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Abstract— Explainability refers to the degree to 

which a software system’s actions or solutions can be 

understood by humans. Giving humans the right 

amount of explanation at the right time is an 

important factor in maximizing the effective 

collaboration between an adaptive system and 

humans during interaction. However, explanations 

come with costs, such as the required time of 

explanation and humans’ response time. Hence it is 

not always clear whether explanations will improve 

overall system utility and, if so, how the system should 

effectively provide explanation to humans, 

particularly given that different humans may benefit 

from different amounts and frequency of explanation. 

To provide a partial basis for making such decisions, 

this paper defines a formal framework that 

incorporates human personality traits as one of the 

important elements in guiding automated decision-

making about the proper amount of explanation that 

should be given to the human to improve the overall 

system utility. Specifically, we use probabilistic model 

analysis to determine how to utilize explanations in an 

effective way. To illustrate our approach, Grid – a 

virtual human and system interaction game -- is 

developed to represent scenarios for human-systems 

collaboration and to demonstrate how a human’s 

personality traits can be used as a factor to consider for systems 

in providing appropriate explanations. 
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I.    INTRODUCTION 

As systems become more autonomous and intelligent 

through the incorporation of AI techniques and self-adaptive 

approaches, it becomes increasingly important for those 

systems to be able to “explain” themselves to their human 

users and collaborators [1][2]. In particular, there are four 

main purposes of explainability: (1) explain to justify: use 

explanations to justify some results to the human, particularly 

when decisions are made suddenly; (2) explain to control: 

explanations can help not only to justify, but also to prevent 

systems from going wrong; (3) explain to improve: improving 

the systems continuously through human involvement; (4) 

explain to discover: discovering and gathering new facts that 

help us to learn and to gain knowledge. In the context of this 

paper, explainability refers to the degree to which a software 

system’s actions or solutions can be understood by humans, 

and explainability is used to improve a system’s overall utility.  

While explanation is an increasingly desirable – even, 
essential – capability of a system, it is not at all obvious when 
and how explanation should be given, particularly since 
explanation comes with a cost on human attention and delays 
in system-human interaction and the fact that different humans 
may need different kinds of explanation. To partially address 
this problem this paper defines a formal framework, as 
illustrated in Figure 1, for reasoning about the proper amount 
of explanation that a system should provide to the human 
based on their personality traits. Specifically, leveraging 
research in the psychology of human personality, this 
framework incorporates two basic personality traits 
(Openness and Need for Cognition) as important elements in 
a human model that can be used to guide a system in deciding 
the appropriate amount of explanation that should be given to 
the human in order to improve overall system utility. The 
effects of given explanations (which are determined based on 
personality traits of the human) affect human-system co-
adaptation, represented through the Opportunity-Willingness-
Capability (OWC) model, a commonly used model for 
adaptive systems’ reasoning about human-in-the-loop 
behavior [3]. We incorporate our approach into the MAPE-K 
architecture [4] to formally model and analyze human 
involvement at different stages of system management and 
adaptation. To illustrate our approach, Grid – a virtual human 
and system interaction game – is developed to represent 

Fig. 1 A probabilistic model for personality trait focused explainability 
framework: this framework incorporates two basic personality traits (Openness and 
Need for Cognition) as important elements in a human model that can be used to guide 
a system in deciding the appropriate amount of explanation that should be given to the 
human 
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scenarios for human-systems collaboration and to demonstrate 
how a human’s personality traits can be used as a factor to 
consider for systems in providing appropriate explanations. 

The organization of the paper is as follows: Section II 
describes the research problem and goals, Section III 
represents background information and related work, Section 
IV shows methodology, Section V shows the Stochastic 
Multi-player Games (SMG) model while Section VI shows 
results and analysis, Section VII represents discussion and 
future work and the last section focuses on the conclusion. 

II. PROBLEM STATEMENT AND  
RESEARCH GOALS 

A. Problem Statement 

A co-adaptation system is symbiotic human-in-the-loop 
system where human-system cooperation is required in 
achieving shared goals, and system and human actions 
mutually impact each other’s behavior in accomplishing 
coordinated tasks [5]. In this context, providing effective 
explanations to humans is an important factor in maximizing 
the co-adaptation outcomes between the system and the 
human [6]. Maximizing co-adaptation outcomes implies that 
the relationship between system and humans has become a 
partnership, or collaborative relationship, in which humans 
and systems act semi-autonomously – in contrast to traditional 
systems that wait for the human's inputs and commands to take 
action [6].  

Given that different humans may benefit from different 
amounts and frequency of explanation, in this paper we argue 
that adapting the explanation to the particular human through 
knowledge of their personality traits can help the system in 
determining what are appropriate explanations and, therefore, 
maximize the benefits of co-adaptation. In particular, given 
that there are tradeoffs in determining what kind of 
explanations to give, it is important to be able to tailor the 
explanations to the user [7]. Providing longer and more-
frequent explanations may increase the effectiveness of 
collaboration between the system and the human; however, 
this comes at the cost of taking more time for humans to 
understand the explanations and respond accordingly. Thus, 
key questions that must be answered by a system are: What 
should the contents of an explanation be, and how frequently 
should they be given? Further, how can we formalize and 
mechanize the decision process that a system uses in 
determining the answers to these questions? 

B. Research Goals 

In this paper we attempt to answer these questions by 
defining a formal framework for reasoning about how a self-
adaptive system should provide explanations based on its 
knowledge of a person’s personality traits. This framework 
uses probabilistic analysis to decide how explanations should 
be given, based on a formal human model that includes 
psychologically relevant aspects of personality. Specifically, 
we focus on answering the following research question: How 
to use knowledge about an individual’s personality traits to 
improve the overall system utility?  

The main contributions of this paper are: 

• A formal framework that incorporates human 
personality traits and guides adaptive human-in-the-
loop systems to decide how much explanations should 
be given in order to improve system utility. 

• An evaluation system based on a collaborative game, 
to simulate the effects of decision making under 
various scenarios. 

III. BACKGROUND AND RELATED WORK 

This section introduces some background on personality 
traits, the OWC (Opportunity-Willingness-Capability) model, 
model checking of stochastic multi-player games (SMG), and 
some of state-of-the-art studies that focus on explainability 
and human-system co-adaptation. Section IV will then 
illustrate how this background and related work are related to 
what we do in this research. 

A. Personality Traits 

Psychological studies have demonstrated that human 
personality traits play a strong role in determining human 
behavior [8].  Personalities can be characterized in terms of 
traits that are relatively stable characteristics of a human that 
influence our behavior across many situations. An individual's 
personality is the combination of traits and patterns that 
influence his/her behavior, thought, motivation, and emotion. 
It drives individuals to consistently think, feel, and behave in 
specific ways. 

There are, of course, many differences between 
individuals; however, personality traits are one of the more 
important measurable characteristics that can be used to 
distinguish one person from another. In the psychological 
literature the Big Five (also called the Five Factor) model of 
personality is one of the most widely accepted personality 
taxonomies. In the Big Five model, the five dimensions of 
personality include extraversion, neuroticism, openness to 
experience, agreeableness, and conscientiousness [9]. 

Openness to experience is one of the personality traits that 
is used to describe individual personality in the Five Factor 
Model. Open people tend to be intellectually curious, creative 
and imaginative. Open people have a high openness to 
embrace new things, fresh ideas, and novel experiences [10].  

In addition to the Five Factor Model, the psychological 
literature also identifies Need for Cognition is an important 
distinguishing characteristics of human personality trait 
[9][11]. 

Need for Cognition (NFC) is defined as the "individual’s 
tendency to engage in and enjoy effortful cognitive tasks.” 
People with higher NFC levels typically prefer more detail, 
while those with low levels of NFC want to quickly 
understand the big picture and avoid engaging through more 
detail. Based on the NFC 10-item testing instrument [9][11], 
a score above 80 is generally considered to be High NFC (or 
high personality trait), and below 50 is Low NFC. 

As we elaborate later, we adopt these two basic personality 
traits (Openness to Experience and Need for Cognition) as 
important elements in a human model that can be used to guide 
a system in deciding the proper amount of explanation that 
should be given to the human to improve overall system 
utility. 

B. OWC (Opportunity-Willingness-Capability) Model 

Prior research in adaptive systems has investigated various 
models of humans that can be used at run time to effectively 
characterize humans when deciding how best to incorporate 
them into a co-adaptive system. One of the more prominent 



models is the OWC (Opportunity-Willingness-Capability) 
model [3].  

OWC categorizes human attributes into: (1) Opportunity: 
indicates whether a human is available to participate in a 
cooperative task with the system (such as whether the human 
is physically present). (2) Willingness: identifies the human’s 
inclination to perform the task (affected by cognitive load, 
human attention, stress level, and motivation). (3) Capability: 
defines the human’s abilities and skills that are necessary to 
execute the task successfully (affected by level of experience 
or training,  knowledge of the task, and cognitive or physical 
skills) [3].  

This model has been used effectively in a number of 
papers to determine, for example, whether to involve the user 
in a task or to carry it out automatically [12][5], whether to 
proactively gain the user’s attention [13], and when to provide 
an explanation [14].  As we detail later in this paper we use 
OWC to capture the co-adaptation attributes of the human (see 
Section IV. B). 

C. Model Checking Stochastic Multiplayer Games (SMG) 
and PRISM 

Probabilistic model checking is used as a technique to 
analyze the systems that exhibit stochastic behavior. 
Stochastic Multi-player Games (SMG) is a form of 
probabilistic modelling that allows us to reason quantitatively 
about reward-based properties and probability such as time, 
usage, and resources in a multi-agent system [15][16][17]. 
Our approach is to use SMG models to reason about the 
appropriate amount of explanation that should be given to the 
humans based on their personality traits where we model the 
system and humans as (cooperating) players in a game. 

PRISM is “a probabilistic model checker, a tool for formal 
modelling and analysis of systems that exhibit random or  
probabilistic behavior” [18]. PRISM-games is an extension of 
PRISM that is used to analyze probabilistic systems where 
players can incorporate competitive or collaborative behavior, 
modelled as stochastic multiplayer games SMG [19]. 
Analyzing systems using PRISM has been carried out in 
variety of application domains, including: security protocols, 
communication and multimedia protocols, randomized 
distributed algorithms, biological systems and many others. 
PRISM can analyze a wide range of quantitative properties of 
stochastic models automatically (e.g., "what is the probability 
of a failure causing the system to shut down within 4 hours?”). 
PRISM further supports the specification and analysis of 
properties based on costs and rewards. These allow it to 
reason, not only about the probability that a model behaves in 
a certain way, but about a wide range of quantitative measures 
related to the behavior of the model (e.g., "expected number 
of lost messages", "expected time", or "expected power 
consumption"). 

In this paper we use PRISM to dynamically determine 
appropriate levels of explanation to maximize expected utility 
(expressed as a reward). 

D. Human-in-the-Loop Self-Adaptation and Explainability 

Human-system integration or human-system co-
adaptation is advancing the fields of human-system 
interaction. Integration here means that the relationship 
between system and humans has become a partnership or 
symbiotic relationship in which humans (i.e., users) and 
systems act with autonomy instead of the system waiting for 

the user's inputs and commands to take an action. Self-
adaptation  refers to a process in which an interactive system 
co-adapts its behavior to a human based on its internal model 
of the human, dynamic information acquired about the human, 
the context of use and its surrounding environment [4][5][6].  

Several related works have studied explainability focused 
on a human-system co-adaptation perspective. In [20] the 
authors propose a method that generates verbal explanations 
of multi-objective probabilistic planning. This method 
explains why a particular behavior is chosen on the basis of 
the optimization objectives. Their explainability method relies 
on describing the values of the objective of a generated 
behavior and, therefore, explaining tradeoffs that were made 
to reconcile competing objectives. 

In [21], the authors define a formal framework to reason 
about explainability of co-adaptive system behaviors and the 
situations under which they are warranted. Specifically, they 
characterized explainability in terms of explainability cost, 
effect, and content. They propose a dynamic adaptation 
approach that uses a probabilistic reasoning technique, similar 
to ours, in order to determine when the explanations should be 
used for the purpose of improving system utility.  

In another related work [14], the authors use a similar 
framework of [21] to  reason about explainability of adaptive 
system behaviors and the conditions under which they are 
warranted. They characterize explainability in terms of the 
effects on a human operator’s ability to engage in co-adaptive 
actions effectively. They present a decision-making 
mechanism to plan in self-adaptation that provides a 
probabilistic reasoning tool to determine when explanations 
should be used in an adaptation.  

While this prior work shares with our research the goal of 
reasoning about explanation in the context of human-system 
co-adaptation, and also use probabilistic reasoning to account 
for inherent uncertainties in our human models, none of these 
studies take into consideration specific personality traits of 
humans – the main focus of our work.  

IV. METHODOLOGY 

In this section, we illustrate how we use explanation as a 
tactic (or action) that systems can use to improve the 
efficiently and effectiveness of human-system co-adaptation 
based on human personality traits. We describe also how we 
utilize a probabilistic planner [19] to determine the optimal 
amount of explanation according to those personality traits. 

A. Selection of Personality Traits 

An important question is which personality traits to 

consider with respect to explanation? As noted earlier, the 

psychological literature has classified a variety of important 

distinguishing characteristics for human personality. 

However, not all traits are relevant to explainability. In this 

work we have adopted two personality traits: Need for 

Cognition (NFC) and Openness to experience, since there is a 

direct relationship between NFC and explainability and 

between Openness and capability in OWC [9][10] (see 

Section IV. B). 

We use the “Openness to experience” trait as one factor 
that affects the human’s capability to continue and complete a 
task, since open people tend to be intellectually curious and 
have a high level of capability to do creative tasks [10]. We 
consider the Openness level as an important human factor 



since an individual’s Openness level reflects their capability 
to engage in cognitive tasks. 

In our work we assume that the human’s personality traits 
are known (for example, by using the NFC 10-item testing 
instrument in [9][11]) and do not change over the time horizon 
of a particular set of interactions with the system. While the 
traits are assumed to be known, there does, however, remain 
some uncertainty about the impact of the amount of 
explanation that should be provided to the human, which we 
incorporate into our reasoning framework. We will further 
assume for concreteness that both selected personality traits 
are relevant, and that their weights are equally important 
(although the relative importance can be adjusted in the 
model). 

B. Incorporating the OWC (Opportunity-Willingness-
Capability) Model 

We use the OWC model (described in Section III.B) to 
capture the co-adaptation attributes of the human. In this 
paper, the following indicators show the connection between 
our model and the OWC model and how the OWC is 
incorporated in the context of the collaborative Grid game: (1) 
time and location represent the set of variables of the 
Opportunity category. Is the player located at the correct 
location? Has the timer expired? (2) Human satisfaction     
represents the Willingness category. Is the human satisfied 
with the given explanation? That category is applied through 
the playerFeedback (pF) tactic. (3) Human performance 
represents the Capability category. The Capability category 
identifies the ability of the human to complete Grid task. 
Giving an explanation increases the capability of the human 
to successfully carry out that particular task [12]. 

C. Utlizing Model Checking Stochastic Multiplayer Games 
(SMG) 

The probabilistic model checker (PRISM-games) is 
utilized to formally model our approach. PRISM-games is 
particularly suitable for our study because it helps us to reason 
quantitatively under unpredictability and uncertainty about 
“how much” explanations should be given. The uncertainty 
(or stochasticity) that is relevant in this context is about the 
proper amount of explanations and the impact of different 
amounts of explanations that should be given to the human. 

We model the system (the Grid game described in Section 
IV.D below) as a turn-based SMG, which means exactly one 
player in each state of the modeled system can choose an 
action, where the outcome of that state will be probabilistic. 
Players in a SMG may cooperate to achieve a common goal, 
or compete to accomplish different goals. In our examples, we 
model two players1, the human and the system, and we assume 
that they share a common goal.  

We use rPATL, a probabilistic temporal logic, to express 
properties of stochastic multi-player games quantitatively. 
rPATL helps us to reason about the collective ability of a 
group of players to achieve a goal relating to the  probability 
of an occurring event [22]. 

D.  Grid Game  

To illustrate our approach, we defined the Grid game– a 
virtual game -- as shown in Figure 2, as a game that embodies 
a representative scenario for human-system co-adaptation. 

In the Grid game the system S instructs a player P verbally 
to move on a 5×5 grid from the top right corner (start) to the 
bottom left corner (end). The game is designed to rely on 
explanations, at various levels of detail, to instruct the user on 
what tasks to perform and how to perform them. 

Game objectives:  

• Follow the system instruction through a certain path 
within a certain maximum amount of time (60 
seconds). 

• Minimize the time t to complete the task. 

• Traverse an optimal number of blocks to complete the 
end-to-end task, avoiding obstacles. 

Game rules:  

• The player can move either horizontally or vertically. 

• Game score (100 points): points are deducted for 
traversing extra blocks or moving into or through 
obstacle squares (e.g., in Figure 2 there are four 
obstacles: the house, a traffic light, a mountain, and a 
tree). 

The Grid game can involve the use of five tactics for 
interacting with the player, as shown in Table 1. The system 
provides two levels of explanation to command the human to 
move from one point to another. The choice of level of 
explanation is based on the run-time calculation and 
explanation generation based on the probabilistic model.  

In this case “less explanation (LExp)” provides an 
abbreviated command (e.g., “Go 2 blocks left”), while “more  

 

1 Note that a multiplayer here (i.e., two players) does not mean that the Grid game is a multiuser game. The concept 

“multiplayers” in PRISM refers to multiple agents, such as system, human, or environment. In our model, the system and the 

human are the only two players and they are working cooperatively (taking turns) to achieve the best possible outcome. 

 

Fig. 2 The Grid Game we defined that embodies a representative 
scenario for human-system ao-adaptation 



TABLE I: GRID GAME TACTICS FOR INTERACTING WITH THE PLAYER 

Model Categories Tactics Role Example 

System 

Less 
Explanation 

lessExplain (lExp) 
Commands the human to carry out an action. “Go 2 blocks left” 

“Move south 4 blocks” 

More 

Explanation 

moreExplain 
(mExp) 

The system further explains information when the 
human is confused and loses track. 

“You will go between a 

house and traffic light” 
“You go straight, and you 
see a car on your left side” 

Human 

Clarification 
Request 

Check (Chk) 
The human requests the system to confirm information 
that they not entirely sure about. 

“North?” 
“Should I continue above 
the tree?” 

Feedback 
playerFeedback 
(pF) 

Human feedback is collected about his satisfaction for 
each given explanation 

Helpful, Not helpful, 
Neutral 

Acknowledgement confirm (conf) 
The human confirms information and follows the 
instructions. 

“Yeah”, “Thanks” 
“Okay” 

 

explanation (mExp)” provides an abbreviated command (e.g., 
“You will go between a house and traffic light”) contains 
additional details. The human may request clarification about 
a given explanation if they are not entirely sure about it (Chk) 
(e.g., “Should I continue above the tree?”). Or the user can 
confirm the information and follow the instructions (conf). 
The human also gives feedback (pF) about the given 
explanation as to whether it was (a) helpful, (b) not helpful, or 
(c) neutral. (This supports explanation assessment in the 
framework - Figure 1). 

1) Utility Attributes 

The four utility attributes of the game are: RequiredTime 
(t), Blocks (B), LengthOfExplanations (xL), and 
ExplainEfficiency (xE). B and t are used for calculating the 
game score, and xL and xE are used as explainability 
attributes. Game score(s) depend on the time elapsed for 
completing the game (t), associated with the optimal number 
of the blocks (B) that the player is supposed to end the task 
with: 

• RequiredTime (t): the total elapsed time for 
completing the game. 

• Blocks (B): the number of the blocks traversed to 
complete the task. 

• LengthOfExplanations (xL): the amount of delay (or 
time) required to explain. 

• ExplainEfficiency (xE): a measurement that 
determines how happy the player is with the given 
explanations. xE is associated with the playerFeedback 
(pF) tactic which can be one of the following values: 
Helpful, Not helpful, or Neutral. 

2) Tactics Cost/Benefit and Utility Dimensions 

Table 2 lists the tactics in the Grid game, and their impacts 
on utility dimensions. Different tactics cause an increase in 
Time (three seconds for lExp, Chk, and conf; six seconds, for 

mExp). The upward ↑ or downward arrow ↓ reflects utility 

increments and decrements, respectively. For example, the 
lExp tactic increases both t and xL by three seconds, which is 
associated with a smaller amount of costs. Human feedback is 
collected about the user’s satisfaction for the given 
explanation (lExp) which can be:  

a) Helpful (H) reflects utility increments (↑), 

b) Not helpful (NH) reflects utility decrements (↓),  

c) Neutral (N) reflects neither utility increments nor 
decrements (-). 

3) Utility Functions 

To compare different explainability tactics (i.e., lengths of 
explanation), we use probabilistic temporal logic with 
rewards, rPATL, which enables us to analyze the utilities of 
the system that explainability can influence. rPATL 
(described in Section IV.C) is used to reason about the ability 
of a group of players (system and human) to collectively 
achieve a specific goal [18].  

In the formal model we define formulas that represent the 

accrued utility (The Scores function ∪ 𝑠 and the 

ExplainEfficiency Function ∪ 𝑥𝐸) as the maximum real 

immediate utility that the human can achieve along the whole 
task.  

TABLE II: COST/BENEFIT ’ IMPACTS ON UTILITY DIMENSIONS 

Tactics 

Time 
∆ ExplainEfficiency 

(xE) a 
∆ RequiredTime (t) 

∆ LengthOfExplanations 

(xL) 

↑ ↑ ↓ - 

lessExplain (lExp) +3 H 

+1 

NH 

-1  

N 

0 moreExplain (mExp) +6 

 

Check (Chk) 

+3 
 confirm (conf) 

playerFeedback (pF)  

a. H: Helpful, NH: Not helpful, N: Neutral 

The Scores function ∪𝑠, as shown in function (1),  maps 

high scores to high utility derived by dividing the number of 
blocks 𝐵 by the maximum level of RequiredTime 𝑡𝑚𝑎𝑥  (tmax= 
60), where B must be greater than or equal to 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝐵 (the 
optimal number of blocks that the player is supposed to 
complete the task with):    

∪ 𝑠(𝐵) = (1 −
𝐵

𝑡𝑚𝑎𝑥) 𝑥100 where 𝐵≥𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝐵           () 

The ExplainEfficiency Function ∪ 𝑥𝐸, as shown in 

function (2), maps higher levels of ExplainEfficiency (xE) 
derived by dividing the accumulated player Feedback (∑ 𝑝𝐹) 



by the total  number of feedbacks (𝑝𝐹𝑚𝑎𝑥), where 
𝑝𝐹𝜖[1,0, −1] represent Helpful, Neutral, Not helpful, 
respectively: 

∪ 𝑥𝐸(𝑝𝐹) ≈  (
∑ 𝒑𝑭

𝑝𝐹𝒎𝒂𝒙) 𝑥100                 () 

Both personality trait variables (Openness and 
NFC) are initialized with some constants (as inputs) 
that represent the human traits. Personality traits are 
directly mapped to the level of explanation (the 
amount), and are used to calculate the probability of 
getting explanations in that amount. Function (3) 
shows combined personality traits, which will be 0 in 
case both traits are 0, or 1 in case the human has the 

highest personality traits levels (i.e., 0 → 1). 

Opennessmax and NFCmax are 100, which represent the 
highest personality trait levels. The values of 
personality traits are determined based on the NFC 10-
item testing instrument in [9][11] that produces scores 
between 0-100. 

For example, if a human has 75 Openness and 90 
NFC. The combined human traits are 0.82 which 
means he has high personality traits (by using function 
(3)). That means the system will explain less 18% of 
the time (i.e., lExp) and explain more 82% of the time 
(i.e., mExp) during the task. As another example, 
suppose a human with low personality traits has 43 
openness and 49 NFC. The combined human traits are 0.46 
(using function (3)). That means the system will explain less 
54%  of the time (i.e., lExp) and explain more 46%  of the 
time (i.e., mExp) while playing the Grid game. 

𝐻𝑢𝑚𝑎𝑛 𝑇𝑟𝑎𝑖𝑡𝑠 =  
𝑂𝑝𝑒𝑛𝑛𝑒𝑠𝑠+𝑁𝐹𝐶

𝑂𝑝𝑒𝑛𝑛𝑒𝑠𝑠𝑚𝑎𝑥+𝑁𝐹𝐶𝑚𝑎𝑥   () 

TABLE III: AN EXAMPLE DIALOGUE OF A SCENARIO 

BETWEEN THE SYSTEM (S) AND A HUMAN (H) 

Scenario Tactics Time pF 

S: Can you go 2 blocks down? (lExp) 3s H 

H: Yeah   (conf) 3s - 

S: Then go 2 blocks left.   (lExp) 3s NH 

H: Could you repeat that?                                      (Chk) 3s - 

S: Go west. You will go between a house 
and traffic light. 

(mExp) 6s H 

H: Okay (conf) 3s - 

S: Go after that 2 blocks up. (lExp) 3s N 

H: The human is on the wrong track   - 

S: No, not south. You go north (mExp) 6s H 

H: Okay (conf) 3s - 

S: Go 2 blocks left (lExp) 3s N 

………    

S: Go south 4 blocks. (lExp) 3s H 

H: Okay, thanks a lot. (conf) 3s - 

4) Example Scenario 

 Figure 2 and Table III show an example dialogue of a 
scenario between the system (S) and a human (H). 

The human spent 42 seconds (t) and used 15 blocks (B) to 
finish the task. However, the number of blocks B that the 
player is supposed to end the task with is 12 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝐵). The 

system took 27 seconds for explanations (xL). At the end of 
the task, the score of the player is 75 (by using the function 
(1), where B=15 and tmax= 60), and the ExplainEfficiency 
(xE) is 43 (by using the function (2), where ∑ 𝑝𝐹 is three and 
𝑝𝐹𝑚𝑎𝑥  is seven (which means seven feedbacks are 
collected)).  

V. THE STOCHASTIC MULTI-PLAYER GAMES 

(SMG) MODEL 

We model the Stochastic Multi-player Games (SMG) 
model as two players, where the players try to collaboratively 
maximize accumulated reward(s): (1) Player SYS specifies 
the actions that are controlled by the system (i.e., it represents 
the Grid game). (2) Player HUMAN specifies the actions 
belonging to the human (i.e., it represents the game player). 
The models represent the behavior of a set of agents (or 
“players”) that take turns making moves, where the choice of 
move is specified probabilistically or non-deterministically. A 
game solver for such a system (such as PRISM-games [19]) 
determines an optimal strategy for the players by resolving the 
non-deterministic transitions in such a way that the expected 
reward for each player is maximized (assuming rational play 
by each). Figure 3 shows the strategy we use to model the 
SMG. The proper amount of explanation is determined based 
on the three personality levels of the human (i.e., Low, 
Average, or High personality levels (represented in light 
blue)). The two explanation amounts (less or more) are 
determined by using Function 3 (describes in the previous 
section). Human feedback is collected that is of the form 
Helpful, Neutral, or Not Helpful (represented in yellow). The 
human confirms information that means he moved 
successfully to the next point (conf), or checks/requests the 
system to clarify information that they not entirely sure about 
(Chk). 

The Stochastic Multi-player Games (SMG) model consists 
of the following four parts: 

 

Fig. 3 The strategy we use to model the SMG: the proper amount of explanation 
is determined based on the three personality levels of the human (represented in light 
blue). The two explanation amounts (less or more) are determined by using function 
3. Human feedback is collected that will can be helpful, neutral, or not helpful 
(represented in yellow). The human confirms information that means he moved 
successfully to the next point (conf), or checks/requests the system to clarify 
information that they not entirely sure about (chk). 



A. Player Definition 

Player definition includes the declaration of the two 
players in the SMG and different modules that each player has 
control of. The two players in our game are shown in Listing 
1. Player SYS (lines 1-2) specifies the actions that are 
controlled by the system (i.e., it represents the Grid game).  
Player HUMAN (lines 3-4) specifies the actions belonging to 
the human (i.e., it represents the game player). Our Grid game 
is played in turns by the two players SYS and HUMAN. Turn 
(line 5) is a global variable used as a controller to take turns 
between different players, ensuring that only one player can 
take an action at each state of the model execution. Tactics are 
executed sequentially in our model. 

B. Game Model 

Player SYS has control of the Game model, illustrated in 
Listing 2. Opportunity elements are used as execution 
conditions of different tactics such as: the human is at the 
correct location ((x= 1)&(y=1)) and is not involved in a crash, 
and the time has not expired (t<60). The Game module is 
parameterized by the variables (lines 1-2), which indicate the 
state of tactic execution, where false means this tactic is not 
in use (i.e., lExp_state, and mExp_state). 

During the system’s turn, the system executes these 
tactics sequentially: lExp (lines 5-13), and mExp (lines 15-
23). For the sake of clarity, we will describe only the 
lExpLow tactic to illustrate how tactic execution is modeled. 
The other explainability tactics follow the same structure. The 
system instructs the human with low personality traits 
through executing the command labeled as lExpLow (line 5). 
This tactic executes only if:  

• It is the turn of the SYS. 

• The human traits are low (<0.50). 

• The player position is on a certain block (x1,y1). 

• The end time of the task has not been reached yet 
(t<60). 

If the guard is satisfied, the system will explain more by 
flagging mExp_state tactic true with probability 
human_traits (line 6). Otherwise, the system will explain less 
by flagging lExp_state tactic true with probability 1-
human_traits (line 7) and the system will: 

• Commands the player to move to the position (x2,y2). 

• Increases the time 3 seconds (xL'=xL+3)&(t'=t+3). 

• Flags the lExp tactic as true (lExp_state'= true). 

• Updates the value of the variable turn, changing 
control to the human player (turn’=HUMAN).  

Similarly, the system instructs the human with average 
personality traits through executing the command labeled as 
lExpAvg (line 8-10),  or the system instructs the human with 
high personality traits through executing the command labeled 
as lExpHigh (line 11-13). 

The human wins by executing the command labeled as win 
(line 25). That means the human (turn=SYS) has arrived at the 
bottom left corner ((x1= 1)&(y1=1)) within the time limit 
(t<60). However, the human loses the game by executing the 
command labeled as lose (line 26) when the end time of the 
task has been reached (t=60). 

C. Play Model 

Player HUMAN has control of the Play model, illustrated 
in Listing 3. The encodings of the HUMAN module are similar 
to those of the SYS module. The Play module is 
parameterized by variables (lines 1-2), which indicate the state 
of tactic execution, where false means this tactic is not in use 
(e.g., Chk_state, and conf_state). Personality Traits are 
initialized with values that represent the human’s personality 
(lines 3-5). 

During the human’s turn, the human can execute one of 
these tactics: conf (line 8), and Chk (line 10). We explain only 
the conf tactic to illustrate how tactic execution is modeled. 

1. global lExp_state: bool init false;  
2. global mExp_state: bool init false;  
3. … 
4. module Game    
5. [lExpLow] (turn=SYS)&(human_traits<.5)&(x1= 5)

 &(y1=5)&(t<60)   
6.  ->human_traits:(mExp_state'= true) 
7.  + 1-human_traits:(x2'=5) & (y2'=3)&(xL'=xL+3)

 & (t'=t+3)&( lExp_state'= true)&(turn'=HUMAN); 
8. [lExpAvg] (turn=SYS)&(x1= 5)&(y1=5)&(t<60) 
9.  ->0.5:(x2'=5)&(y2'=3)&(xL'=xL+3)&(t'=t+3)

 &(lExp_state'= true)&(turn'=HUMAN) 
10.  +0.5:(mExp_state'= true);  
11. [lExpHigh] (turn=SYS)&(human_traits>.8) 

 &(x1= 5)&(y1=5)&(t<60)   
12.  ->human_traits:(mExp_state'= true) 
13.  + 1-human_traits:(x2'=5) & (y2'=3)&(xL'=xL+3)

 & (t'=t+3)&( lExp_state'= true)&(turn'=HUMAN); 
14. … 
15. [mExpHigh] (turn=SYS)&(human_traits>.8)&

 (conf_state= false)&(Chk_state= true)&(t<60)  
16.  ->human_traits:(mExp_state'=true)&(xL'=xL+6)

 &(t'=t+6)&(Chk_state'= false)&(turn'=HUMAN) 
17.  + 1-human_traits: (lExp_state'= true); 
18. [mExpAvg] (turn=SYS)&(conf_state= false)

 &(Chk_state= true)&(t<60) 
19.  ->0.5:(mExp_state'= true)&(xL'=xL+6)&(t'=t+6)

 &(Chk_state'= false)&(turn'=HUMAN) 
20.  +0.5:( lExp_state'= true); 
21. [mExpLow] (turn=SYS)&(human_traits<.5)

 &(conf_state= false)&(Chk_state= true)&(t<60) 
22.  ->human_traits:( lExp_state'= true) 
23.  + 1-human_traits:(mExp_state'=true)&(xL'=xL+6)

 &(t'=t+6)&(Chk_state'= false)&(turn'=HUMAN);  
24. … 
25. [win] (turn=SYS)&(x1= 1)&(y1=1)&(t<60) 

 -> (win'=true)&(turn'=0); 
26. [lose] ((turn=SYS)|(turn=HUMAN))&(t=60) 

 -> (win'=false)&(loser'= true)&(turn'=0);   
27. endmodule   
28. … 

 
Listing. 2 Game Model 

1. player SYS      
 Game, [lExpLow],[ lExpAvg],[ lExpHigh],
 [mExpLow],[mExpAvg],[mExpHigh]    

2. endplayer   

3. player HUMAN    

 Play, [conf], [Chk]   

4. endplayer   

5. global turn:[SYS..HUMAN] init SYS;   

6. const SYS=1; const HUMAN=2;   

Listing. 1 Player definition includes the declaration of the two players in 
the SMG and different modules that each player has control of 



The human confirms (conf) and follows the system 
instructions (i.e., the human moves successfully from the 1st 
point to the second) by executing the command labeled as 
conf. This tactic executes only if: 

• It is the turn of the HUMAN. 

• The system instructs the player to move to the position 
(x2,y2). 

• The end time of the task has not been reached yet 
(t<60). 

If the guard is satisfied, the player: 

• Moves to the position (x1,y1). 

• Increases the time three seconds (t'=t+3). 

• Increases the number of Blocks by two (B'=B+2). 

• Gets the player feedback (pF= 1 means the explanation 
was helpful). 

• Increases the player feedback counter pfMAX by 1. 

• Flagging the conf tactic true (conf_state'= true). 

Moreover, the tactic wrong (line 11) will be executed 
when the human moves in the wrong direction, and  the tactic 
crash (line 12) will be executed when the human moves to 
one of the obstacle squares (the house, a traffic light, a 
mountain, or a tree in Figure 2).  

D. Utility Profile and Reward Structure 

Utility functions are described in Section IV.D and 
illustrated in Listing 4. Formulas and reward structures are 
used to encode the utility functions that allow us to quantify 
the utilities of different task states.  

The Scores function, ∪𝑠, as in lines (1-2), represents the 

encoded Function (1) as described in Section IV.D. 

ExplainEfficiency function ∪𝑥𝐸, as in lines (3-4) , represents 

the encoded Function (2) described in Section IV.D. Line 5 
shows the encoded combined traits function (3). 

VI. RESULTS AND ANALYSIS 

In this section, we illustrate how our modeling framework 
can produce optimal decisions with respect to how adaptive 
systems should explain to the human based on their 
personality traits. Specifically, we use SMG models of 
explainability to determine the expected outcome utilities of 
using different explainability tactics (i.e., explanation 
amounts) based on the personality traits of the human. Our 
modeling is done as a simulation (or set of “experiments” in 
PRISM terms). We use rPATL to ask PRISM a variety of 
questions such as “what is the maximum/minimum 
probability a human with high/low personality traits can 
guarantee to win with high/low utilities?” [22].  

Table IV and Figure 4 show the analysis results of 44 
rounds run on PRISM. All possible combinations of 
personality traits are taken into consideration, where high 

traits are (>80) (represented by orange color), average traits 

are (≥50 and ≤80) (represented by blue-gray color), and low 

traits are (<50) (represented by gray color). Plot (a) shows the 
44 simulations of different personality traits and the given 
amounts of explanations (LengthOfExplanations (xL)) to 
complete the task. The average of different personality traits 
and the amounts of explanations (xL) is shown in Plot (b). 
39% of the iterations (17 rounds) of humans with high 
personality traits (>80) needed more explanations to finish the 
task with an average of 21 seconds. 32% of the iterations (14 
rounds) of humans with low personality traits (<50) needed 
less amount of explanations with an average of 20 seconds. 
The remaining 30% of the iterations (13 rounds) belongs to a 

human with average personality traits (≥50 and ≤80), where 

they use average amounts of explanation with an average of 
19 seconds to complete the task. Table  5 shows the  average 
of different utilities based on the three personality trait levels. 

We can conclude from the results that a human with high 
personality traits needs more detailed information (i.e., 
explanations), while a human with low personality traits needs 
less detailed explanation. These conclusions are all consistent 
with psychology studies (discussed in Section III. A) that 
human  with higher personality trait levels typically prefer 
more explanations, while those with low levels of personality 
trait want to quickly understand the big picture and avoid 
engaging through more explanations [9][11].

1. global Chk_state: bool init false;  
2. global conf_state: bool init false; 

3. const int INIT_OPN; const int INIT_NFC; 
4. global human_Open: [1..100] init INIT_OPN; 
5. global human_NFC:[1..100] init INIT_NFC; 
6. … 
7. module Play        
8. [conf] (turn=HUMAN)&(x2= 5)&(y2=3)&(t<60)        

 ->(x1'=5) & (y1'=3)& (t'=t+3)&(B'=B+2)
 &(pF'=pF+1)&(pfMAX'=pfMAX+1)&(conf_state'= true)   
 &(lExp_state'= false)&(turn'=SYS); 

9. … 
10. [Chk] (turn=HUMAN)&(conf_state= false)&(x1= 5)     

 & (y1=3)&(t<60)           
 ->(Chk_state'= true)&(t'=t+3)&(pF'=pF1)
 &(pfMAX'=pfMAX+1)&(turn'=SYS);  

11. [wrong] (turn=HUMAN)&(x2= 3)&(y2=5)&(loser=false)
 &(t<60)-> (x1'=3) & (y1'=1) &(t'=t+3) 
 & (B'=B+2)&(pF'=pF-1)&(pfMAX'=pfMAX+1)
 &(conf_state'= false) &(turn'=SYS); 

12. [crash] (turn=HUMAN)& ((x1=obj1x & y1=obj1y) 
 | (x1=obj2x & y1=obj2y)| (x1=obj3x & y1=obj3y)
 | (x1=obj4x & y1=obj4y))->(turn'=SYS);    

13. endmodule   
14. … 

Listing. 3 Play Model 

1. rewards "Scores"      

 [win] true:(1-(B/tMax))*100;    

 [lose] true:0;     

 [crash] true: -5;           

2. endrewards   

3. rewards "ExplainEfficiency"     

 [win] true:(pF/pfMAX)*100;  

 [lose] true:(pF/pfMAX)*100;               

4. endrewards   

5. formula human_traits = 

 (human_Open+ human_NFC)/(Max_Open+Max_NFC); 

Listing 4. Utility profile and reward structure: formulas and reward 
structures are used to encode the utility functions that allow us to quantify the 

utilities of different task states. Formulas calculate system utility of the 
different states. 



TABLE IV: RESULTS OF 44 ROUNDS RUN ON PRISM 

# 

Human Traits 

Combined Traits 

Utilities 

Openness NFC 
LengthOfExplanations 

(xL) 

ExplainEfficiency 

(xE) 
Scores 

1 75 90 82.5 27 28.5 93.4 

2 100 100 100 21 50 96.7 

3 50 90 70 15 80 100 

4 95 30 62.5 21 50 96.7 

5 95 85 90 15 80 100 

6 45 88 66.5 15 80 100 

31 47 47 47 33 12.5 90 

32 83 83 83 21 50 96.7 

33 22 19 20.5 15 80 100 

34 96 77 86.5 15 80 100 

35 69 55 62 27 28.5 93.4 

36 39 11 25 21 50 96.7 

37 33 19 26 15 80 100 

38 17 15 16 27 28.5 93.4 

39 9 30 19.5 21 50 96.7 

40 49 29 39 15 80 100 

41 51 71 61 15 80 100 

42 93 100 96.5 21 50 96.7 

43 100 90 95 15 80 100 

44 81 80 80.5 15 80 100        
Minimum 9 11 16 15 -12.5 90 
Maximum 100 100 100 36 80 100 
Average 66.02 61.98 64 20.39 57.07 97.23 

 

TABLE V: AVERAGE UTILITIES OF THE EXPERIMENTS BASED 

ON THE THREE PERSONALITY TRAITS LEVEL 

 

VII. DISCUSSION AND FUTURE WORK 

In this research we presented an approach based on 
probabilistic model checking of SMGs to determine how 
much explanation should be given to the human based on their 
personality traits. Providing the right amount of explanation 
to the right human is an important factor to maximize co-
adaptation between the  system and the human during their 
interaction.  

There is a number of limitations of this research that future 
research can address based on the foundations that we have 
described in this paper. These explanation decisions are ideal 
scenarios without having actual proof of that in reality. To 
address this, the most important next step is to conduct an 
empirical study to validate these models on actual real-world 
systems with humans in the loop. 

As we explained earlier, there are many reasons to use 
explainability and improving a system’s overall utility is one 
of the main reasons (see Section I). Explainability can help not 
only to improve the systems continuously through human 
involvement, but also to justify some information given to the 
human, particularly when decisions are made suddenly. 
Gaining more information improves the capability of the 
human to perform a task. Our results in this paper suggest one 
of the next steps of research is to go beyond the length of 

explanations, and examine in more detail questions such as 
how explanations should be presented: graphically, textually, 
verbally? A further extension of this research is to have more 
detailed models that allow the system to determine in a more 
nuanced way the ideal contents of the explanations that should 
be considered. 

Personality Traits 
Level 

Average Utilities 

xL xE Scores 

High Traits 21.18 53.50 91.388 

Average Traits 19.15 62.27 97.708 

Low Traits 20.57 56.57 96.921 

 

 

 

 

 

 

Fig. 4 Results of 44 rounds run on PRISM show that human with 
higher personality trait levels typically prefer more explanations, while 
those with low levels of personality trait prefer less explanations 

Plot (b): The average of different personality traits and the 
amounts of explanations (xL) 

Plot (a): The 44 simulations of different personality traits and 
the given amounts of explanations (LengthOfExplanations (xL)) 
to complete the task. 



VIII. CONCLUSION 

In this research we presented a formal framework that 
incorporates human personality traits as one of the important 
elements in guiding automated decision-making about the 
proper amount of explanation that should be given to the 
human to improve overall system utility. To accomplish our 
goal of this paper, we use probabilistic model analysis to 
determine how to utilize explanations in an effective way 
based on the difference of human’s personality traits. Grid – a 
virtual human and system interaction game – was developed 
to illustrate our approach, to represent scenarios for human-
system co-adaptation, and to demonstrate through simulation 
how a human’s personality traits can be used as a factor to 
consider for systems in providing appropriate explanations. 
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