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Abstract  
Automating the mapping of a system’s code to its architecture helps improve the adoption of 
successful Software Architecture Consistency Checking (SACC) methods like Reflexion 
Modelling. InMap is an interactive code-to-architecture mapping recommendation technique 
that has been shown to do this task with good recall and precision using natural language 
software architecture descriptions of the architectural modules. However, InMap like most 
other automated recommendations techniques maps low level source code units like source 
code files or classes to architectural modules. For large complex systems this can still be a 
barrier to adoption due to the effort required by a software architect when accepting or rejecting 
the recommendations. In this study we propose an extension to InMap that provides 
recommendations for higher-level source code units, that is, packages. It utilizes InMap’s 
information retrieval capabilities, using minimal architecture documentation, applied to a 
software’s   codebase, to recommend mappings between the software’s high-level source code 
entities and its architectural modules. We show that using our proposed hierarchical mapping 
technique we are able to reduce the effort required by the architect, as high as 6-fold in some 
cases, and still achieve good precision and fairly good recall. 
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1. Introduction 

Mapping code to architecture is a task that is 
common in Software Architecture Consistency 
Checking (SACC) [1, 11, 14, 16]. Popular SACC 
methods like Reflexion Modelling [9, 12] require 
a mapping step in order to be able to identify 
conformance or divergence of a system’s code to 
its intended software architectural modules [8, 9, 
12, 13]. The mapping step is a manual and labour-
intensive task for the most part that becomes a 
barrier to industry adoption of effective SACC 
techniques like Reflexion Modelling especially 
for large complex software systems [1, 7]. 

There have been a number of techniques that 
have been created that attempt to decrease the 
burden of mapping on software architects by 
automating the mapping step [4–6, 11, 15, 16]. 
Most of these however, are class- or file-based 
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[11, 15, 16]. This implies, in the case of systems 
developed using an object oriented programming 
language, where classes are considered as the 
underlying unit of source code, they automate 
mapping at a class level – attempting to predict 
which architectural module, a class (or class-file) 
maps to. This has been done quite well with 
techniques like InMap [15, 16] and NBC [11]. In 
our paper “InMap: Automated Interactive Code-
to-Architecture Mapping Recommendations” we 
show that InMap achieved a recall of 0.87-1.00 
and precision of 0.70-0.96 for the systems tested. 

However, in a large system of say a 1000+ 
classes, in spite of achieving recall and precision 
of 1, it is still burdensome for an architect to 
inspect over a thousand recommendations before 
accepting them as correct. In an attempt to reduce 
the effort needed, we investigate making mapping 
recommendations for higher-level source code 
units – that is, we make mapping recommend-



dations for larger units of code at a time (packages 
rather than classes) thereby reducing the amount 
of work required by an architect.  In this paper, we 
present an automated hierarchical package 
mapping technique. It garners from the successful 
information retrieval-based InMap approach [15, 
16] that computes similarity of an unmapped class 
to an architectural module. We exploit class-to-
module similarity scores produced by InMap to 
generate package-to-module similarity scores. 
These are filtered using a defined set of hueristics 
from which recommendations, that are detemined 
by a system’s package hierachy, are made. We 
show that using our proposed hierarchical 
mapping technique we are able to reduce the effort 
required by the architect, as high as 6-fold in some 
cases, and still achieve good precision. 

Section 2 briefly discusses automated mapping 
techniques along with their hierarchical mapping 
capabilities. In Section 3, we detail the approach, 
describing how package scores are computed and 
how package-to-module mapping recommend-
dations are constructed. Section 4 describes the 
experiment setup to evaluate the technique and 
presents the results obtained. In Section 5, we 
interpret and discuss the results and in Section 6 
we draw our conclusions on our findings and 
present opportunities for further research. 

2. Related Work 

Christl et al. conceived, HuGME, a 
dependency analysis (DA) based automated 
mapping recommendation technique. It clusters a 
software system’s source code using an 
architect’s knowledge about its intended 
architecture [4, 5]. HuGME applies an attraction 
function, which minimizes coupling and 
maximizes cohesion, to produce a matrix of 
attraction scores for unmapped entities to modules 
[17]. The calculation of the score uses the 
dependency values between unmapped entities 
and mapped entities. The higher the score, the 
higher the likelihood that an unmapped entity 
belongs to a given module. All unmapped entities 
that result in only one candidate having a 
similarity score higher than the arithmetic mean 
of all scores produce a single recommendation. 
All unmapped entities for which two or more 
candidates exist are presented to the user in ranked 
order, from highest to lowest, as recommend-
dations. HuGME presents recommendations to 
the user to allow cluster decisions to be made 
exclusively by the architect. This process is 

incremental, in that HuGME does not attempt to 
map all source code entities in one complete step; 
rather it maps a subset at a time until no more 
mapping is possible. The approach is non-
hierarchical as it views the mapping task from a 
clustering perspective in which source code 
entities that are mapped to the same hypothesized 
entity form a cluster [4]. 

In their study, the results for HuGME had on 
average about 90% recall and 80-90% accuracy 
[5]. To get these results the technique needed 
about 20% of the system’s source entities to be 
pre-mapped before running the algorithm. Of 
interest is that because this mapping technique is 
dependency-based, for it to give meaningful 
results, the 20% pre-mapped source entities need 
to be spread across various modules. In addition, 
they must have dependencies to unmapped 
entities. This presents a problem in that in order to 
benefit from this technique one needs to not only 
dedicate some time for pre-mapping but must also 
ensure that the mapping is evenly spread across 
the modules. Additionally, one must also ensure 
that the selected pre-mapped source code entities 
have dependencies to the unmapped entities 
otherwise entity relationship discovery is poor. 
This all becomes a highly labour-intensive 
exercise. Furthermore, because it uses clustering 
algorithms based on high cohesion and low 
coupling, if developers do not follow this 
principle in the software’s implementation then 
the mapping of the algorithm will be affected [2].  

Bittencourt et al. propose an information 
retrieval (IR) based technique that uses the same 
automated mapping recommendations approach 
as HuGME except it replaces dependency-based 
attraction functions with IR based similarity 
functions [3]. It calculates the similarity of an 
unmapped source entity to a module by searching 
for specific terms (a module’s name and mapped 
classes, methods and fields) within the source 
code of the unmapped class. Similar to HuGME, 
Bittencourt et al.’s technique needs some manual 
pre-mapping before it can automate mapping. 

Olsson et al. combine IR & DA methods in 
their automated mapping technique called Naive 
Bayes Classification (NBC) [11]. NBC uses 
Bayes’ theorem to build a probabilistic model of 
classifications using words taken from the source 
code entities. The model gives the probability of 
words belonging to a source file entity. This is 
augmented with syntactical information of the 
dependencies, a method called Concrete 
Dependency Abstraction [11]. Just like HuGME, 
Olsson et al.’s proposed technique requires a pre-



mapped set in order to perform well. Both 
Bittencourt et al.’s and Olsson et al.’s results 
showed that when there was a smaller pre-mapped 
set there was a decreasing trend in the f1-score of 
their techniques [3, 11]. Additionally, they both 
do not address package-level based mapping. 

Naim et al. present a technique called 
Coordinated Clustering of Heterogeneous 
Datasets (CCHD), that combines both DA and IR 
methods to compute a similarity score for source 
code files [10]. CCHD uses an architect’s 
feedback on the recovered architecture to 
iteratively adjust the results until there are no 
suggestions for change. These adjusted results 
train a classifier that automatically places new 
code added to a codebase in the “right” 
architectural module. However, the technique is 
not necessarily meant for automated mapping in 
SACC but rather for software architecture 
recovery tasks. Moreover, it too does not directly 
address package-level based mapping. 

Common among industry tools is the use of 
naming patterns (or regular expressions). For 
example, the expressions **/gui/** or *.gui.* or 
net.java.gui.* can be used to map source code 
units (whether classes or packages) to an 
architecture module named GUI. This is the 
technique used by both Sonargraph Architect 
and Structure101 Studio in addition to their drag 
& drop capabilities. However, the drawback of 
using naming patterns and/or drag & drop 
functionality is that they are both manual tasks 
which makes mapping a tedious exercise – 
especially for large software systems that have 
complex mapping configurations. 

In summary, despite advances made, available 
techniques that are designed to automate mapping 
have short comings. Some require an initial set of 
the source code to be pre-mapped manually [3–5, 
11], while the industry tools that do not require 
pre-mapping offer manual methods. Additionally, 
the automated mapping techniques that require 
pre-mapping in order to “jump-start” mapping, as 
it were, require about 15-20% of the source code 
to be pre-mapped in order to give worthwhile 
results [4, 5, 6, 15].  

InMap [15, 16] addresses the limitations of 
these techniques in that it is able to automate 
mapping without requiring pre-mapping. Using 
simple and concise natural language descriptions 
of the architecture modules it is able to automate 
mapping of a completely unmapped system with 
rather good results. Its limitation though is that the 
mapping recommendations provided are for low-
level source code units, namely, classes. This 

results in considerable work for an architect in the 
case of large software systems. We therefore 
explore the following research question:  

 
How can we exploit InMap’s good class-
to-module mappings to produce package-
to-module mappings, thereby reducing the 
effort needed by an architect in accepting 
and/or rejecting mapping recommend-
dations produced by InMap? 

 
In the following section, we describe our 

approach to answering this question. 

3. Approach 

We begin by describing the InMap technique 
briefly. We then describe a technique for 
hierarchical package-to-module mapping that 
builds on top of InMap. 

3.1. InMap 

InMap is an interactive code-to-architecture 
automated mapping technique for SACC methods 
that uses information retrieval concepts to 
produce class-to-module mapping recommend-
dations. It does not require manual pre-mapping 
in order to produce recommendations, rather it 
uses natural language architectural descriptions of 
the architectural modules as input to predict 
mappings. It presents its best mapping 
recommendations a page/set at a time (the most 
optimal being 30 per page) from which the 
architect can accept and reject. As 
recommendations from each page/set are accepted 
or rejected, InMap learns from this and adapts its 
next page/set of recommendations from the 
obtained knowledge. This method works quite 
well giving an average recall of 97% and a 
precision of 82% for the systems evaluated [16]. 

3.1.1. Class-to-Module Similarity 

InMap’s algorithm is made up of seven steps 
[16]. However, for our hierarchical package-to-
module mapping technique the following steps in 
InMap are used to generate what are called class-
to-module mapping scores. 

Firstly, the source code files are filtered to 
exclude any external or third-party package 
libraries or classes of system that the architect 
does not want to include in the mapping exercise. 



Secondly, the filtered sourced files are stripped of 
any special characters and programming language 
keywords. Third, the pre-processed source code 
files are indexed as an inverted index. In the fourth 
and fifth steps, InMap formulates a query using 
four items namely, (1) the names of the modules 
and (2) the module’s architectural descriptions 
(stripped of any special characters and stop 
words) to search the indexed source code files for 
similarity to each module. In the first iteration, 
InMap uses this information only to build a query. 
However, once the first set of classes are mapped, 
InMap then adds to the query (3) the names of 
classes mapped to a module and (4) the names of 
methods contained within classes mapped to a 
module. This ‘enriches’ the query used to search 
for the similarity of an unmapped class to a 
module. Therefore, after each set of newly 
mapped classes the query for the next set of 
recommendations looks different. The search 
returns a set of scores for every class-module pair 
based on the similarity information retrieval 
function, tf-idf. The tf-idf scores are called class-
to-module similarity scores (𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐), where, c and 
m are a class-module pair in the system. Specifics 
of how tf-idf is calculated can be found in [16]. 

3.1.2. Class-to-Module Mapping 
Recommendations 

In the sixth and seventh steps, InMap gives as 
a class-to-module mapping recommendation the 
highest scoring class-to-module pair. The 
architect can either accept or reject it. However, 
InMap presents as recommendations either: only 
those above the arithmetic mean of all highest 
scoring class-module pairs; or the best 30 
recommendations (if those above the mean is 
greater than 30). After the architect gives 
feedback, it returns to step 4 and repeats steps 4 to 
7 until no more recommendations can be given. 

Our proposed hierarchical package mapping 
technique picks up right after the fifth step, that is, 
once InMap produces the matrix of class-to-
module similarity scores (𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐). 

3.2. Hierarchical Package Mapping 

In as much as InMap is able to achieve good 
results with the approach described in Section 3.1 
because it based on class module mappings, the 
effort required by architects could still be 
significant for large and complex systems. 

However, if we could map entire packages then 
we could reduce the effort needed. For example, a 
package that has 50 classes that all map to the 
same module could be (or should be) given as a 
single package-to-module mapping recommend-
dation. Additionally, because packages are 
hierarchal in nature, they present even more 
opportunity to reduce the number of “necessary” 
mapping recommendations to present to an 
architect. For example, say we have two packages 
A and B that are both sub-packages of C. If A and 
B have 50 classes each and say all the classes in A 
and B map to the same module. Then mapping C 
to the module would suffice and saves the 
architect from reviewing 99 other mapping 
recommendations. Figure 1 illustrates a package 
hierarchy, that our technique (and certainly 
others) can benefit from to reduce the number of 
recommendations needed.  

3.2.1. Package-to-Module Similarity 

Our package-to-module mapping technique picks 
up from step 5 of the InMap algorithm after it 
produces similarity scores for all class-to-module 
pairs. We group the class-to-module similarity 
scores 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐, according to the packages they 
belong to. This means for each package we have 
a set of classes with scores to each identified 
module. From this set of class-to-module 
similarity scores that have a given package as 
their parent we then calculate the interquartile 
mean (𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐), where, p and m are a package-
module pair in the system. That is, the range of 
values between the first quartile and third quartile 
(the interquartile range, IQR) are used to 
calculate the arithmetic mean. Module IQRs for a 
package taken from Jittac are demonstrated in 
Figure 2. The lowest 25% and the highest 25% of 
the scores are ignored. Important to note is that the 
IQR and hence the IQM of a non-terminal package 
is calculated from not only the classes that belong 
to the package but also the classes of its child 
packages. For example, se.kau.cs.jittac.eclipse.b-
uilders.jdt shown in the package tree in Figure 1 
has its IQR calculated using the 8 classes that 
belong to it but also the 3 classes in s-
e.kau.cs.jittac.eclipse.builders.jdt.commands and 
the single class in se.kau.cs.jittac.eclipse.buil-
ders.jdt.util. Formally, we define 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐 as, 



 

𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐  =  
2
𝑛𝑛

 � 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐𝑖𝑖

3
4 𝑛𝑛

𝑖𝑖 = 𝑛𝑛4 + 1

 (1) 

where, p and m are a package-module pair in the 
system, c has p as its parent package, n is the 

number of classes that make up the package p and 
i is the position of 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 in the ordered set of class-
to-module similarity scores for the package p. 

Using the scores within the IQR as opposed to 
the full set of scores makes a package-to-module 
similarity, more resilient to the presence of outlier 
classes in the class-to-module similarity scores 
that it is derived from. Figure 2 shows outlier  

Figure 1: Box plots for a package taken from Jittac showing the IQRs for Jittac’s modules as well as 
the class distribution inside and outside the IQRs. The x-axis shows the class 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 scores and the y-
axis shows the architectural modules of the system. The number in brackets beside a module indicates 
the total number of classes for the given package that have an 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 score to the module. 
 

Figure 2: Package hierarchy for Jittac - one of the systems we evaluate our technique on. 
 



Table 1 

Extract of 𝑺𝑺𝑺𝑺𝒑𝒑𝒑𝒑 scores taken from Jittac.  A value 
>= 0.6 (highlighted blue) implies it is a good 
package-to-module similarity score; a score >= 
1.5 (highlighted red) implies it is an outstanding 
package-to-module similarity score. 

Packages 

Modules 

architecture-
model 

eclipse-
ui 

impl-
model 

se.kau.cs.jittac.model 2.3 -0.6 1.0 

se.kau.cs.jittac.model.am 2.6 -0.4 0.4 

se.kau.cs.jittac.model.am.events 2.4 -0.4 0.3 

se.kau.cs.jittac.model.am.io 2.3 -0.5 0.6 

se.kau.cs.jittac.model.im 1.0 -0.5 2.3 

se.kau.cs.jittac.model.im.events 0.9 -0.6 1.6 

se.kau.cs.jittac.model.im.io 0.5 - 1.6 

 
classes which we define as classes with 
𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 scores that are higher than the box plot max, 
classes with 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 scores that are lower than the 
box plot min but also classes with 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 scores that 
are within the box plot min-max but outside the 
IQR. The result of this step is a matrix of IQMs for 
each package-module combination. 

We then apply feature scaling to normalize the 
IQM module scores for each package. We use 
standardization (also known as z-score 
normalization) which makes the scores for each 
package-module pair have a zero-mean. In our 
hierarchical package mapping technique we call 
the resulting z-scores of the standardization 
normalization package-to-module similarity 
scores (𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐). Formally we define 𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐 as 
follows, 

 

𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐  =  
𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐  −  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐�

𝜎𝜎
 (2) 

 
where, p and m are a package-module pair in the 
system, 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐 is the original package-to-module 
similarity score, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐� is the mean 
of the 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐 scores for a specific package to the 
range of given modules, and 𝜎𝜎 is the standard 
deviation of 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑐𝑐. Using this method on all 
package module pairs we obtain a matrix of 
package-to-module similarity scores for the entire 
system. Table 1 shows an extract of these scores. 

3.2.2. Package Mapping Filtering 

Using the matrix of package-to-module 
similarity scores we then traverse the package-

tree bottom-up starting with the terminal packages 
and working our way up to the root package. At 
each tree-depth level we retain the package-to-
module similarity scores into two sets for each 
package, namely a set of outstanding package-to-
module similarity scores and a set of good 
package-to-module similarity scores. Outstanding 
mappings are those in which a package has a score 
above the outstanding threshold and its child 
packages have a score above the good threshold. 
Good mappings are those in which a package and 
its children have a score above the good threshold.  
We formally define this notion with the following 
two rules, 
 

Given: 
Package p 
Module m 
Package-to-module score 𝐒𝐒𝐒𝐒𝐩𝐩𝐩𝐩 
Good score threshold GSt 
Outstanding score threshold OSt 

 
Rule 1: A mapping (pim) is called good iff 

 
 𝐒𝐒𝐒𝐒𝐩𝐩𝐩𝐩 >= GSt 

 
and for all sub-packages pi of p, pim is a good 
mapping. 

 
Rule 2: A mapping (pim) is called outstanding iff 

 
 𝐒𝐒𝐒𝐒𝐩𝐩𝐩𝐩 >= OSt 
 

and for all sub-packages pi of p, pim is a good 
mapping. 

 
Figure 3 illustrates the rules with an example 

using 𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐 scores shown in Table 1. You will 
notice that despite the package 
se.kau.cs.jittac.model having good and 
outstanding scores for the modules impl-model  
and architecture-model  respectively in Table 1, 
Figure 3  indicates that the package has no good 
or outstanding mappings. This is because it fails 
to satisfy the second part of Rule 2, that is, that all 
its sub-packages must have good mappings to the 
same module. However, one of se.kau.cs.jittac. 
model’s sub-packages has a good mapping to the 
same module but the other does not hence no good 
or outstanding mappings for the se.kau.cs.jittac. 
model package. 

These rules are applied from the bottom of the 
package tree starting with the deepest terminal 
packages then their parent packages, then their 
grandparent packages and so on and so forth until 
we reach the root package at the top of the tree. 



This is necessary as packages higher up in the 
package tree depend on the results of packages 
lower in the package tree. 

3.2.3. Package-to-Module Mapping 
Recommendation Selection 

Once both sets of good and outstanding 
mappings for each package are obtained, we then 
traverse the package tree top-down. At each tree-
level we check if a package has outstanding 
mappings and pick the highest that fulfils the 
above defined criteria for outstanding and 
recommend it as the most likely mapping. If a 
package is recommended then we terminate 
following that tree path downwards and do not 
recommend any of its sub-packages, we instead 
proceed to check its siblings. If a package returns 
an empty set, then we go one-step lower in the 
package tree. Figure 3 illustrates this; it shows 
two package-to-module mapping recommend-
dations (in bold). Observe that architecture-
model is recommended as the module to which 
se.kau.cs.jittac.model.am should map to and impl-
model as the module to which se.kau.cs.jittac. 
model.im should map to. Their sub-packages are 
skipped since they are already considered as a 
result of Rule 2 and se.kau.cs.jittac.model has no 
mapping recommendation since it retained no 
mappings after the package mapping score 
filtering step. 

4. Evaluation 

Test Cases: We evaluated our hierarchical 
package mapping approach on six Java-based 

systems that were used in the evaluation of 
InMap’s class-to-module mapping technique. 
These are Ant, a command line and API-based 
tool for process automation; ArgoUML, a 
desktop-based application for UML modelling; 
JabRef a desktop-based bibliographic reference  
manager; Jittac an eclipse plugin for reflexion 
modelling tasks; ProM a desktop-based processes 
mining tool; and TeamMates a web-based 
application for handling peer reviews and 
feedback. Table 2 shows the attributes of these 
systems. The natural language architectural 
module descriptions used as input to InMap to 
generate class-module similarity scores were 
obtained from the previous study of InMap. The 
prior study of InMap obtained the oracle 
mappings, that is the correct list of code-to-
module mappings, from experts involved in 
developing each respective open-source project. 
The oracle package-to-module mappings used in 
this study were extracted from these. We retained 
in the oracle only packages that had direct 1-1 
mappings with a module, and excluded packages 
that had child entities that map to more than one 
module. 

From the oracle mappings we only extracted 
package-to-module mappings, leaving out the 
class-to-module mappings to allow us to evaluate 
the performance of proposed technique strictly at 
a package-level. Table 2 also shows the number 
of packages in the oracle mapping of a system. 
This is the number of actual packages our 
proposed technique should predict mappings for, 
in other words, the packages that are of concern. 
For example, if se.kau.cs.jittac.eclipse is part of 
the oracle mapping and our technique puts up 
se.kau.cs.jittac.eclipse.builders as a possible map- 

Figure 3: Package tree traversal in order to produce package-to-module mappings recommendations. 
 



Table 2 

System Case Studies 

System 
Attributes Ant Argo 

UML JabRef Jittac ProM Team 
Mates 

Version # r584500 r13713 3.7 0.1 (…) 6.9 5.11 

# of source files 778 1,429 843 124 700 467 

# of source files after 
filtering (# of classes) 724 763 840 110 699 293 

# of packages 64 60 118 27 162 18 

# of packages in 
oracle mapping 14 21 11 9 30 11 

# of source files in 
oracle package 

mapping 
558 692 812 98 675 293 

# of modules 15 17 6 9 11 11 

 
Table 3 

Results showing the optimal thresholds for each 
system tested. 

Test 
System 

Good 
Thresh. 

Oustand. 
Thresh. 

# of 
Recomm. 

Package 
Recall 

Package 
Precision 

Class 
Coverage 

Ant 1.9 2.4 9 0.64 1.00 276/558 (50%) 

ArgoU 0.1-1.6 3.2-3.3 13 0.43 0.69 93/692 (13%) 

JabRef 1.2-1.4 1.6-2.0 6 0.55 1.00 794/812 (98%) 

Jittac 1.0-1.4 1.7 7 0.67 0.86 88/98 (90%) 

ProM 0.4-0.6 1.6 37 0.40 0.32 58/675 (9%) 

TeamM 1.3-1.4 0.1-1.2 10 1.00 1.00 293/293 (100%) 

 
Table 4 

Effort comparison of class vs package mappings 
for systems with class coverage >= 50%. 

Test 
System 

Class Mapping Package Mapping 
Effort saved  

( Effort 
reduced ) 

Class 
Coverage after 

… 

# of 
Recomm. 

Class 
Coverage 

after 1 pass 

# of 
Recomm. 

Ant 13 passes, 50% 390 50% 9 381 ( –97.7% ) 

JabRef 32 passes, 98% 853 98% 6 847 ( –99.3% ) 

Jittac 7 passes, 90% 123 90% 7 116 ( –94.3% ) 

TeamM 14 passes, 97% 275 100% 10 265 ( –96.4% ) 

 
ping we count this as a false positive even though 
the latter is a child package of the former. The 
reason is the technique must reduce the effort 
needed by an architect and therefore must be 
penalized for recommending child packages of a 
package that is already mapped (or should be). 

Experimentation & Data Collection: To 
experiment on the test cases with various good 
and outstanding threshold combinations we 
extended the evaluator tool we developed in our 
previous studies of InMap to accommodate the 
evaluation of package-based mappings. Using the 
oracle architecture package-to-module mappings 
of each system the tool automatically simulates a 

“human architect” accepting and rejecting the 
recommendations produced.  

For all possible single decimal combinations 
within the range -5.0 to 5.0 for the good and 
outstanding threshold we collected the recall of 
the package mappings as well the technique’s 
precision. The min-max of the test range was 
based on the highest and lowest 𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐 scores 
obtained by all 6 systems. We also collected the 
number of recommendations it took to achieve the 
given recall & precision. Finally, we also 
collected the class coverage (or code reach), that 
is, the number of classes that were mapped as a 
result of their parent packages being mapped by 
our hierarchical mapping technique.  

Results: Table 3 shows the results obtained for 
the optimal thresholds for each system, i.e. they 
gave the best results for the range of values tested. 
We got for three systems, Ant, JabRef and 
TeamMates, perfect precision with TeamMates 
getting the same for its recall and class coverage. 
We found 6 out of Jabref’s 11 package-to-module 
mappings (as package recall) and 9 of Ant’s 14, 
which resulted in class coverage of 98% and 50% 
respectively. For Jittac, 90% of its classes were 
mapped by finding 6 of it’s 9 package-to-module 
mappings with a precision of 0.86. ArgoUML had 
fairly good precision but low recall resulting in 
low class coverage as well. ProM appeared to be 
an outlier obtaining poor precision and the lowest 
recall from the six systems tested. All results 
presented are for a single iteration (or pass) of the 
technique. 

In Table 4 we compare the effort required by 
an architect of our hierarchical mapping technique 
vs InMap in its original form. We do this by 
looking at the class coverage of each technique 
and the number of recommendations an architect 
has to sift through to achieve the given class 
coverage. Table 4 shows this for the systems that 
achieved more than 50% class coverage after a 
single iteration. In simple terms we define the 
effort saved (𝐸𝐸𝑆𝑆) and the effort reduced (𝐸𝐸𝐸𝐸) as 
follows, 

𝐸𝐸𝑆𝑆 =  | 𝐸𝐸𝑝𝑝 − 𝐸𝐸𝑐𝑐  | 
 

(3) 
 

𝐸𝐸𝐸𝐸 =  −100 ×  
 𝐸𝐸𝑆𝑆 
 𝐸𝐸𝑐𝑐  

 (4) 

 
where 𝐸𝐸𝑐𝑐 is the number of class-to-module 
recommendations needed by the InMap class-
based technique and 𝐸𝐸𝑝𝑝 is the number of package-
to-module recommendations needed by our 
hierarchical package mapping technique. As an 
example, Table 4 shows that in the case of Ant it 



would take 390 recommendations to map 50% of 
Ant’s classes using the InMap class-to-module 
technique, whereas it would take 9 
recommendations to map 50% of Ant’s classes 
using our heirarchical package-to-module 
mapping technique. You will also notice the effort 
saved is more than 800 recommendations for 
JabRef and the effort reduced is more than 90% 
for all 4 systems. 

5. Discussion 

Table 3 shows that the technique has almost 
perfect precision, 0.91 excluding ProM. This is 
likely due to the fact that our hierarchal package 
mapping technique is an extension of InMap’s 
class-to-module similarity function. Using simple 
natural language descriptions of architecture 
modules the InMap algorithm, which has the 
class-to-module similarity score 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 function at 
its core, was shown to obtain rather good 
precision. Our hierarchical package mapping 
technique borrows from InMap’s success by using 
the information retrieval based 𝑆𝑆𝑆𝑆𝑐𝑐𝑐𝑐 to generate 
is own package-to-module similarity score 𝑆𝑆𝑆𝑆𝑝𝑝𝑐𝑐. 

The package recall of our technique is fairly 
good considering that these results are obtained 
only after 1 iteration (or pass). As outlined in 
Section 3.1, InMap is an interactive-iterative 
technique that presents a set of recommendations 
at a time and progresses by learning from the 
feedback of the architect to formulate the next set 
of recommendations. However, the number of 
iterations (or passes) is proportional to the size of 
the system under review. Compare Tables 2, 3 and 
4, observe that systems with a high number of 
source files require a high number of passes (or 
iterations) compared to the “smaller” systems. 
Table 3 shows that with our hierarchical mapping 
technique we are able to obtain a package recall 
of more than 50% in the first pass for 4 out of the 
6 systems. Of these 4, from the first iteration we 
get 50% class coverage for Ant with the other 3 
getting more than 90% class coverage. Despite 
this, two systems get low package recall and class 
coverage. We do not see this as a problem because 
it is resolved simply by having more package-
mapping recommendation iterations which would 
still be far less compared to class-based mapping 
recommendation algorithms. 

Table 3 shows the threshold values that give 
the optimal results for each system. However, we 
observed some similarities across the systems in 
our threshold values experiments. The optimal 

outstanding score threshold is very close to or the 
same as the arithmetic mean of the max package 
similarity scores for each module of the system. 
And the optimal good score threshold was usually 
0.5 less than the optimal outstanding score 
threshold.  This establishes a basis for developing 
an automated approach for deriving threshold 
values that will give good results across different 
systems. 

Threats to Validity: Since our package-based 
technique is derived from InMap the external 
validity of its results is affected by similar things, 
that is, factors such as number of modules and 
classes, code commenting style and quality, and 
architecture description quality. Therefore, more 
cases studies with varying attributes would add to 
the validity of the results. However, the results of 
the six test systems used with varying attributes 
shown in Table 2 provide a compelling case for an 
automated hierarchical package mapping 
technique. 

With regard to construct validity, the effort 
required by an architect using our technique needs 
to be evaluated against other package-based 
mapping methods provided by industry tools like 
drag & drop, naming patterns or regular 
expressions. For example, how does our 
hierarchical package-based technique compare 
with manually mapping packages? Evaluations 
such as these would require enhanced user studies 
with software architects in appropriately planned 
and controlled experiments. 

6. Conclusion & Future Work 

We have presented a proposed solution to 
hierarchical package-based mapping. It extends or 
builds on InMap, an information retrieval class-
based mapping technique that uses concise natural 
language architectural descriptions of modules. 
Our hierarchical package-based mapping 
technique provides almost perfect precision and 
fairly good recall and great code coverage. But 
most importantly our techniques helps reduce the 
effort or workload required by an architect in 
accepting and rejecting mapping 
recommendations in interactive techniques like 
InMap. The technique is an improvement over the 
manual package mapping methods used in today’s 
state-of-the-art reflexion modelling tools. 

Despite reducing effort required, the drawback 
of using a purely package-based approach is that 
due to their 1-1 package-to-module mapping style 
these methods do not work well for systems that 



have more complex mapping configurations. It is 
not always the case that packages, and their 
members directly map to modules in a 1-1 
manner. It is more likely the case that a software 
system’s code-to-architecture mapping has a 
combination of both package and class mappings. 
Cases where package members are spread across 
multiple modules requires a class-based 
technique. Therefore, we plan as future work to 
derive an approach to combine InMap’s good 
class-based approach with the good package 
hierarchy-based approach presented in this paper. 
The aim is to combine class and package mapping 
recommendations in a way that benefits from the 
advantages, and negates the disadvantages, of 
both mapping styles. Nevertheless, the 
hierarchical packaged/based mapping technique 
presented in this paper remains useful and is 
useful in cases where it is appropriate to map 
entire packages. 
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