to the special storage method, which is
based on a distributed file system (HDFS, Hadoop Distributed
File System [7]) Hadoop can process efficiently terabytes of
data in just minutes, and even petabytes in hours.

HDFS uses the MapReduce [8] paradigm that was proposed
by Google and found wide-spread popularity. HDFS has a
master/slave architecture. It means that the nodes apart from
the Client machine are Master nodes and Slave nodes. Master
node supervises the mechanism of data storing in HDFS and
running parallel computations (Map Reduce) on all that data.
An HDFS cluster consists of a single NameNode, a number of
DataNodes, usually one per node in the cluster, which manage
storage attached to the nodes that they run on. The NameNode
oversees and coordinates the data storage function. Internally, a

file is split into one or more blocks, which are stored in a set of
DataNodes. NameNode provides a map of where the data
blocks are in the cluster. JobTracker oversees and coordinates
the parallel processing of data using MapReduce. Slave Nodes
make up the vast majority of machines, they store the data and
run the computations. Each slave runs both a DataNode and a
TaskTracker daemon that communicate with and receive
instructions from their Master nodes.

The Occopus infrastructure descriptors for such a
Hadoop/HDFS cluster have been developed in SZTAKI and
are published on the web page of MTA Cloud [2] as well as on
the web page of Occopus [9].

C. Support for high performance, distributed data processing

-Apache Spark

Apache Spark [10] is an open source, fast and general-

purpose cluster framework, designed to run high performance

data analysis applications. Instead of the Apache Hadoop’s

Map Reduce programming paradigm [8], it performs internal

computational data processing that results in a more flexible

and faster run. The module uses a parallel data processing

framework that stores data in memory and, if necessary, on

disk. This type of approach exceeds up to ten times the speed

of Hadoop Map Reduce data processing [8].

Apache Spark was written in Scala, and the most important

of its favorite features are its highly developed easy-to-use

APIs, such as Scala, Java, Python and R, designed specifically

for handling large data sets. From an engineering perspective

these APIs provide the biggest advantages and reason why

choosing the Spark framework. In addition to the Spark Core

API, there are other libraries in the Spark Ecosystem,

providing additional opportunities for large data analysis and

machine learning. These include Spark SQL for structured

data processing, MLlib [11] for Machine Learning, etc.

It is important to emphasize that Apache Spark is not a

substitute for Apache Hadoop, but a kind of extension of it.

Spark has been designed to be able to read and write data from

Hadoop’s own distributed file system (HDFS), and other

storage systems such as HBase or Amazon S3.

D. Spark Machine learning library

Apache Spark MLlib [11] is the Apache Spark machine

learning library consisting of common learning algorithms and

utilities. As the core component library in Apache Spark,

MLlib offers numerous supervised and unsupervised learning

algorithms, from Logistic Regression to k-means and

clustering, collaborative filtering, dimensionality reduction,

and underlying optimization primitives.

As the next step of building a Big Data and AI oriented

environment for MTA Cloud users we have developed the

Occopus infrastructure descriptors for Spark/HDFS clusters

and published them both on the web page of MTA Cloud [2]

and on the web page of Occopus [9]

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

E. Interactive Development Environments

With the above-mentioned frameworks big data and machine

learning algorithms can easily be executed in a parallel

manner. In order to support scientists from different research

fields we also support interactive development environments

that are easy to use with various programming languages and

are very popular among the research communities.

RStudio [12] is an integrated development environment

(IDE) for R. It includes a console, syntax-highlighting editor

that supports direct code execution, as well as tools for

plotting, history, debugging and work space management.

RStudio Desktop is a standalone desktop application that in no

way requires or connects to the RStudio Server.

RStudio Web Server is a Linux server application that

provides a web browser/based interface to the version of R

running on the server. Deploying R and RStudio on a server

has a number of benefits: the ability to access R workspace

from any computer at any location; sharing of code, data, and

other files with colleagues; allowing multiple users to share

access to the more powerful computing resources available on

a server; control access to data in a centralized manner;

centralized installation and configuration of R, R packages and

other libraries.

Jupyter Notebooks [13] are starting to become extremely

popular especially in education and field of empirical research.

The reason for Jupyter’s great success stems from the clear

advantages of literate programming and improved web

browser technologies. Literate programming is a software

development style pioneered by Stanford computer scientist,

Donald Knuth. Literate programming allows users to

formulate and describe their thoughts with prose,

supplemented by mathematical equations, as they prepare to

write code blocks. It excels at demonstration, research, and

teaching objectives especially for science.

There are a lot of free and open source Jupyter Notebook

codes on numerous topics in many scientific disciplines, such

as machine learning, social sciences, physics, computer

science, etc. They have LaTeX support for mathematical

equations with MathJax, a web browser enhancement for

display of mathematics. These notebooks can be saved and

easily shared in ipynb JSON format. They can also be

committed to version control repositories such as git and the

code sharing site github.

Jupyter notebooks can be viewed with nbviewer technology

which is supported by github. Moreover, because these

notebook environments are for writing and developing code,

they offer many niceties available in typical Interactive

Development Environments (IDEs) such as code completion

and easy access to help.

As part of the second step of providing generic big data

and AI platforms for scientists we have extended the

Spark/HDFS cluster with both RStudio Web Server and

Jupyter Notebook and created the necessary Occopus

infrastructure descriptors. As a result, two types of Spark-

oriented reference architecture can be deployed by Occopus

on MTA Cloud depending on the actual needs of the users:

1. RStudio Web Server, Spark, HDFS for R users

2. Jupyter Notebook, Spark, HDFS for Python, Scala

and Java (from version 9) users

These reference architectures are the starting points for the

actual big data or AI applications.

III. TEXT CLASSIFICATION SCENARIO

The third step was the usage of the developed reference

architectures for various big data and AI application domains.

In this paper we have selected the text classification domain to

illustrate the usage of the Spark-oriented reference

architecture.

MTA Centre for Social Sciences wanted to solve the following

problem on MTA Cloud: The coding of public policy major

topics on various legal and media corpora serves as an

important input for testing a wide range of hypotheses and

models in political science. This fundamental work has till

recently mostly been conducted by double-blind human

coding, which is still considered the gold-standard for

categorizing text in this field. This method, however, is both

rather expensive and increasingly unfeasible with the growing

size of available corpora. Different forms of automated

coding, such as dictionary-based and supervised learning

methods, offer a solution to these problems. But these methods

are themselves also reliant on appropriate dictionaries and/or

training sets, which need to be compiled and developed first.

We have provided the architecture for them described in

Section II/E and at the same time demonstrated for them how

to use this architecture for solving their problem. After the

demonstration they started to use the RStudio version of the

framework meanwhile we have also investigated possible

solutions for the problem using the Jupyter Notebook version.

Here we show our approach to solve the problem. The steps of

solving the above described text classification problem are

shown in Figure 1. This simple figure in fact, represents

several different execution pipelines depending on the choice

of the user. With the use of the Jupyter Notebook, Spark,

HDFS architecture we were able to execute and evaluate the

different classification pipelines in parallel. In the next

paragraphs the different stages of our Spark-based pipelines

are detailed.

1) Disribute the data

The first stage is to upload the data (text) into the HDFS

system in an appropriate form. At first a Resilient Distributed

Dataset is built, which is the basic data structure of Spark by

dividing the dataset into logical partitions. These partitions

may be computed in parallel on different nodes of the cluster.

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

Read Text

Raw Text files from Hadoop
Distributed File System

Structuring

Spark RDD to Spark
DataFrame

Tokenization

Split Text into arrays of Strings

Feature Vectorization

• Bag of Words
(CountVectorizer)

• TF-IDF (Tfidf)

• Word2Vec (Word2Vec)

ML Processing

• Naive Bayes

• Random Forest

• Logistic Regression

• Neural Net – Convolution Net

Evaluation

Measuring the accuracy of a
particular machine learning
method on unseen data

Categorized Text

Best method will be chosen

Figure 1 Text processing pipeline

2) Data structuring

The second stage is the data structuring step. Apache Spark

SQL is a module for structured data processing in Spark.

Spark SQL module supports operating on a variety of data

sources through the DataFrame API. DataFrame is a

distributed collection of data organized into named columns.

Actually, it is equal to the table concept in relational database

systems or a dataframe in R/Python. DataFrame contains rows

with Schema. It can scale from kilobytes of data on the single

laptop to petabytes of data on a large cluster. A DataFrame

can be operated on using relational transformations such as

filter, select, group by, sort, etc. Like Apache Spark in general,

Spark SQL in particular is all about distributed in-memory

computations on scale.

3) Text pre-processing

The stored and structured data should be transformed into an

appropriate input form for the machine learning algorithm

(e.g.: neural networks). This is called text pre-processing. The

next stage is therefore the text pre-processing which can have

several sub-steps including tokenization, stop-word,

stemming. We restricted our pipeline to use only the

tokenization sub-step.

Tokenization is the process of demarcating and possibly

classifying sections of a string of input characters. For

example, in the text string of a sentence the raw input (series

of characters) must be explicitly split into tokens with a given

space delimiter in the same way as a natural language speaker

would do. Spark machine learning library (mllib) has a lot of

built in functions for text mining such as RegexTokenizer.

Therefore, users of the Spark environment shown in Figure 1

do not have to develop any new software for tokenization, just

use the Spark ML RegexTokenizer function.

4) Feature vectorization

Features in our text-classification problems mean to find

words, or terms that can represent some special characteristics

of the input text. Of course, this feature should be represented

in a form of a vector. Accordingly, the next stage in our

pipeline of Fig. 1 is feature vectorization. There are different

kinds of feature vectorization algorithms and many of them

are supported by the SparkML library. In the next paragraphs

the applied feature vectorization and word embedding

methods are briefly introduced.

a) Bag-of-Words

The bag-of-words (BOW) algorithm provides feature

extraction capabilities. As the name suggests, it does not keep

the words structured just a “bag” of words. It gives back a

histogram of the words within the text, i.e., considering each

word count as a feature. The algorithm consists of two phases:

first it builds a vocabulary of the known words and then it

measures the presence of these words in the different

documents related to the corpora.

CountVectorizer function of Spark ML implements this

concept by converting a collection of text documents to

vectors of token counts. It can be used to extract the

vocabulary and to generate an array of strings from the

document.

b) TF-IDF

Term frequency-inverse document frequency (TF-IDF) is a

feature vectorization method widely used in text mining to

reflect the importance of a term to a document in the corpus.

Terms with high frequency within a document have high

weights. In addition, terms frequently appearing in all

documents of the document corpus have lower weights. TF-

IDF has been traditionally applied in information retrieval

systems, because it is capable highlight documents that are

closely related to a term but not to an exact string-match.

Spark ML function that supports this method is IDF.

c) Word2Vec

 Bag-of-Words and TF-IDF hold no information about the

meaning of the word, how it is used in language and what is

its usual context (i.e. what other words it generally appears

close to). Word embeddings try to “compress” large one-hot

word vectors into much smaller vectors (a few hundred

elements) which preserve some of the meaning and context of

the word.

Word2Vec is a sophisticated word embedding technique,

which is based on the idea that words that occur in the

same contexts tend to have similar meanings. The training

objective of Word2Vec is to learn word representations that

can predict its context in the same sentence or in the given

corpus. This model maps each word to a unique and fixed-size

vector that can be used as features for document similarity

calculations and classification respectively.

The context of the word is the key measure of meaning that is

utilized in Word2Vec. Words which have similar contexts

share meaning under Word2Vec, and their reduced vector

representations will be similar. The built-in word2vec

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

algorithm uses the skip-gram neural network model. In the

skip-gram model version of Word2Vec, the goal is to take a

target word i.e. “sat” and predict the surrounding context

words. This involves an iterative learning process, that was

performed by a neural network with one hidden layer

consisting of 300 neurons.

The end product of this learning will be an embedding layer in

a network – this embedding layer is a kind of lookup table –

the rows are vector representations of each word in our

vocabulary.

5) ML methods in text classification - supervised learning

In this phase of the work we use the different built-in machine

learning algorithms, that are shortly introduced in the next

paragraphs.

a) Random Forest

Random forests are ensembles of decision trees [14]. Decision

trees and their ensembles are very popular methods

classification and regression type tasks, since they are easy to

interpret, handle categorical features, can be extended to the

multiclass classification setting, and are able to capture non-

linearities and feature interactions.

The spark.ml implementation supports decision trees for

binary and multiclass classification and for regression, using

both continuous and categorical features. The implementation

partitions data by rows, allowing distributed training with

millions or even billions of instances.

In spark.ml Decision Tree classifier is available via the

DecisionTreeClassifier() method [15].

Random forests combine many decision trees in order to

reduce the risk of overfitting. Random forests train a set of

decision trees separately, so the training can be done in

parallel. The algorithm injects randomness into the training

process so that each decision tree is a bit different. Combining

the predictions from each tree reduces the variance of the

predictions, improving the performance on test data.

In spark.ml implementation random forests is available via

RandomForest() method [16].

b) Naïve Bayes

“Bayes” is named from the famous Bayes’ Theorem in

probability, and “Naive” is because of the strong (naive)

independence assumptions between every pair of features.

A feature’s value is the frequency of the word (in multinomial

Naive Bayes) or a zero or one indicating whether the word

was found in the document. Naïve Bayes method in Spark

computes the conditional probability distribution of each

feature given each label. It applies Bayes’ theorem to compute

the conditional probability distribution of each label given an

observation [15].

c) Multinomial logistic regression

In terms of its structure, logistic regression can be thought as a

neural network with no hidden layer, and just one output node.

Instead of fitting a straight line or hyperplane, the logistic

regression model uses the logistic function to squeeze the

output of a linear equation between 0 and 1. In our case the

number of inputs were equal with the number of words

coming from the bag of words, the tf-idf model [15].

d) Multi Layer Perceptron (Neural Network)

We have aggregated the word vectors of each word in a

document, calculating mean to get one vector representation of

each document. Now each document is represented by a

vector with 300 dimensions. The values of the vectors are the

inputs of or fully connected neural network (or feedforward

artificial neural network).

Neural net consists of multiple layers of nodes. The layers are

fully connected to the next layer in the network.

The input layer represents the input data. All other nodes map

inputs to outputs by a linear combination of the inputs with the

node’s weights w and bias b after then applying an activation

function. In spark the nodes in intermediate layers use sigmoid

(logistic) function, and this property is not changeable. The

last nodes in the output layer use softmax function where the

number of nodes in the output layer corresponds to the number

of classes.

e) Convolutional Nerual Net (CNN)

In order to feed data to a CNN, we have to ensure that each

word vector is fed to the model in a sequence that matches the

original document. The dimension of the vector we have for

the whole document is the length (or the number of words in

the document) times the dimension of the vector (in our case

300) which represents the current word. It is important to note

that each word has a fix and same length of vector

representation.

A neural network model will expect all the data to have the

same dimension, but in case of different documents, they have

different lengths. This can be handled with padding.

By padding the inputs, we decide the maximum length of

words in a document, then zero pads the rest, if the input

length is shorter than the designated length. In the case where

it exceeds the maximum length, then it also truncates either

from the beginning or from the end. In other words, each

document is represented as a matrix, where rows are the words

and the columns are the Word2Vec features. This

transormation enables our data to be fed into a Convolutional

Neural Net (CNN).

6) Evaluation

The final stage is testing, measuring, evaluating and ranking of

the classification models and then to choose the best algorithm

to classify the new incoming document.

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

In our experiment we were able to combine all the feature

vectorization methods with all machine learning algorithms

(shown in Fig. 1) with 2 exceptions:

A) In Naïve Bayes method feature values must be non-

negative while the Word2Vec method produces real numbers.

B) Convolution neural net as a classifier can handle data

which have the same size of dimensions. As we discussed

earlier only the word2vec method can produce a proper input

for convolutional net, the bag-of-word, and tf-idf methods

cannot.

All the experiments were conducted on eleven-node-cluster,

with one master and ten worker nodes. Each node has 8 virtual

CPU cores and 16GB of RAM. The overall computing

capacity consisted of 80 virtual CPUs and 160GB of RAM.

We found that the Word2Vec feature combined with

Convolutional Neural Net machine learning algorithm gave

the best performance.

IV. CONCLUSION

We have developed a big data and AI application development

and execution framework that needs three major steps to be

created:

1. Occopus to define and deploy the required

infrastructure in the target cloud. This was created by

SZTAKI.

2. Occopus infrastructure descriptors for the generic big

data and AI tools and environments like Hadoop,

HDFS, Spark, Jupyter Notebook, RStudio Web

Server. These are provided as AI reference

architectures developed by SZTAKI and can be used

in according to the actual AI application class.

3. A concrete application-oriented big data and AI

application development and execution framework

that is built by Occopus according to the Occopus

infrastructure descriptors that are selected,

customized and parameterized by the user. The

customization and parameterization process is

described in detail in the tutorials on the reference

architectures provided at the Occopus web page.

In this paper we have demonstrated how to use a big data and

AI application development and execution reference

architecture tailored for text classification applications. Due to

the fast creation of the required Spark environment and the

available resources in MTA Cloud we were able to try and test

all the possible text classification pipelines that are presented

in Fig 1.

Although the presented big data and AI application

development and execution framework was created and tested

on MTA Cloud it can be used on other clouds including

Amazon, Azure, OpenStack, OpenNebula and CloudSigma

due to the plugin architecture of the underlying Occopus cloud

orchestrator [6]. Many components of the described AI

reference architectures are available on the Occopus web page

as executable tutorials and the following two Spark-oriented

reference architectures are available at the MTA Cloud web

page as tutorials:

1. RStudio Web Server, Spark, HDFS for R users

2. Jupyter Notebook, Spark, HDFS for Python, Scala

and Java (from version 9) users

Future work will intend to create further AI reference

architectures to cover further AI application classes.

ACKNOWLEDGMENT

We thank for the usage of MTA Cloud (https://cloud.mta.hu)

that significantly helped us achieve the results published in

this paper. We would also like to acknowledge the support of

the Text Mining of Political and Legal Texts (POLTEXT)

Incubator Project, MTA Centre for Social Sciences.

REFERENCES

[1] “SZTAKI Cloud home - SZTAKI Cloud.” [Online]. Available:
https://cloud.sztaki.hu/en/home. [Accessed: 01-Apr-2019].

[2] “MTA Cloud | MTA Cloud.” [Online]. Available: https://cloud.mta.hu/.
[Accessed: 01-Apr-2019].

[3] E. Fernández-del-Castillo, D. Scardaci, and Á. L. García, “The EGI
Federated Cloud e-Infrastructure,” Procedia Comput. Sci., vol. 68, pp.
196–205, Jan. 2015.

[4] “Whitepapers – Amazon Web Services (AWS).” [Online]. Available:
https://aws.amazon.com/whitepapers/. [Accessed: 01-Apr-2019].

[5] “Laboratory of Parallel and Distributed Systems | MTA SZTAKI.”
[Online]. Available: https://www.sztaki.hu/en/science/departments/lpds.
[Accessed: 01-Apr-2019].

[6] J. Kovács and P. Kacsuk, “Occopus: a Multi-Cloud Orchestrator to
Deploy and Manage Complex Scientific Infrastructures,” J. Grid
Comput., vol. 16, no. 1, pp. 19–37, Mar. 2018.

[7] “HDFS Architecture Guide.” [Online]. Available:
https://hadoop.apache.org/docs/current1/hdfs_design.html. [Accessed:
01-Apr-2019].

[8] “MapReduce Tutorial.” [Online]. Available:
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html. [Accessed:
01-Apr-2019].

[9] “Welcome - Occopus.” [Online]. Available:
http://occopus.lpds.sztaki.hu/de/. [Accessed: 01-Apr-2019].

[10] “Apache SparkTM - Unified Analytics Engine for Big Data.” [Online].
Available: https://spark.apache.org/. [Accessed: 01-Apr-2019].

[11] “MLlib | Apache Spark.” [Online]. Available:
https://spark.apache.org/mllib/. [Accessed: 01-Apr-2019].

[12] “Open source and enterprise-ready professional software for data
science - RStudio.” [Online]. Available: https://www.rstudio.com/.
[Accessed: 01-Apr-2019].

[13] “The Jupyter Notebook — IPython.” [Online]. Available:
https://ipython.org/notebook.html. [Accessed: 01-Apr-2019].

[14] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[15] “Classification and regression - MLlib main guide.” [Online]. Available:
https://spark.apache.org/docs/latest/ml-classification-regression.html.

[16] “Ensembles - RDD-based API - Spark 2.4.0 Documentation.” [Online].
Available: https://spark.apache.org/docs/latest/mllib-ensembles.html.
[Accessed: 01-Apr-2019].

