CEUR-WS.org/Vol-2978/msrdsa—-paperl.pdf

Design Choices in Building an MSR Tool: The Case of
Kaiaulu

Carlos Paradis!, Rick Kazman®

!University of Hawaii, Honolulu, HI 86822, United States

Abstract

Background: Since Alitheia Core was proposed and subsequently retired, tools that support empirical studies of software
continue to be proposed, such as Codeface, Codeface4Smells, GrimoireLab and SmartSHARK, but they all make different
design choices with overlapping functionality. Aims: We seek to understand the design decisions adopted on these tools-
good and bad-and their consequences to understand why their authors reinvented functionality already present in other
tools, and to help inform the design of future tools. Method: We used action research to evaluate the tools, and determine
principles and anti-patterns to motivate a new tool design. Results: We identified 7 major design choices among the tools:
1) Abstraction Debt, 2) the use of Project Configuration Files, 3) the choice of Batch or Interactive Mode, 4) Minimal Paths
to Data, 5) Familiar Software Abstractions, 6) Licensing and 7) the Perils of Code Reuse. Building on the observed good
and bad design decisions, we created our own architecture and implemented it as an R package. Conclusions: Tools should
not require onerous setup for users to obtain data. Authors should consider the conventions and abstractions used by their
chosen language and build upon these instead of redefining them. Tools should encourage best practices in experiment
reproducibility by leveraging self-contained and readable schemas that are used for tool automation, and reuse must be done

with care to avoid depending on dead code.

Keywords

mining software repositories, design choices, action research

1. Introduction

Research into software architecture and quality requires
the analysis of large quantities of data. For researchers
this often means mining data from multiple open source
software projects. Pre-processing data, calculating met-
rics and flaws, and synthesizing composite results from
a large corpus of project artefacts is a tedious and error
prone task lacking immediate scientific value [1]—it is
seen merely as a means to an end. This was the motiva-
tion for the Alitheia Core [1], which was made available
in 2009 for the software engineering community. It pro-
vided features for data collection, integration and anal-
ysis services and emphasized an easy to use extension
mechanism. Yet, as of today, Alitheia Core is a dormant
(read-only) project in GitHub' and several other tools
replicate at least some of its functionality.

What went wrong? Why have many tools re-
implemented the same “tedious and error prone” tasks?
And do the current tools live up to the promise of Alitheia
Core? In this work, we revisit lessons learned by the
Alitheia Core authors and the design choices made by

MSR4SA Workshop at ECSA 2021

Q) cvas@hawaii.edu (C. Paradis); kazman@hawaii.edu

(R. Kazman)

& https://carlosparadis.github.io (C. Paradis);
https://shidler.hawaii.edu/itm/directory/rick-kazman (R. Kazman)
@ 0000-0002-3062-7547 (C. Paradis); 0000-0003-0392-2783

(R. Kazman)

Commons Lcase Auibution 10 termtonst CCBYA0)

C =] CEUR Workshop Proceedings (CEUR-WS.org)
!https://github.com/istlab/Alitheia-Core

the other more recent tools using an action research [2]
approach.

Our contributions in this paper are twofold: first, we
present a set of key design decisions derived from the
aforementioned tools which either facilitated or hindered
reusability, reproducibility, interoperability and exten-
sion of functionality. Second, we present our tool, Ka-
iaulu’., which builds upon the design decisions made
from these tools, and which we believe fills a gap in the
existing mining software repositories ecosystem.

2. Studied Tools and Lessons
Learned

The tools that we studied are Codeface [3], Code-
face4Smells [4], GrimoireLab [5, 6] SmartSHARK, [7, 8]
and PyDiriller [9]. We now present our observations re-
garding the strengths and weaknesses of these tools in
terms of their design choices and note, throughout the
work, lessons learned by the authors of Alitheia Core [1]
presented in [10]. Many of these lessons are applicable
and worthy of consideration in new tools with similar
intents. We employed an action research methodology
in studying these tools, but do not describe the details of
that research here, due to space limitations.

*The documentation for the R package can be found at https:
//github.com/sailuh/kaiaulu

mailto:cvas@hawaii.edu
mailto:kazman@hawaii.edu
https://carlosparadis.github.io
https://shidler.hawaii.edu/itm/directory/rick-kazman
https://orcid.org/0000-0002-3062-7547
https://orcid.org/0000-0003-0392-2783
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/istlab/Alitheia-Core
https://github.com/sailuh/kaiaulu
https://github.com/sailuh/kaiaulu

2.1. Abstraction Debt

We have observed different levels of abstraction em-
ployed in the surveyed tools, ranging from applications
that are built as monoliths to those built from smaller
components. This is consistent with what has been noted
in machine learning systems as abstraction debt [11], i.e.
a lack of key abstractions to support the functions and
growth of MSR tools.

Codeface was created as a monolithic application, in
which an entire project’s Git log or mailing list is ana-
lyzed. It abstracts a complete end-to-end pipeline, imple-
mented by a command line interface (CLI), and outputs
a database dump of a project. It is therefore difficult for
other applications to build on some of its unique fea-
tures, for example, using its Git log parser that parses at
function (rather than file) granularity.

Both GrimoireLab and SmartSHARK define several
components, each with its own CLI, but the component
abstractions they employ are not the same. To provide a
point of comparison, Grimoire’s Lab Perceval provides a
CLI to obtain data from many data sources (e.g. GitHub,
Git, Bugzilla, Jira, mailing lists, etc), serving as a single
interface for data collection. In contrast, SmartSHARK
defines its abstraction per data source type and, in the
case of data acquisition, at a more fine-grained level than
Perceval. For example, consider issueShark and vesShark,
two components of SmartShark. IssueShark defines ab-
stractions for different types of issues tracker sources,
and vcsShark for different types of version control sys-
tems. SmartSHARK’s abstractions facilitate defining ad-
ditional features specific to a data source type, such as
separating static vs. dynamic data in issue trackers (e.g.
creation time of the issue vs. comments), regardless of
its underlying implementation (e.g. Jira or Bugzilla)®.

Pydriller is a single component and is smaller in scope
as it only abstracts Git repositories. However it is dif-
ferent from the other tools in that it provides an API
instead of a CLI Its motivation is also different: it wraps
around PythonGit, which in itself provides a Pythonic
API to nearly all features of Git, to provide an API catered
towards mining software repositories only. In providing
just a subset of Git functionality, it exposes functionality
catering specifically to the needs of mining repositories.

The decision between choosing a CLI or API has trade-
offs. An issue with command line only interfaces occurs
when an end-user may be interested in a different ab-
straction of the data not preconceived by the authors.
However an API requires the user to be familiar with
the programming language the tool was built on top of,
whereas a CLI does not.

From the above we derive the following lessons learned:
End-to-end pipelines such as Codeface’s limit the ability of
other researchers to build on top of them. Defining more

Shttps://github.com/smartshark/issueSHARK#introduction

specific abstractions per data type, whether via CLI or API
as issueShark and PyDriller do, facilitates building addi-
tional functionality specific to a particular data type, or
audience. Moreover, CLIs can be built on top of a well-
defined API, providing the benefit of both interfaces, as we
do in Kaiaulu.

2.2. Tool Configuration Files vs Project
Configuration Files

In 8], the authors of SmartSHARK noted that one of their
goals was to support replication through the storage of
data in a single harmonized schema. Replication, it is
argued, is supported by a common dataset. However, we
have observed that replication is also being done within
configuration files in Codeface.

Codeface uses a concept we named project configu-
ration files. These files provide a single compact source
where parameters associated with the acquisition and
manipulation of a dataset can be stored. Project configu-
ration file parameters are required for tool execution, and
they are a pragmatic, lightweight and human-readable
way to specify reproducible results. Project configuration
files also save time when a project is re-analyzed in other
studies, as some project-specific information may not be
obvious from the dataset alone.

Of all the tools we have reviewed, only Codeface pro-
vides users with a means to specify project configuration
files. This led to a large collection of project configura-
tions that have been versioned in Codeface over time
*. This information, which supports repeatability, may
otherwise not have been possible (or at least easy) to
reconstruct if all that was shared was the data.

We note that externalizing parameter choices in data
acquisition and manipulation tasks has been more promi-
nent in machine learning frameworks, for example to
define experiments in configuration files, > which include
machine learning model selection and choice of model
hyper-parameters [12].

From the above, we derive the following lessons: inte-
grating configuration files that are human-readable and
leveraged by the tool can enable reproducibility, without
the hurdles of sharing large quantities of primary data.

2.3. Batch Mode, Interactive Mode, and
Literate Programming

As we noted before, with the exception of PyDriller, every
tool defines a CLI, but not an APIL This means the only

“See https://github.com/siemens/codeface/tree/master/conf
and https://github.com/maelstromdat/codeface4smells_TR/tree/
master/Configurations for Codeface and Codeface4Smells respec-
tively

*https://xnmt.readthedocs.io/en/latest/experiment_config_
files.html

https://github.com/smartshark/issueSHARK#introduction
https://github.com/siemens/codeface/tree/master/conf
https://github.com/maelstromdat/codeface4smells_TR/tree/master/Configurations
https://github.com/maelstromdat/codeface4smells_TR/tree/master/Configurations
https://xnmt.readthedocs.io/en/latest/experiment_config_files.html
https://xnmt.readthedocs.io/en/latest/experiment_config_files.html

way to interact with these tools is batch mode. Mean-
while, PyDriller does not offer a CLI, only an API, which
confers its users the ability to leverage Python’s inter-
active mode to explore the data. However, it does not
include a CLI for batch mode processing, for out-of-the-
box data acquisition, processing or data analysis. What
we observe then is that existing tools decide on either
CLI or API, but not both. We believe, however, that the
mining of software repositories requires a tool capable of
both, supporting an iterative process of data exploration,
and when concluded, a way to enact batch processing to
scale up.

To illustrate our claim—as no existing tool provides
both capabilities—we provide a few examples: in a recent
socio-technical study, we needed to do identity matching,
applying heuristics that have been published by other au-
thors (e.g. [13, 14]) to assign identities to developers who
use different names and e-mails in version control sys-
tems and mailing lists. Consider the case where we chose
the simplest method, where developers whose name or
e-mail match are assigned the same id. At first glance,
this seems like a reasonable assumption. However, it
was due to experimenting interactively with the identity
matching API that we discovered that all core develop-
ers, due to the use of an issue tracking system, ended up
sharing the same e-mail address. We noted this case as
a unit test until a better heuristic could be found, and
then examined the data for other cases until we were
satisfied with the results. We then saved the observed
parameters in a project configuration file, and used it to
deploy a batch process to collect various computationally
intensive architectural metrics.

We have had similar experience in determining and
testing heuristics to filter files in a repository, or deter-
mining the method that developers adopt to annotate
issue numbers in commit messages. Because each project
may apply its own conventions, tools that offer an experi-
mentation capability, and then defer mass data processing
to batch more efficiently support the full workflow of a
researcher in mining software repositories.

The described interactive data explorations could cer-
tainly have been done in a Python or R session, but it
is better to leverage literate programming using, for ex-
ample, Python or R Notebooks, so that the rationale of
the design experiment is not lost. However, care must be
taken to not extensively rely on notebooks without fur-
ther refactoring functionality into the code base, leading
to dead experimental code paths [11].

Our learned lessons here were: existing tools choose ei-
ther APIs or CLIs (supporting batch or interactive modes).
However, making both interfaces available will better sup-
port users in their various research efforts in mining soft-
ware repositories. The use of Notebooks to illustrate and ex-
plain the API complements the APL provided functionality
is not entirely written in Notebooks. In Kaiaulu, we lever-

age both APIs and Notebooks, which is a common practice
in R packages, therefore avoiding abstraction debt.

2.4. Minimal Paths to Data

According to [10, p.233], the effort required to learn how
infrastructure code works has to be proportional to the
gains and account for deprecation. We agree with this
observation. Let us look at how existing tools manage
this concern.

When using GrimoireLab components (in particular
Perceval) the minimal path to data is surprisingly short.
Provided with a Git repository URL, or a local copy, it
will output a JSON file to stdout. Likewise, provided with
a URL to a website mbox or local file, it will also provide
a JSON file to stdout. A developer can easily integrate
wrappers to its CLIL, and users can easily obtain data for
a project of interest. In this ecosystem, a database is
available, but it is optional: users need not to concern
themselves with learning GrimoireLab’s Elastic Search
database to obtain data.

This is in contrast to Codeface and SmartSHARK, both
of which require user familiarity with MySQL and Mon-
goDB respectively, along with their data model schemas
to obtain the equivalent version control system and mail-
ing list data. The minimal path to data in these cases is
much longer, including the setup overhead and integra-
tion with other tools.

When data integration is sought in the database,
GrimoireLab retains its approach of keeping the data
closest to source, and not harmonizing it in a schema
that facilitates integration [8]. Codeface’s MySQL and
SmartSHARK’s MongoDB provide a harmonized schema,
which makes it easier for users to store the various types
of data.

In the case of PyDriller, which provides an API, the
minimal path to data requires familiarity with the Python
programming language. This offers the convenience of
reshaping the data to the user’s final need, but adds an
overhead to the user for familiarization with the API,
instead of just the raw data schema from the source of
interest (which the user is likely already familiar with
for their research purposes). One researcher [15, p.39]
who extended Codeface4Smells identified a problem of
Pipeline Jungles [11], due to heavy reliance on a folder
hierarchy and file name conventions.

Our lessons learned here were: databases need not be
a requirement to provide users with various data sources.
This also simplifies component reuse by other tools and de-
creases the likelihood of reinventing the wheel. Providing
a minimal path does not exclude providing a database for
researchers, as Perceval shows. However providing a har-
monized schema can save researchers from having to re-
implement code to integrate the same kinds of infrastruc-
ture over and over. Lastly, providing an API gives some

flexibility to users to reshape the data with the tool. But
user familiarity with the programming language and API
is a kind of overhead and this does not seem ideal, as the
data could be provided directly via a CLI leaving a task for
the researcher to adapt it in their own programming lan-
guage. As such, we believe having available a CLI that out-
puts the data as Perceval does, and a harmonized schema
as in Codeface and SmartSHARK, provides the best combi-
nation.

2.5. Other Design Decisions

We briefly mention here other (more minor) design deci-
sions that we believe may cause difficulties in adoption.

Familiar Software Abstractions. Both Perceval and
PyDriller leverage a common interface for end-users.
They are both Python libraries, and provide the expected
interactions for CLI and API respectively. In Perceval’s
CLL, provided with a list of parameters and flags, data is
output to stdout. PyDriller exposes an API, an extension
to a programmer’s familiar programming paradigm. This
is in contrast to ecosystems that define a different abstrac-
tion, such as SmartSHARK, where detailed instructions
must be followed to extend its functionality °. Exten-
sion instructions are also not available for Perceval or
Codeface.

Licensing. Another important consideration in
reusing a code component is how permissive its license is.
For example, stringr, an R package to manipulate strings
used by XGBoost, a popular machine learning algorithm,
was replaced by stringi, another R package to manipu-
late strings, solely based on the difference in licenses.”
Similar reasoning also led an R package that represents
data tables efficiently to adopt a different license because
the existing license “could be interpreted as preventing
closed-source products from using data.table™. Lack of
clarity on interactions of open source licenses has been
reported by [16]. Among the tools we studied, we have
observed the following licenses: Codeface adopts GPL
2.0, PyDriller Apache 2.0, SmartSHARK Apache 2.0, and
Grimoire’s Lab GPL 3.0 and LGPL 3.0.

Perils of Code Reuse. With the availability of pack-
age managers such as CRAN and PyPi which greatly facil-
itate code reuse, you can declare dependencies on others’
code instead of copying it into your own project, taking
advantage of their functionality without assuming the
burden of maintenance. However code interdependence
also poses risks [17], such as dependencies going extinct
[18]. Hence, care has to be taken to avoid dependencies
to non-maintained third-party code.

An interesting example occurs in mecoSHARK’

®https://smartshark.github.io/plugin/tutorial/python
"https://github.com/dmlc/xgboost/issues/1338
8https://github.com/Rdatatable/data.table/pull/2456
*https://github.com/smartshark/mecoSHARK

through a chain of dependencies which exemplifies the
concern posed here. mecoSHARK is a component that
serves as a wrapper for OpenStaticAnalyzer'’, with a
last commit date of July 13, 2018. In turn, OpenStat-
icAnalyzer also wraps several other dependencies, in-
cluding FindBugs 1 Jast released in March 15, 2015.
In its bug tracker'?, FindBugs requests for bugs to no
longer be reported, noting that SpotBugs'®, FindBugs’
successor, should be used instead. This confirms that
the mecoSHARK wrapper, which provides OpenStatic-
Analyzer functionality to SmartSHARK,is now depen-
dent on dead code, further increasing the burden of
the SmartSHARK ecosystem maintainers. Nonetheless,
SmartSHARK’s approach to wrap black-box packages
into common APIs is considered good practice [11].

As a means to mitigate this risk, relying on and con-
tributing work to open source communities that more
carefully assess the health of projects and try to maintain
them, such as the Apache Software Foundation, ROpen-
Sci'’, and CHAOSS'® may be an important consideration.
For example, ROpenSci accepts R packages via a stream-
lined peer review process and, for accepted packages,
provides community support, package promotion, and

fast-track publication to journals'®.

3. The Kaiaulu R Package

Based on the above observations and lessons learned, we
now describe the design decisions behind the Kaiaulu
R package that we created. We created this in R, as we
believe the R ecosystem provides a reasonable approach
to implementing the lessons learned from existing tools
a single architecture.

Batch Mode, Interactive Mode, and Literate Pro-
gramming in Kaiaulu. We chose to use the R lan-
guage'’, in contrast to existing packages that use Python
(with the exception of Codeface, which includes both
Python and R, but not as a package) due to the familiarity
of the authors with the language and a preference for its
package architecture.

Minimally, the structure of an R package consists of the
package metadata and its API In addition, the R ecosys-
tem promotes best practices to include vignettes, which
leads R users to expect an API and R Notebooks when
installing packages from CRAN (The Comprehensive R

1Ohttps://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

http://findbugs.sourceforge.net/

2https://sourceforge.net/p/findbugs/bugs/1487/

Bhttps://github.com/spotbugs/spotbugs

Yhttps://ropensci.org/about/

Bhttps://chaoss.community/

16https://devguide.ropensci.org/softwarereviewintro.html#
whysubmit

https://www.r-project.org/

https://smartshark.github.io/plugin/tutorial/python
https://github.com/dmlc/xgboost/issues/1338
https://github.com/Rdatatable/data.table/pull/2456
https://github.com/smartshark/mecoSHARK
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
http://findbugs.sourceforge.net/
https://sourceforge.net/p/findbugs/bugs/1487/
https://github.com/spotbugs/spotbugs
https://ropensci.org/about/
https://chaoss.community/
https://devguide.ropensci.org/softwarereviewintro.html#whysubmit
https://devguide.ropensci.org/softwarereviewintro.html#whysubmit
https://www.r-project.org/

Archive Network).” CRAN also treats R Notebooks as
first class citizens in an R package'’ showing on each
package’s website any R Notebooks available. Because of
R package structure, complying with familiar software
abstractions (see Section 2.5) automatically brings the
benefits of literate programming (see Section 2.3).

Abstraction Debt in Kaiaulu. R natively supports
tables and vectors as data types, which is a familiar ab-
straction for data analysts. To capitalize on this, Ka-
iaulu’s parse_ functions map most data sources (Git logs,
mailing lists, file dependencies, software vulnerability
feeds, metrics, etc.) as tables with standardized col-
umn naming, which allows for quick identification of
what data can be combined. Kaiaulu also offers various
transform_to_network_ functions to represent and inter-
actively visualize these networks® which in turn enable
more complex socio-technical analyses at different gran-
ularities: functions, files, classes, etc.

Tool Configuration Files vs Project Configura-
tion Files in Kaiaulu. Following the design choice of
Codeface (see Section 2.2), and building on best prac-
tices for machine learning configuration files [11] we
implemented project configuration files using YAML. Be-
cause we externalize all parameters in project configu-
ration files, an important concern is that the file does
not grow overly complex, requiring documentation of its
own. That is, we do not wish the minimal path to data to
increase as new features are added, as we discuss next.

Minimal Path to Data in Kaiaulu. As discussed in
Section 2.4, it is important that the path to data remains
as small and easy as possible. How should users be in-
troduced to project configuration files? Should a manual
page be dedicated to explain its various parameters? We
again build upon familiar concepts, specifically with the
intent of applying the rule of least surprise [19, Ch.11]*'
ie. ‘do the least surprising thing’. In an R package, it
is expected that R Notebooks provide examples of how
to leverage the API to accomplish a task by combining
multiple functions, while individual functions provide
self-contained examples, which can be obtained in the R
environment at any time by preceding a function name
with a question mark, e.g. ‘?parse_gitlog’.

To build upon this we: 1) Do not create any dependency
between configuration files and the API functions take as
input parameters which are familiar to any programmer,
not a filepath to the project configuration file; 2) Use of
project configuration files only in the first code block
in R Notebooks to load the variables required to use the
functions of the AP, similar to how best practices in static

Bhttps://cran.r-project.org/web/packages/

YSee for example under Vignettes: https://cran.r-project.org/
web/packages/ggplot2/index.html

Dhttps://github.com/sailuh/kaiaulu/blob/master/R/network R

Also publicly available at: http://www.catb.org/~esr/writings/
taoup/html/ch11s01.html

programming languages encourage variable definitions
at the beginning of a program ; 3) Do create a dependency
between the CLI and the project configuration files, to
facilitate batch processing and reproducibility.

Our intent is that users will first observe the R Note-
books to get a better understanding of the API for a
particular task of interest, and in doing so will familiar-
ize themselves with both the relevant portion of the API
and the project configuration file. If the interest is only,
for example, to understand how to parse Git logs, using
for example the Git log R notebook, then users should
not be concerned with specifying the mailing list. When
comfortable, users can then use their newfound under-
standing to scale the analysis to the entire project using
the configuration file for the CLI, build their own analy-
ses as vignettes, or define new CLI interfaces. This design
is consistent with a mining software repositories work-
flow, in which a researcher should first explore the data
qualitatively to assess threats to validity, before scaling
up data processing in batch mode without clarity of what
assumptions the tool is making using default parameters
or arbitrary thresholds.

Kaiaulu also further decreases the minimal path to
data in terms of how it handles third party dependencies.
Users need only concern themselves with installing de-
pendencies for their task of interest. For example, if the
interest is only to parse Git logs, they need only set up
Perceval, and provide its binary path as a parameter to
Kaiaulu’s parse_gitlog to obtain the parsed data. More
generally, the parse_ API minimizes effort to researchers
by transforming various tool-specific data formats, if the
researcher so desires, into tables, and performing mini-
mal processing on potentially inconsistent fields, such as
file paths, to make them internally consistent.

3.1. Kaiaulu’s Features

In [10], Gousios notes a lesson he learned in the transi-
tion from Alitheia Core to GHTorrent: ‘Open now trumps
open when it is done’. Kaiaulu is a new tool, but it al-
ready includes substantial usable functionality: parsers
for Git, mailing list mbox archives (leveraging Perce-
val), and identity matching which enables socio-technical
studies. And it is easy to add new capabilities, building
upon the infrastructure we have created. Of note, unique
to Kaiaulu is an interface to visualize networks interac-
tivelyzz. Kaiaulu has, as a core abstraction, a network
model. We use this to, for example, relate and analyze au-
thors, committers, commits, files, CVEs and CWEs rather
than merely reporting project-level metrics.

%For examples, see the various R Notebooks available in Ka-
iaulu documentation.

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://github.com/sailuh/kaiaulu/blob/master/R/network.R
http://www.catb.org/~esr/writings/taoup/html/ch11s01.html
http://www.catb.org/~esr/writings/taoup/html/ch11s01.html

4. Conclusions and Future Work

In this paper, through an action research approach, we
have determined a set of key design decisions observed
in existing tools, and iteratively developed Kaiaulu, an
R package for mining software repositories building on
our observations and lessons learned.

In Kaiaulu we have implemented, and are currently in
the process of openly releasing, a comprehensive set of ca-
pabilities to mine, analyze, and visualize software reposi-
tories, including social smells [4], architecture smells and
metrics [20], and bug timelines based on prior work by
other authors. Kaiaulu is licensed under MPL 2.0.

Acknowledgments

The authors wish to thank Damian Tamburri, Corne
Broere, and Massimo Manca for identifying bugs, provid-
ing use cases and suggesting features for Kaiaulu. This
work was supported in part by the US National Science
Foundation under grant CCF-1817267.

References

[1] G. Gousios, D. Spinellis, Alitheia core: An extensi-
ble software quality monitoring platform, in: 2009
IEEE 31st International Conference on Software
Engineering, 2009, pp. 579-582.

S. Easterbrook, J. Singer, M.-A. Storey, D. Damian,
Selecting Empirical Methods for Software Engineer-
ing Research, Springer, 2008.

M. Joblin, S. Apel, C. Hunsen, W. Mauerer, Clas-
sifying developers into core and peripheral: An
empirical study on count and network metrics, in:
IEEE/ACM 39th International Conference on Soft-
ware Engineering, 2017, pp. 164-174.

D. Tamburri, F. Palomba, R. Kazman, Exploring
community smells in open-source: An automated
approach, IEEE Transactions on Software Engineer-
ing (2019) 1-1.

D. Moreno, S. Duerias, V. Cosentino, M. A. Fer-
nandez, A. Zerouali, G. Robles,]J. M. Gonzalez-
Barahona, Sortinghat: Wizardry on software
project members, in: IEEE/ACM 41st International
Conference on Software Engineering: Companion
Proceedings, 2019, pp. 51-54.

S. Duenas, V. Cosentino, G. Robles, J. M. Gonzalez-
Barahona, Perceval: software project data at your
will, in: Proc. 40th International Conference on
Software Engineering: Companion Proceeedings,
ACM, 2018, pp. 1-4.

F. Trautsch, S. Herbold, P. Makedonski,
J. Grabowski, Addressing problems with
replicability and validity of repository mining

(2]

(3]

(5]

(6]

(7]

(14]

studies through a smart data platform, Empirical
Software Engineering 23 (2018).

A. Trautsch, F. Trautsch, S. Herbold, B. Ledel,
J. Grabowski, The smartshark ecosystem for
software repository mining, arXiv preprint
arXiv:2001.01606 (2020).

D. Spadini, M. Aniche, A. Bacchelli, PyDriller:
Python framework for mining software reposito-
ries, in: Proc. 26th ACM Joint Proceedings of
ESEC/FSE, ACM Press, 2018, pp. 908-911.

T. Menzies, L. Williams, T. Zimmermann, Perspec-
tives on Data Science for Software Engineering, 1st
ed., Morgan Kaufmann Publishers Inc., 2016.

D. Sculley, et al., Hidden technical debt in machine
learning systems, in: Proc. 28th International Con-
ference on Neural Information Processing Systems
- Volume 2, NIPS’15, MIT Press, Cambridge, MA,
USA, 2015, p. 2503-2511.

G. Neubig, et al., XNMT: The extensible neural
machine translation toolkit, in: Conference of the
Association for Machine Translation in the Ameri-
cas Open Source Software Showcase, 2018.

C.Bird, A. Gourley, P. Devanbu, M. Gertz, A. Swami-
nathan, Mining email social networks, in: Proc.
International Workshop on Mining Software Repos-
itories, ACM, 2006, p. 137-143.

J. Zhu,]. Wei, An empirical study of multiple names
and email addresses in oss version control reposito-
ries, in: IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR), 2019, pp.
409-420.

F. Giarola, Detecting code and community smells
in open-source: an automated approach, Master’s
thesis, Politecnico di Milano, 2016.

D. A. Almeida, G. C. Murphy, G. Wilson, M. Hoye,
Do software developers understand open source
licenses?, in: IEEE/ACM 25th International Confer-
ence on Program Comprehension, 2017, pp. 1-11.
M. Valiev, B. Vasilescu, J. Herbsleb, Ecosystem-level
determinants of sustained activity in open-source
projects: A case study of the pypi ecosystem, in:
Proc. 26th ACM Joint Proceedings of ESEC/FSE,
ACM, 2018, p. 644-655.

J. Coelho, M. Valente, Why modern open source
projects fail, in: Proc. 11th Joint Meeting on Foun-
dations of Software Engineering, ACM, 2017, p.
186-196.

E. S. Raymond, The Art of UNIX Programming,
Pearson Education, 2003.

R. Mo, Y. Cai, R. Kazman, L. Xiao, Q. Feng, Ar-
chitecture anti-patterns: Automatically detectable
violations of design principles, IEEE Transactions
on Software Engineering (2019).

	1 Introduction
	2 Studied Tools and Lessons Learned
	2.1 Abstraction Debt
	2.2 Tool Configuration Files vs Project Configuration Files
	2.3 Batch Mode, Interactive Mode, and Literate Programming
	2.4 Minimal Paths to Data
	2.5 Other Design Decisions

	3 The Kaiaulu R Package
	3.1 Kaiaulu's Features

	4 Conclusions and Future Work

