
11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

Enabling Modular Design of an Application-Level
Auto-Scaling and Orchestration Framework using
TOSCA-based Application Description Templates

James DesLauriers, Tamas Kiss, Gabriele Pierantoni, Gregoire Gesmier, Gabor Terstyanszky
Centre for Parallel Computing, University of Westminster, London, UK

j.deslauriers@westminster.ac.uk, {t.kiss, pierang, g.gesmier, g.z.terstyanszky}@westminster.ac.uk

Abstract—This paper presents a novel approach to writing
TOSCA templates for application reusability and portability in a
modular auto-scaling and orchestration framework (MiCADO).
The approach defines cloud resources as well as application
containers in a flexible and generic way, and allows for those
definitions to be extended with specific properties related to a
desired container orchestrator chosen at deployment time. The
approach is demonstrated in a proof-of-concept where only a
minor change was required to a previously used application
template in order to achieve the successful deployment and
lifecycle management of the popular web authoring tool
Wordpress on a new realization of the MiCADO framework
featuring a different container orchestrator.

Keywords—TOSCA, MiCADO, container orchestration,
kubernetes, docker swarm

I. INTRODUCTION

Cloud adoption by research, public sector and enterprise
organizations continues to grow. Having flexible, on-demand
access to computing resources and services can result in
significant cost and time savings. Moreover, large, upfront
capital investments can be replaced by day-to-day operational
costs over a longer period of time. There are, however, definite
barriers to entry for the scientific research community and
smaller institutions that lack the cloud-specific skills and
knowledge necessary for shifting to the cloud. Additionally,
organizations may struggle with achieving maximum savings
due to a lack of flexibility and scalability at the level of the
application.

To support these groups, there is the need for a generic
framework which provides support for launching and
managing a variety of applications in the cloud. The framework
should be tied to no specific cloud service provider and should
support a mix of public, private and community clouds. It
should also provide flexibility at the application level by
providing optimized deployment and runtime orchestration
with features such as automated scaling and enhanced security.
This flexibility should be provided in the form of a single
interface which describes the topology of cloud resources and
governs the application with user-defined policies specifying
performance, cost, security and other requirements necessary to
see the application through its lifecycle.

The European funded COLA [1] (Cloud Orchestration at
the Level of Application) project set out to address these issues,
and design and develop a generic framework outlined above.

The proposed framework is called MiCADO [2]
(Microservices-based Cloud Application-level Dynamic
Orchestrator), a platform for the deployment and dynamic
automated scaling of applications in the cloud. MiCADO is
entirely open source and implements a microservices
architecture in a modular way. The modular design supports
varied implementations where components can easily be
replaced with a different realization of the same functionality.
At the time of writing, the current implementation of MiCADO
uses widely applied technologies such as Kubernetes [3]
(container orchestrator), Occopus [4] (cloud orchestrator) and
Prometheus [5] (monitoring), and some additional custom
implemented components. Based on the modular design
principles, replacing any of these building blocks is kept as
simple as possible.

The user-facing interface for defining the required cloud
topology (containers and virtual machines) and the policies
which regulate the application and its infrastructure is an
Application Description Template [26] (ADT). The ADT is a
YAML [6] (YAML Ain't Markup Language) template written
in the Oasis Standard TOSCA [7] (Topology and Orchestration
Specification for Cloud Applications) language specification
and it is designed specifically for portability across this
modular framework. Since the MiCADO platform sees a range
of users authoring templates for their applications, the ADT has
high readability and provides flexible levels of customization
and abstraction.

There are two sections to an ADT – one to describe the
cloud topology of the application and infrastructure, and one to
describe the Quality of Service (QoS) parameters. The policies
which describe these non-functional requirements, such as
placement, data locality, security, scalability, and performance,
were discussed last year in the IWSG 2018 Conference
Proceedings [26]. This paper covers the first of the two ADT
sections: the section related to the description of the containers
and virtual machines which make up the application.

In order to support MiCADO as a truly modular
framework, the ADT interface has to be supportive of
modularity as well. This modularity presented several
challenges for designing such a template, especially insofar as
describing the cloud resources so that they could be reused
across different implementations of the framework. In
following with other projects which have implemented TOSCA
as a language, the early ADTs of MiCADO featured topology

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

types for cloud resources (virtual machines, containers and
volumes) which were all strongly related to their respective end
components. This meant a loss of portability, since by changing
an end component in the implementation, we now required new
TOSCA types to be written and then referenced in new ADTs.

This paper presents a novel approach to writing cloud
resource types for TOSCA, which offers reusability of that
resource by different orchestration tools. The ADT format is
compliant with our understanding and interpretation of TOSCA
Simple Profile in YAML v1.0 [8], and follows the core values
espoused by the newer Oasis Standards, TOSCA v1.1 and v1.2.
The format provides more flexibility and control for those ADT
authors who understand the underlying technologies of the
respective components they are describing cloud resources for.
At the same time, the ADT structure still features variable
levels of abstraction, which make it possible for users without
component-specific knowledge to author ADTs and deploy
applications in MiCADO. We present the steps taken to build
reusable types for containerized applications in TOSCA and
the way to extend them for specific orchestrators as desired. As
a proof-of-concept, we refer to a case study where a MiCADO
demonstrator application had requirements exceeding the
capabilities of the container orchestrator inside MiCADO at the
time. We demonstrate a solution where the modularity of
MiCADO is leveraged, and the existing ADT is easily reused
to deploy the application under a new MiCADO
implementation featuring a different container orchestrator.

The rest of the paper is structured as follows. First, the State
of the Art is described, including an introduction to TOSCA,
and a look at related work covering the adoption and
interpretation of TOSCA in industry and academia. In section
III a short introduction to MiCADO and its modular design is
described. In section IV, we build the base TOSCA types for
containerized applications and then demonstrate how those
types can be extended for a specific container orchestrator. We
conclude with a proof-of-concept demonstration where a single
ADT is used to deploy a microservices application to a
different implementation of MiCADO, featuring a different
container orchestrator.

II. STATE OF THE ART
Containerization refers to a more lightweight virtualization

approach than that offered by virtual machines, whereby an
application is packaged with its specific dependencies on a
minimal virtualization layer, usually sharing the host kernel.
The most popular container technology of the moment is
Docker [9], but there are others gaining popularity such as: cri-
o [10], rkt [11], and Mesos Containerizer [12]. Container
orchestration refers to the deployment and management of
application containers across a cluster of connected servers, or
nodes. Popular solutions for the orchestration of containers
include: Docker Swarm [13], Kubernetes [14], and Mesos
Marathon [15].

The Topology and Orchestration Specification for Cloud
Applications is an OASIS Standard for describing the full
topology and operational behavior of an application running in
the cloud. The topology is defined as building-blocks called
nodes, which represent components such as the software,
virtual machines, storage volumes, and networks which make
up the application. The operational behavior is managed by
defined relationships between the above components and

through lifecycle management interfaces in the form of scripts,
configurations, or API invocations. There are many good
resources for TOSCA, ranging from journal publications [16]
[17] to the current specification itself - TOSCA Simple Profile
in YAML 1.2 [18].

There is an increasing number of industry products and
amount of academic research coming out around the topic of
TOSCA and descriptive cloud languages. While most TOSCA
adopters claim to solve vendor lock-in while offering high-
levels of flexibility and portability, not all of them leverage
containers, and few describe cloud resources in a way that is
portable across a modular framework.

One of the earliest TOSCA runtimes is OpenTOSCA [19],
which orchestrates templates written in the original TOSCA
XML format. Providing relief for the low readability of XML
is an integrated modelling tool called Winery [20], which
permits the visual creation of a TOSCA template using a
graphical user interface. OpenTOSCA and Winery adhere to
the TOSCA v1.0 normative XML specification and have not
been extended to supporting containers or container
orchestration.

Cloudify [21] is one of the early commercial adopters of
TOSCA, and, to support their orchestration framework, have
created their own unique Domain Specific Language (DSL)
with TOSCA as a base specification. Cloudify is modular
insofar as it has been extended with plugins to provide support
for different cloud service providers, container platforms, as
well as a variety of automation tools. The Cloudify DSL uses
strict types: within container orchestration, for example, there
is one type defined for creating a non-orchestrated Docker
container, another type for a Docker container orchestrated by
Docker Swarm, and a third type for a Docker container
orchestrated by Kubernetes. Each different type requires
key/value pairs or properties specific to the orchestrator acting
on it, making reuse of that container definition with a different
orchestrator unlikely, or impossible.

ARIA [22] is the now retired open-source project that was
born out of Cloudify. The ARIA project was built on the
Cloudify code base, and supported its plugins, but diverged
with regards to language, keeping strict adherence to the
normative DSL, TOSCA Simple Profile in YAML v1.0. The
aim of ARIA was to provide a set of TOSCA-inclined tools to
support the uptake of a normative TOSCA by other
organizations, one such contribution being a Cloudify plugin to
support the orchestration of TOSCA normative templates. No
specific examples of orchestrating containers were found in
ARIA templates.

From an ARIA contributor, came the open-source Puccini
[23], a frontend which can currently translate an extended
TOSCA v1.1/v1.2 template into a middle-language called
Clout, then again into an orchestrator specific language before
being fed to that orchestrator. One example involves a TOSCA
template translated to Clout, then into Kubernetes manifests
before being piped into the Kubernetes command-line tool.
There is very strict typing here, with descriptions of
applications to be orchestrated with Kubernetes being
abstracted at a high level. Applications, along with all of their
properties and requirements are first fully defined as new
TOSCA types. These types are then imported to and referenced
in the TOSCA template to be used at deployment time. As

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

opposed to extending a generic type with specific properties
and requirements for an application, this approach adds
complexity, introducing another layer when creating templates
to deploy an application.

The open-source Alien4Cloud [24] (Application Lifecycle
Enablement for Cloud) is an application management platform
which leverages the portability of TOSCA to encourage uptake
of the cloud by enterprise organizations. It offers a custom DSL
with strict, but not total adherence to TOSCA Simple Profile in
YAML v1.0. Plugins and a graphical interface offer support for
orchestrating and designing these TOSCA templates using
various tools, including Cloudify, Mesos, Kubernetes and
Puccini.The Alien4Cloud approach to defining types is less
strict, but more complexly layered. The Docker container
image itself is defined as a generic type for all Docker images,
ignorant of orchestrator. Then, a container runtime must be
defined, giving flexibility to authors desiring an alternative
runtime. Finally, a container deployment unit is defined, which
instructs the framework which container orchestrator should be
used. This three-layered approach does offer ease of portability
across different orchestration tools, but complicates the initial
authoring of a TOSCA template.

Another approach is used in the orchestration management
engine TosKer [25]. This approach to defining applications
separates the application from the container, defining one type
to represent the Docker container, and another to represent the
software which may (or may not) run inside that container.
This approach provides flexibility for an orchestration engine
that seeks to combine containers and traditionally run
applications, but adds another layer of complexity at the same
time.

As early TOSCA did not inherently support use at run-time,
another solution, CAMEL [35] (Cloud Application Modelling
and Execution Language), was developed as part of the
European-funded PaaSage [36] project and has been used in
other large projects such as MELODIC [37] and Cactos [38].
CAMEL provides a dynamic representation of the running
instance as a model (models@run-time), where changes to the
system are reflected in the model and changes to the model are
reflected in the system. An OASIS working group has been
investigating and implementing plans to integrate CAMEL-
style instance modelling into the TOSCA specification.

The current wide range of approaches to TOSCA were

found to be either too complexly layered, or not generic enough
to serve the modularity of MiCADO. A previous publication
focusing on MiCADO Application Description Templates in
TOSCA [26] offers more information on our approach to
describing Quality of Service and Non-Functional
Requirements and provides the base for the extended approach
to describing cloud resources taken in this paper.

III. MICADO
MiCADO is an application-level multi-cloud orchestration

and auto-scaling framework that is currently being developed
in the European H2020 COLA (Cloud Orchestration at the
Level of Application) project. The concept of MiCADO is
described in detail in [2]. In this section a high-level overview
of the framework is provided to explain its architecture,
building blocks and implementation.

The generic, technology independent architecture of
MiCADO is presented in Figure 1. MiCADO consists of two
main logical components: Master Node and Worker Node.
Master Node is the head of the cluster performing the
collection of information on microservices, the calculation of
optimized resource usage, the decision making, and the
realization of decisions related to handling resources and to
scheduling microservices. Worker Nodes are volatile
components representing execution environments for the
microservices. These nodes are continuously allocated/released
based on the dynamically changing requirements of the running
microservices. Once a new Worker Node is allocated and
attached to the cluster, the Master Node utilizes its resources by
allocating microservices on it. The input to MiCADO is a
TOSCA-based ADT that will be the focus of this paper.

The MiCADO Master Node (box with dashed line on the
left in Figure 1) includes six components. MiCADO Submitter
is the primary service endpoint for creating an infrastructure to
run an application, and managing this infrastructure and the
application itself. The incoming ADT is interpreted by the
MiCADO Submitter and related parts are forwarded to other
key components. Creating new MiCADO Worker Nodes and
deploying application containers on these Worker Nodes are
the responsibility of the Cloud Orchestrator and Container
Orchestrator components, respectively. The Cloud Orchestrator
is responsible for communication with the Cloud API to
allocate and release resources, and build up and shut down new
MiCADO Worker Nodes when necessary. The Container

Figure 1. Generic architecture of MiCADO

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

Orchestrator allocates new microservices (realized by
containers) on the Worker Nodes, keeps track of their
execution and destroys them if necessary. The Monitoring
System collects metrics on worker node resources and on
resource usage of the container services, and makes this
information available for the Policy Keeper component on the
Master Node. It also provides alerting functionality in relation
to the measured attributes to detect values that require reaction;
these alerts will also be consumed by the Policy Keeper. Based
on the metrics and alerts provided by the Monitoring System,
the Policy Keeper applies implemented scaling policies to
make scaling decisions and call the components responsible for
allocating/releasing cloud resources and scheduling container
services among the Worker Nodes. Moreover, this component
makes sure that the Cloud and the Container Orchestrator are
instructed in a synchronized way during the operation of the
entire system. Lastly, the Execution Optimizer is a background
microservice performing long-running calculations on demand
for finding optimized setup of both cloud resources and
container infrastructures.

MiCADO Worker Nodes (boxes with dashed line on the
right in Figure 1) contain the Node/container monitor that is
responsible for measuring the load of the resources and the
resource usage of the container services. The measured
attributes are then provided to the Monitoring System running
on the Master Node. The Container Executor starts, executes
and destroys containers upon requests from the Container
Orchestrator. Container components are realizing the user
services defined in the (container) infrastructure description
submitted through the MiCADO Submitter on the Master
Node.

The current implementation of MiCADO utilizes Occopus
[4], an open source multi-cloud orchestration solution as Cloud
Orchestrator that is capable of launching virtual machines on
various private (e.g. OpenStack or OpenNebula-based) or
public (e.g. Amazon Web Services or CloudSigma [27]) cloud
infrastructures, and also via the CloudBroker Platform [28].
For Container Orchestration, the MiCADO versions mentioned
in this paper use either Docker Swarm [13], or Kubernetes
[14]. The monitoring component is based on Prometheus [5], a
lightweight, low resource consuming, but powerful monitoring
tool. The MiCADO Submitter and Policy Keeper components
were custom implemented during the COLA Project. The
current MiCADO prototype does not include the Optimiser
component, its design and development is ongoing at the time
of writing this paper.

IV. BUILDING AN ADT
The approach taken to adopting TOSCA into the COLA

Project for use with MiCADO is inherently different than the
adoption approach by other frameworks and research activities
described in the related work. MiCADO orchestrates at the
level of the application. This primarily refers to support for
container orchestration, where the assumption is that the
application or its microservices have already been packed into
one or more container images which are all in a ready-state.
MiCADO also supports a so-called VM-only deployment,
again with the assumption that the virtual machine images to be
deployed contain the necessary libraries and the application is
ready to accept a command or input.

For TOSCA, this meant that MiCADO could very simply
define two broad types of nodes covering the two major cloud
resources – one for virtual machines, and one for containers.
This gave us a base node type for each, which could be
extended to support a variety of cloud service providers or
container runtimes.

v tosca.nodes.MiCADO.Compute
§ tosca.nodes.MiCADO.Compute.EC2
§ tosca.nodes.MiCADO.Compute.OpenStack

v tosca.nodes.MiCADO.Container.Application
§ tosca.nodes.MiCADO.Container.Application.Docker
§ tosca.nodes.MiCADO.Container.Application.rkt

The next step was to define the orchestrator within the
MiCADO framework that would act on these resources in
order to begin and manage their lifecycle. To this end, we
leveraged the interface type defined within TOSCA. In the
TOSCA specification, an interface must be defined for each
node, to take responsibility for managing the lifecycle of that
node. The so-called Standard interface of TOSCA uses
deployment and implementation artifacts (typically in the form
of shell scripts or Chef or Puppet configurations) to manage
that lifecycle through four main stages: create, configure, start,
and stop. These script artifacts allow for extra inputs to be fed
in at deployment time, defined directly in the interfaces section
of the TOSCA template.

In MiCADO, these lifecycle stages are handled by
whatever respective orchestrator is responsible for that node.
There is no requirement to associate those stages with a script
or piece of automation code, but it is still necessary to pass
information to said orchestrator, so it can correctly handle each
stage of the lifecycle. Deployment artifacts become the
required container or virtual machine image. Implementation
artifacts are inferred to be the native configuration format
belonging to that orchestrator, ready to accept custom inputs
just as in the Standard TOSCA interface. To fulfil this
requirement, the base interface type is extended for specific
MiCADO orchestrators as below.

v tosca.interfaces.MiCADO
§ tosca.interfaces.MiCADO.Occopus
§ tosca.interfaces.MiCADO.Swarm
§ tosca.interfaces.MiCADO.Kubernetes

Figure 2. Application Description Template for a generic single-

container application. Described using the Docker Compose naming
conventions, but orchestrated with Kubernetes.

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

The node and interface types described above are the base

for describing cloud resources in all MiCADO ADTs, and by
the end of project will be used in over 20 different use case
application demonstrators, each with a variety of different
requirements and all being able to benefit from a choice of
orchestrator. The next section describes the approach taken to
define a generic node type for applications in Docker
containers, which can easily be reused for defining a generic
node type for other resources such as virtual machine instances
or other container runtimes.

A. Defining a generic container type
To define the generic set of options which the user could

set in the properties section of a Docker container node type,
we made a quick review of the options available and inputs
required when orchestrating a Docker container with each of
Swarm, Kubernetes and Mesos. Any options which were
clearly related to orchestration, such as scheduling or update
strategies, were dismissed and would become the available

inputs for the interfaces section of each orchestrator, to further
control lifecycle stages. From the remaining options, though
naming and grammar varied slightly, a set of base properties
was apparent and became the properties section of the Docker
container node type.

To support portability, the generic properties aim to support
the naming and grammar of all major orchestration platforms,
so moving from one to the other requires no changes to them.
The remaining options, tightly related to orchestration can still
be set and modified as inputs in the interface section of the
definition. To offer full support for the specific settings offered
by each orchestrator, the naming and grammar of these options
are still orchestrator-specific. Figure 2 provides an example of
the portability and extended support offered by this approach.
Here, a single simple container is defined in an ADT using
Swarm-style naming, then orchestrated by Kubernetes. The
generic container properties (in the upper portion of the
definitions) are flexible in that they can be expressed using any
supported orchestrator’s nomenclature, and then scheduled by
any supported orchestrator. When selecting the orchestrator (in
the lower portion of the definition), other orchestrator-specific
options can be specified under inputs, so long as they match the
naming and grammar of that specific orchestrator. Here, an
update strategy is defined, not for the container, but for the
Kubernetes workload, so orchestrator-specific grammar is
required.

V. PROOF OF CONCEPT
One application demonstrator of the MiCADO project

planned for the deployment of WordPress [29], a popular
content management framework as a microservices
architecture. The demonstrator sees frontend (WordPress),
backend (MySQL [30] database) and shared storage server
(NFS [31], (Network File System)) components deployed in
containers to MiCADO worker nodes. The NFS server

Figure 3. Application Description Template describing the container

topology of a Wordpress microservices architecture for deployment with
Docker Swarm

Figure 4. Modified ADT from Figure 3 for deployment with Kubernetes

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

container is linked to a storage volume and the MySQL and
WordPress containers mount that volume for persistent and
shared storage. MySQL credentials are passed to the
WordPress frontend to connect it with the database container.
Lastly, scaling policies are attached to the frontend and virtual
machine worker nodes so they scale up and down to meet a
variable network load under a benchmarking test. A single
ADT was written to describe and deploy the virtual machine
infrastructure, the three Docker containers and their network,
the volume linking to the NFS server and the set of policies
which would regulate the automated scaling. The container,
network and volume descriptions can be seen in the snippet in
Figure 3.

When implementation of this demonstrator began,
MiCADO featured Docker Swarm as the container
orchestrator. Running the NFS server in a Docker container
requires elevated privileges not provided in containers by
default. The Docker runtime permits elevating these privileges
with the --privileged or --cap-add flags, however, as recently as
the current stable release at the time of writing (18.09), Docker
Swarm orchestration does not offer support for either of these
options. As it was implemented, MiCADO was unable to
support this particular application demonstrator. However,
because of its modular design and supportive TOSCA
interface, it was possible to swap out Docker Swarm for
another container orchestrator to offer a solution which could
support running the NFS share as part of a WordPress
deployment. A review of other widely used container
orchestration tools showed that both Kubernetes and Mesos
Marathon supported elevating privileges in orchestrated
containers. Because of its popularity and the range of other
features it supports, Kubernetes won the candidature to replace
Swarm as the container orchestrator.

On the implementation side, leveraging the modularity of
MiCADO was straightforward. The configuration of Docker
Swarm and its visualizer component were removed from the
Ansible [32] playbook responsible for the installation of
MiCADO, and the installations of the Kubernetes core-
components and dashboard were added in their place.
MiCADO worker nodes were instructed to join a Kubernetes
cluster instead of a Swarm cluster as they had done previously.
Port forwarding rules were changed and security enablers were
rewritten to support the Kubernetes networking approach.
Lastly, a new adaptor was written for the MiCADO Submitter
component to support translation to and execution of
Kubernetes manifests.

Because of the design and modular support built into the
TOSCA ADT, only orchestrator specific options had to be
changed. The policies and virtual machine definitions remained
identical, as their respective components were not changed for
this implementation. Figure 4 shows the necessary changes to
the container and volume descriptions of the ADT. The core
definition of Docker containers, as expressed by their
properties, did not change. The definition of the volume
providing the link to the NFS share saw a change in the
interfaces section, as attaching NFS shares is handled
differently by the two orchestrators. The interface section of
the container interfaces also saw a change. In the case of the
Wordpress container, the update policy was rewritten in the
style of a Kubernetes manifest. For the NFS-server container,
the assignment of the IP address was rewritten for Kubernetes.

The definition of the network is implicit in Kubernetes, so this
was removed entirely.

Submitting this now changed ADT to a MiCADO
implementation featuring Kubernetes in place of Swarm sees a
successful deployment of the three aforementioned components
in containers on the public CloudSigma cloud, as seen in the
Kubernetes dashboard capture shown in the top half of Figure
5. The automated scaling functionality of MiCADO is also
preserved, as can be seen in the Grafana [33] graph capture in
the lower portion of Figure 5, where the WordPress frontend
scales up in response to high network traffic generated by an
HTTP load testing tool called wrk [34]. New nodes joining the
cluster immediately receive traffic thanks to the default round-
robin routing mesh of the container orchestrator, though a load
balancer could also be implemented. The modularity of
MiCADO allowed us to extend support to a specific use case
which otherwise would have required architectural and design
changes. The flexibility of TOSCA and our Application
Description Templates gave us the power to do so without
having to significantly change the user-facing interface which
described the application and all of its dependencies and
requirements.

VI. CONCLUSION & FUTURE WORK
This paper presented a novel approach to authoring TOSCA

templates for the reuse of generic cloud components across
different orchestration tools. A proof-of-concept demonstrated
that, when requirements of an application exceeded the
capabilities of a modular framework, the definition of that
application could be reused and successfully deployed on the
same framework featuring a different, capable component.

As the development of MiCADO continues, so does the
work in testing and supporting its modularity with TOSCA and
Application Description Templates. Supporting modular cloud
orchestration using TOSCA ADTs is on the horizon, with the
aim to provide high levels of portability of a containerized
application across a wide variety of cloud service providers.

Figure 5. WordPress application successfully deployed to MiCADO and

scaling automatically in response to an HTTP load test

11th International Workshop on Science Gateways (IWSG 2019), 12-14 June 2019

ACKNOWLEDGMENT

This work was funded by the COLA Cloud Orchestration at
the level of Applications Project No. 731574.

REFERENCES
[1] “COLA – Cloud Orchestration at the Level of Application.” [Online].

Available: https://project-cola.eu/. [Accessed: 1-Mar-2019].
[2] T. Kiss, et al., “MiCADO - Microservices-based Cloud Application-

level Dynamic Orchestrator”, Future Generation Computer Systems, Vol
95, pp 937 – 946, May 2019. DOI:
https://doi.org/10.1016/j.future.2017.09.050.

[3] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, J. Wilkes, “Borg,
Omega, and Kubernetes”. Queue 14, 1, Pages 10 (January 2016), 24
pages. DOI: https://doi.org/10.1145/2898442.2898444.

[4] J. Kovacs, P. Kacsuk, “Occopus: a Multi-Cloud Orchestrator to Deploy
and Manage Complex Scientific Infrastructures”, Journal of Grid
Computing, vol 16, issue 1, pp 19-37, 2018.

[5] “Prometheus,” [Online]. Available: https://prometheus.io/. [Accessed: 1-
Mar-2019].

[6] O. Ben-Kiki, C. Evans, I. döt Net,. “YAML ain’t markup language
version 1.2,” 2009 [Online] Available:
http://yaml.org/spec/1.2/spec.html. [Accessed: 1-Mar-2019].

[7] Oasis, “Oasis Topology and Orchestration Specification for Cloud
Applications (TOSCA).” [Online]. Available:
https://www.oasisopen.org/committees/tc_home.php?wg_abbrev=tosca.
[Accessed: 1-Mar-2019].

[8] Oasis, “TOSCA Simple Profile in YAML Version 1.0.” [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html. [Accessed: 1-
Mar-2019].

[9] Docker, “Enterprise Application Container Platform.” [Online].
Available: https://www.docker.com/. [Accessed: 1-Mar-2019].

[10] “cri-o Lightweight Container Runtime for Kubernetes.” [Online].
Available: https://cri-o.io/. [Accessed: 1-Mar-2019].

[11] CoreOS, “rkt – A security-minded, standards-based container engine.”
[Online]. Available: https://coreos.com/rkt/. [Accessed: 1-Mar-2019].

[12] Apache Mesos, “Mesos Containerizer.” [Online]. Available:
http://mesos.apache.org/documentation/latest/mesos-containerizer/.
[Accessed: 1-Mar-2019].

[13] Docker, “Swarm mode overview.” [Online]. Available:
https://docs.docker.com/engine/swarm/. [Accessed: 1-Mar-2019].

[14] Kubernetes, “Production-Grade Container Orchestration.” [Online].
Available: https://kubernetes.io/. [Accessed: 1-Mar-2019].

[15] Apache Mesos, “Marathon: A container orchestration platform for
Mesos and DC/OS.” [Online]. Available:
https://mesosphere.github.io/marathon/. [Accessed: 1-Mar-2019].

[16] P. Lipton, D. Palma, M. Rutkowski, and D.A Tamburri. "Tosca solves
big problems in the cloud and beyond!." IEEE Cloud Computing (2018).

[17] B. Antonio, J. Soldani, and P. Wang. "TOSCA in a Nutshell: Promises
and Perspectives." In European Conference on Service-Oriented and
Cloud Computing, pp. 171-186. Springer, Berlin, Heidelberg, 2014.

[18] Oasis, “TOSCA Simple Profile in YAML Version 1.2.” [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.2/TOSCA-Simple-Profile-YAML-v1.2.html. [Accessed: 5-
Mar-2019].

[19] T. Binz, et al., "OpenTOSCA – a runtime for TOSCA-based cloud
applications." In International Conference on Service-Oriented
Computing, pp. 692-695. Springer, Berlin, Heidelberg, 2013.

[20] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann. "Winery–a modeling
tool for TOSCA-based cloud applications." In International Conference
on Service-Oriented Computing, pp. 700-704. Springer, Berlin,
Heidelberg, 2013.

[21] Cloudify, “Cutting Edge Orchestration.” [Online]. Available:
https://cloudify.co/. [Accessed: 5-Mar-2019].

[22] Apache, “About ARIA TOSCA.” [Online]. Available:
http://ariatosca.incubator.apache.org/. [Accessed: 5-Mar-2019].

[23] “Puccini - Deliberately stateless cloud topology management and
deployment tools based on TOSCA.” [Online]. Available:
https://github.com/tliron/puccini. [Accessed: 5-Mar-2019].

[24] “ALIEN 4 Cloud.” [Online]. Available: http://alien4cloud.github.io/.
[Accessed: 5-Mar-2019].

[25] A. Brogi, L. Rinaldi, J. Soldani. “TosKer: Orchestrating applications
with TOSCA and Docker.” In European Conference on Service-Oriented
and Cloud Computing, pp. 130-144. Springer, Cham, 2017.

[26] G. Pierantoni, T. Kiss, G. Gesmier, J. DesLauriers, G. Terstyanszky,
JMM Rapún, “Flexible Deployment of Social Media Analysis Tools”,
International Workshop on Science Gateways, 13-15 June 2018,
Edinburgh, UK.

[27] Cloudsigma Holding AG. “Cloud servers & Hosting”. [Online].
Available: https://www.cloudsigma.com/. [Accessed: 5-Mar-2019].

[28] CloudBroker GmbH., “Compute-intensive applications in the cloud.”
[Online]. Available: http://cloudbroker.com/. [Accessed: 5-Mar-2019].

[29] WordPress, “Features.” [Online]. Available: https://wordpress.com/.
[Accessed: 5-Mar-2019].

[30] “MySQL.” [Online]. Available: https://www.mysql.com/. [Accessed: 5-
Mar-2019].

[31] Microsoft, “Network File System overview.” [Online]. Available:
https://docs.microsoft.com/en-us/windows-server/storage/nfs/nfs-
overview. [Accessed: 5-Mar-2019].

[32] Red Hat Ansible, “Ansible is Simple IT Automation.” [Online].
Available: https://www.ansible.com/. [Accessed: 5-Mar-2019].

[33] Grafana Labs, “Grafana – The open platform for analytics and
monitoring.” [Online]. Available: https://grafana.com/. [Accessed: 5-
Mar-2019].

[34] “wrk – Modern HTTP benchmarking tool.” [Online]. Available:
https://github.com/wg/wrk. [Accessed: 5-Mar-2019].

[35] A. Rossini, et al., "The cloud application modelling and execution
language (CAMEL)," Open Access Repositorium der Universität Ulm,
2017. DOI:http://dx.doi.org/10.18725/OPARU-4339

[36] A. Rossini, "Cloud application modelling and execution language
(CAMEL) and the PaaSage workflow." In Advances in Service-Oriented
and Cloud Computing—Workshops of ESOCC, vol. 567, pp. 437-439.
2015.

[37] G. Horn, and P. Skrzypek. "MELODIC: utility based cross cloud
deployment optimisation." In 2018 32nd International Conference on
Advanced Information Networking and Applications Workshops
(WAINA), pp. 360-367. IEEE, 2018.

[38] G. Henning, et al., "CACTOS toolkit version 2: accompanying
document for prototype deliverable D5. 2.2." Open Access Repositorium
der Universität Ulm, 2017. DOI:http://dx.doi.org/10.18725/OPARU-
4319

