
What is in a Name? An Analysis of Associations Among
Java Packaging and Artifact Names
Farshad Ghassemi Toosi, Anila Mjeda

Computer Science Department at Munster Technological University, Cork Campus
Computer Science Department at Munster Technological University, Cork Campus

Abstract
Modern Programming Languages (Object Oriented Languages), are equipped with sophisticated mechanisms to assist devel-
opers in organizing the source code. For instance, Java and Python use package names to resolve symbols. In Java, a package
is a namespace declared at the top of each class or interface.

There are several reasons for using packages in the source code: 1) Packages can prevent naming conflicts, (e.g., identical
class name in two packages is possible with no conflict). 2) Packages can categorize the relevant and/or similar classes or
interfaces in some conceptual and logical containers that assist developers in easier maintenance and a better understanding
of the design of the software’s architecture. 3) Structured packaging is one of the core components of a clean architecture
design. Developers may apply different strategies to structure the packages and these differences have repercussions in the
quality and maintainability of the software architecture.

In this work, we run a set of experiments on a number of open-source Java projects and analyse the packaging structures
from a source-code structural and artifact (class, method, variable) names perspective. These experiments aim to investigate
1) the existence of any associations between the packaging structure and textual factors (artefact names) of the classes inside
the package; and 2) what textual factors (artifact names) tend to be more associated with the package structure. The results of
this research indicate that, on average, class names and inheritance (supper class names) tend to be considered as a packaging
strategy. The focus on identifying ‘naturally’ occurring similarities in the packaging of software in the ‘wild’ is underpinned
by the long-term objective to build developer-friendly architecture conformance protocols which help prevent architectural
erosion.

1. Introduction
Object oriented programming is underpinned by the idea
of creating classes and using objects of those classes for
higher reusability and better maintenance. The object
oriented programming paradigm is based on bringing
related fields and functions/methods together for a par-
ticular concept that is called a class. Different objects
then can be instantiated from classes with different data
and implementation but they all share the same original
type, i.e., the class. For example, a class may represent
a car and its objects can be a hatchback or a sport utility
vehicle. In object oriented programming, methods and
fields within a given class are expected to be logically
grouped in one container called class.

Some of the modern object oriented languages, includ-
ing Java and Python, have another mechanism called
packaging that lets developers have a higher level of
grouping where related classes can be located in a high-

ECSA2021 Companion Volume
" farshad.toosi@mtu.ie (F. G. Toosi); anila.mjeda@mtu.ie
(A. Mjeda)
~

https://www.linkedin.com/in/farshad-ghassemi-toosi-428a5852/
(F. G. Toosi); https://www.linkedin.com/in/anila-mjeda-32a5064/
(A. Mjeda)
� 0000-0002-1105-4819 (F. G. Toosi); 0000-0003-1311-6320
(A. Mjeda)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

level container or module, called a package.
Usually, the visual representation of a software’s archi-

tecture is a graph-like design where the software compo-
nents are program packages that, in their turn, may con-
tain other packages (hierarchical packages) [1, 2]. In most
software architecture design practices, modules or com-
ponents are seen as a package or a set of packages [3, 4, 5].
Hence, the intuition is that package structure can have a
direct impact on the quality of the software architecture.
Indeed this intuition has attracted the interest of other
researchers of the field such as Ebad et al., [6].

One of the fundamental aspects of an architectural
design is to consider the functionalities and interactions
between components at different granularities [7] with
a view of facilitating work among the components in a
package.

Researchers [8, 9, 10, 7] show that a clean software
architecture has a direct relation to the structured pack-
aging; furthermore, they show how implicit packaging
can cause architectural mismatching. They use the term
unstructured packaging as a lack of packaging strategy.
For instance, all classes would be located in one package
or there are random packages, and classes are assigned
to them based on no particular strategy. As a result of
such packaging structure (or unstructured packaging),
there will be several of unrelated classes with no naming
and textual relevancies to each other in a package [8].
Naming relevancy, in particular, is important since arte-
facts (class, method, variable) are meant to be named by

mailto:farshad.toosi@mtu.ie
mailto:anila.mjeda@mtu.ie
https://www.linkedin.com/in/farshad-ghassemi-toosi-428a5852/
https://www.linkedin.com/in/anila-mjeda-32a5064/
https://orcid.org/0000-0002-1105-4819
https://orcid.org/0000-0003-1311-6320
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


developers according to their responsibilities and func-
tionalities.

Java is one of the object oriented languages that offers
the packaging mechanism. Every Java class is inside of a
package (unless there is no package declared, then the
class will be part of the default package). In this work,
we are using Java as the language of our case study to
answer the following research questions:

1. Are there any existing associations between the
package structure and textual factors within the
package?. The textual factors in question include
artefact names e.g., class, method and variable
names.

2. What type of names and at what granularity tend
to have more weight on influencing packaging
structure?

By answering the above two research questions, we
try to discover the level of textual cohesion among com-
ponents of each package to understand if there is any
textual packaging structure in the project or not, and if
so, what type of artefact name has a heavier role.

2. Background
In large programs, it is difficult to have an architecture for
a software system that conforms to the system’s packag-
ing structure. Object-oriented software, has an inherent
affinity for structure such as packages as one of its appeal-
ing promises. Albeit, that affinity does not necessarily
automatically translate to a structure that is relevant to
the architecture of the system. This issue has seeded
research into improving the packaging structure of the
software system. Shaw et al. [10] propose that the po-
tential existing problem with reusing components of a
software system is not necessarily due to the bad architec-
tural design but the packaging strategy as well. Shaw et
al., in a different work [7], emphasise the importance of
a packaging strategy to enforce compatible components
to be located in the same package.

The quality of the software architecture depends on
several factors; one of which is the applied packaging
strategy [8, 9, 10, 7]. The packaging strategy refers to the
criteria that is used to combine components in packages.

One of the first empirical studies to investigate the
structure of written code [11], relied on static and dy-
namic analysis (of FORTRAN code) and looked at it at
a statement level. Existing research tends to look at im-
proving existing package design, such as through pack-
age structure analysis [12], using package cohesion to
assess organization and reusability of code [13, 14], or
using artificial intelligence algorithms or multi-objective
approaches based on remodularization objectives [15].

Additionally, there is considerable research to auto-
matically optimise inter-package dependencies [16]. A
review of looking at object-oriented code issues in this
space as refactoring opportunities, can be found in [17].

Interestingly for our research, Baxter et al [18] investi-
gated some of the reasons behind the structures and struc-
tural relationships in Java code, while Abedeen et al. [16]
proposed a set of metrics to assess modularity principles
for packages in large legacy systems (namely informa-
tion hiding, changeability and reusability principles) [19].
Coming up to twenty years ago, Hautus [12] proposed
a tool to run a package structure analysis through Java
code and highlight potential weak areas to the human
with an aim to refactor the source code.

Yet, there is still no standard and unique definition
of relevant and/or similar classes and developers might
consider different criteria to insert two or more classes
into a package. The latter becomes problematically ev-
ident when analysing code in the wild. Furthermore,
packages typically appear in software architecture doc-
umentation as not-dividable components of package di-
agrams, drilling down within packages and investigate
their relevancy validity within, has an added value.

It is exactly this gap that is the focus of this research.
Indeed, the research reported in this paper represents the
initial steps into identifying relevancy (through similar-
ity) factors within packages (or architecture components)
with a long term view of building developer-friendly
architecture conformance protocols so as to prevent ar-
chitectural erosion.

3. Experiment Design
In this work, six open-source Java projects are under
study and their details are represented in Table 1.

The experiment tries to find whether there are factors
that can define the relation within the members of each
package or not. It is worth noting that the factors are
mostly textual factors (e.g., artefact names) and not the
functional factors (e.g., the functionality of the artifacts)
unless the functionality of the artifacts is reflected in
their names. The details of these factors are discussed in
Section 3.2.

The logic of the experiment is as follows:

1. All classes are put in a pool without considering
the package structure (the left bottom rectangle
in Figure 1).

2. Pairwise similarity between every pair of classes
is calculated based on some similarity factor (see
Section 3.2).

3. A clustering technique is applied on the members
of the class pool and 𝑃 clusters are generated (𝑃
is the number of packages in the project).



Table 1
Six Open-Source Java projects.

Name #classes #packages Details

JHotDraw 730 64 Visualization tool, MIT license.
Galaxy 39 17 Galaxy Artifacts is an opensource

and freeware 4x game, written in Java.
JavaFX 38 9 JavaFX is a cross platform GUI toolkit, MIT licence.
JavaParserCore 516 29 Java parser tool, LGPL license
JavaParserSymbol 167 21 Symbol solver tool, Apache License.
Jung 227 14 Visualization tool, open source, Jung licence.

Figure 1: The high-level picture of the proposed model for comparison.

4. The clustering result (the right bottom rectangle
in Figure 1) is compared to the package struc-
ture of the project (the top rectangle in Figure 1),
where each package can be seen as an existing
cluster.

Figure 1 shows the general flowchart of the experiment.
All the original packages in the system are also seen as
a cluster of classes and the objective is to compare the
existing packaging to the one arrived at by the proposed
clustering algorithm.

3.1. Comparison Analysis
All the experiments in this work are at source-code level
and focus on three different types of artefact names:
1) Class names, 2) Method names and 3) Variable/Field
names. The comparisons are based on textual/term com-
parison. Therefore, a simple pre-processing step is re-
quired prior to the actual comparison on each name

(i.e., Class name, Method name and Variable/Field name).
Each name will be converted to some simple-names af-
ter the pre-processing. The following list indicates the
required actions for pre-processing.

• Camel Case removal. E.g., StudentGrade → Stu-
dent Grade (StudentGrade as a name is converted
to two simple-names: Student and Grade)

• Snake Case removal. E.g., Employee_tax → Em-
ployee tax

• Digits removal. E.g., distance100km → distance
km, salary100k → salary (Note, words with one
character are ignored).

• All lower case. PensionCalculator → pension
calculator

3.2. Comparison Factors
As mentioned earlier, the pool of classes is grouped via a
clustering algorithm. Clustering algorithms work based



on a similarity or dissimilarity matrix where the similar-
ity/dissimilarity between every pair of entities (classes
in this case) is known. Therefore, a similarity needs to
be defined between every two classes. Each Java class
has several different features and characteristics such as
the class name, the method names within the class, field
names and many more. In this work, we make use of nine
different features of each class and use them as similarity
factors for the clustering algorithm. The nine different
factors that are examined are as follows:

• Class Names. Two classes are compared accord-
ing to their names, (CN).

• Outgoing Methods. Two classes are compared
according to their outgoing method names, (OM).

• Incoming Methods. Two classes are compared
according to their incoming method names, (IM).

• Field Declaration. Two classes are compared ac-
cording to their declared fields names, (FD).

• Variable Accessed. Two classes are compared ac-
cording to their accessed variables’ names, (AV).

• Outgoing Class. Two classes are compared ac-
cording to the class names where they were in-
stantiated, (OC).

• Incoming Class. Two classes are compared ac-
cording to their instantiated class names in them,
(IC).

• Class Methods Names. Two classes are compared
according to their method names, (CM).

• Supper Class Names. Two classes are compared
according to their supper class names, (SC).

Each Java program is analysed and nine different types
of information (mentioned earlier) are extracted. In or-
der to extract the details from the Java projects, a Java
parser is employed. Among different choices of parsers,
JavaParser [20] was selected due to its simplicity in im-
plementation and high reputation.

3.2.1. Class Names

Class Names (CN) is the first factor that is used for com-
parison. Two classes are said to be similar if their names
are similar or in other words, if they share some simple-
terms. Figure 2 has two packages and each package has
two classes. A set of simple-terms is generated for each
class in the project:

1. 𝐶𝑖𝑟𝑐𝑙𝑒_𝑎𝑟𝑒𝑎 class: {𝑐𝑖𝑟𝑐𝑙𝑒, 𝑎𝑟𝑒𝑎}.
2. 𝐷𝑟𝑎𝑤𝐶𝑖𝑟𝑐𝑙𝑒 class: {𝑑𝑟𝑎𝑤, 𝑐𝑖𝑟𝑐𝑙𝑒}.
3. 𝐶𝑜𝑙𝑜𝑟𝑠 class: {𝑐𝑜𝑙𝑜𝑟𝑠}.
4. 𝑆𝑢𝑟𝑓𝑎𝑐𝑒𝐶𝑖𝑟𝑐𝑙𝑒 class: {𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒}.

The first class has a degree of similarity with the sec-
ond class and the fourth class as they share 𝑐𝑖𝑟𝑐𝑙𝑒. Like-
wise, the second class and fourth class have a degree of
similarity while the third class is not similar to any class.

Figure 2: Two packages with their classes.

3.2.2. Outgoing Methods

Outgoing Methods (OM) is the second factor that is con-
sidered to measure the similarity between two classes.
For class A, all the methods that are called from class
A in the project are collected and their names are pre-
processed so a set of simple names is generated for class
A. A similar process is repeated for Class B.

Figure 3 shows two classes with their meth-
ods and the callee (outgoing) methods inside of
them. The set of simple names that can be ex-
tracted for Class A based on their callee methods is
{𝑔𝑟𝑒𝑒𝑛, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑎𝑟𝑒𝑎} and the set of simple names for
Class B is {𝑔𝑟𝑒𝑒𝑛, 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑏𝑙𝑎𝑐𝑘, 𝑤ℎ𝑖𝑡𝑒}. There is one
simple term common within these two sets, therefore, a
degree of similarity exists within Class A and Class B.

Figure 3: Two Classes with their callee methods.

3.2.3. Incoming Methods

Incoming Methods (IM) is the other selected factor to
measure the similarity between two classes. This factor,
similar to the last one, works based on the method calls.
Two classes are said to be similar if their contained meth-



ods are called by methods with similar name (common
simple terms).

3.2.4. Field Declarations

Field Declaration (FD) is another selected factor and it
measures the similarity between classes based on de-
clared fields within the class. Therefore, two classes with
similarly declared field names are considered similar. Fig-
ure 4 shows two classes with their declared fields. Class A
has the following set of simple-terms extracted from its
declared fields {𝑐𝑖𝑟𝑐𝑙𝑒, 𝑐𝑜𝑙𝑜𝑟, 𝑓𝑢𝑙𝑙, 𝑎𝑟𝑒𝑎} and Class B
has the following: {𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑠ℎ𝑎𝑝𝑒, 𝑐𝑜𝑙𝑜𝑟}. Therefore,
Class A and B are similar due to the existing of 𝑐𝑜𝑙𝑜𝑟 in
both sets of simple terms.

Figure 4: Two classes with their declared fields.

3.2.5. Accessed Variables

Variable Accessed (AV) is the other factor we use to mea-
sure the class similarities. Two classes are considered
similar if they are accessing variables/fields with similar
names.

3.2.6. Outgoing Classes

The next factor to measure the package similarity is Out-
going Class names (OC). The characterization of being
an Outgoing Class is a subjective role for a class. Having
two classes (Class A and Class B), Class B is said to be
an outgoing class for Class A, if Class B is instantiated
in Class A. Figure 5 shows two classes, each class has
two methods and each method instantiates another class.
The name of the instantiated classes for each class are
extracted, pre-processed and compared. Class A contains
the following set of simple terms extracted from instanti-
ated classes: {𝑙𝑎𝑟𝑔𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑜𝑣𝑎𝑙} and the set associated
with Class B is: {𝑙𝑎𝑟𝑔𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑜𝑣𝑎𝑙, 𝑔𝑟𝑒𝑒𝑛, 𝑐𝑜𝑙𝑜𝑟}. As
shown in Figure 5, three simple terms are common within
these two sets: {𝑙𝑎𝑟𝑔𝑒, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑜𝑣𝑎𝑙}. Therefore, Class
A and B are similar with some degree. More details of
how the degree of similarities is taken into account for
comparison, will be discussed in later sections.

Figure 5: Two classes with their details.

3.2.7. Incoming Classes

Incoming class (IC) is another notion we use in this ex-
periment as a similarity factor. Class A is considered as
an incoming class for Class B if Class B is instantiated
in Class A. In Figure 6 DrawCircle is the incoming class
for PaintSurface class. Two classes are said to be similar
if their classes are instantiated with the same class or
classes with similar names.

Figure 6: Two classes, one instantiates the other one.

3.2.8. Class Methods

The other employed factor in this work is method name
(CM). Two classes are considered similar if they have
methods with similar names. Figure 7 shows two classes
with their contained methods. Class A has the follow-
ing set of simple-names extracted from method names:
{𝑝𝑎𝑖𝑛𝑡, 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑔𝑒𝑡, 𝑐𝑜𝑙𝑜𝑟} and class B has the follow-
ing set: {𝑐𝑜𝑙𝑜𝑟, 𝑐𝑖𝑟𝑐𝑙𝑒, 𝑜𝑣𝑎𝑙, 𝑔𝑟𝑒𝑒𝑛, 𝑙𝑎𝑟𝑔𝑒}. Since there
is one term common in both sets, therefore, Class A and
B are similar with some degree.

3.2.9. Supper Classes

Classes are also compared by their supper classes. For
each class, all the super class names are collected, pre-
processed and a set of simple-terms is generated. Similar
to other similarity factors, the common simple-terms
for each pair of classes is an indication of the degree of
similarity. In Figure 8, there are two classes with some
super classes for each. The set of simple-terms for A is:
{𝑠ℎ𝑎𝑝𝑒, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦} and for B is: {𝑠𝑞𝑢𝑎𝑟𝑒}. Since there
is no common simple-term in these two sets, there is also



Figure 7: Two classes with their contained classes and meth-
ods.

no similarity between these two classes based on this
factor.

Figure 8: Two classes with their supper classes.

4. Clustering
Clustering is a task of splitting individuals into a number
of groups or clusters where the members of a cluster
are more similar to other members of the same cluster
than the members of other clusters. In this experiment,
classes are considered as individuals, therefore, classes
with more similarity would be clustered in one group. As
mentioned in previous section, there are nine different
similarity factors considered in this work, therefore, for
each Java project, clustering runs nine times, each time
with a different factor. The goal is to measure how much
a given factor, as a similarity criteria, conforms to the
existing packaging in the system.

Clustering is an unsupervised learning technique that
has applications in many different fields and domains.
K-Means [21], Affinity propagation [22], DBSCAN [23]
and Spectral Clustering [24] are a number of clustering
algorithms and the choice of algorithm depends on the
nature of the data.

4.1. Spectral Clustering
In this experiment, we employ Spectral Clustering [24] to
cluster the pool of classes (see Figure 1). Spectral Cluster-
ing algorithm is based on eigendecomposition calculation

and is more suitable for a set of individuals where connec-
tivity relations (e.g., similarity between two individuals)
can be defined between them. Unlike other clustering
algorithms (e.g., K-Means), Spectral Clustering, requires
the relations/similarity between individuals to be com-
puted as a matrix in advance and eigendecomposition
can be applied on that matrix. Therefore, Spectral Clus-
tering was found a good fit to be the clustering algorithm
in this work. As seen in the previous section, each class
gets a set of simple-terms (based on the applied similar-
ity factors); the number of common simple-terms among
two sets from two classes is considered as the measure
of relations/similarity between two classes. Therefore,
a 𝑁 ×𝑁 (𝑁 is the number of classes) similarity matrix
should be created for Spectral clustering.

Spectral Clustering, like most other clustering algo-
rithms, requires to know the number of clusters/groups
in advance. As shown in Figure 1, the number of clusters
for the applied clustering algorithm is 𝑃 where 𝑃 is the
number of existing packages in the project. Once Spectral
Clustering returns 𝑃 clusters of similar classes (based
on a given similarity factor), one can compare those 𝑃
clusters against the existing 𝑃 packages in the system.

4.2. Clustering vs Packaging
The objective is to analyse the individual similarity fac-
tors and see how much each of them conform the pack-
aging structure. To do this, the clustering that is resulted
from each factor needs to be compared against the pack-
aging structure. Since the clustering is done on𝑃 clusters
(𝑃 is the number of packages in the project), therefore,
there are two sets of groups where each set contains 𝑃
number of groups of classes. In order to measure the
similarities between two sets of groups, we make use
of Normalized Mutual Information [25] technique from
SKlearn in Python. Normalized Mutual Information mea-
sures the similarity between two clusterings [26] and
returns a value between 0 to 1. Given two clusterings by
two different techniques, Normalized Mutual Information
specifies how much these two clustering are correlated.
Figure 9 shows two clusterings where each clustering has
three clusters with their members. As it is shown, there
are some differences between the results of these two
techniques. For instance, the first cluster of PS contains
𝑎1, 𝑎3 and 𝑎3 and the first cluster of CR contains 𝑎1, 𝑎3

and 𝑧1. The degree of similarity between the results of
these two techniques by Normalized Mutual Information
is 0.2804.

5. Evaluation
In this experiment, six different Open Source Java project
are analysed (see Table 1). For each project, nine differ-



Figure 9: Two different clusterings.

ent similarity factors are separately employed to apply
a clustering technique and compared against the pack-
aging structure in the system. The nine factors are fully
described in section 3.2.

5.1. Results and Discussion
In total, there are 54 + 6 experiments performed. The first
54 experiments are for 6 projects and for each project 9
individual similarity factors are tested. We run an extra
experiment for each project where the similarity factor
is the accumulative of all the 9 individual factors.

Figures 10 to 15 show the percentage similarity be-
tween the applied clustering technique (Spectral Cluster-
ing) and the packaging structure.

The very first observation from all the results indicates
the association between class names and packaging. Ex-
cept for the Java Parser Core project, the class name has
the highest impact on the packaging. Even for Java Parser
Core, the class name comes in second-highest score. The
other observation that can be realized from all diagrams
is the association between supper class names and pack-
aging. Except JavaFX project and the Galaxy project,
supper class names are the second ‘winners’. Method
names for one project (JavaFX ) have a higher associa-
tion with the packaging compared to other projects. On
the other hand, class instantiation (incoming and outgo-
ing classes) on average has smaller association with the
packaging.

As mentioned earlier, six extra experiments are per-
formed to see the impact of overall similarity factors
when they are accumulated all together. Table 2 depicts
the results for each individual project. On average the
Galaxy project has a strong naming association with the
packaging followed by Java Parser Core and Java Parser
Symbol.

Table 2
Accumulated Factors.

Name Similarity

JHotDraw 0.364
Galaxy 0.818
JavaFX 0.4562
JavaParserCore 0.622
JavaParserSymbol 0.58140
Jung 0.387

Figure 10: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

Figure 11: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

6. Conclusion
In this work, we presented a comparative analysis on
six different Java Projects to discover the applied pack-
aging strategy from textual and naming point of view.
Our findings (see Table 3) illustrate that there is a tex-
tual similarities among components at each package to
some extend (the first research question). On average, the
textual similarity is stronger when class names are cho-
sen as a similarity factor (the second research question).



Table 3
Details of all experiments for 6 subject systems. Green indicates the applied factor that shows the highest similarity between
the packaging structure and the clustering technique and orange indicates the second highest and blue indicates the third
highest.

Class Method Field Variable Super In Out In Out
Name Name Name Accessed Class Class Class Method Method

Name Name Name Name Name Name

JHotDraw 0.6264 0.4674 0.454 0.3415 0.4989 0.4636 0.3658 0.312 0.3638
JavaFX 0.449 0.392 0.4139 0.446 0.357 0.3286 0.368 0.425 0.453

J-P Core 0.6159 0.332 0.392 0.3937 0.635 0.455 0.336 0.393 0.3977
J-P Symbol 0.6783 0.552 0.423 0.4392 0.534 0.3219 0.361 0.452 0.37

Jung 0.458 0.313 0.243 0.254 0.331 0.24 0.162 0.226 0.189
Galaxy 0.803 0.755 0.748 0.7518 0.734 0.713 0.6913 0.689 0.714
Average 0.6051 0.468567 0.44565 0.4377 0.514983 0.42035 0.380683 0.416167 0.414583

Figure 12: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

Figure 13: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

The second factor, after class names, that shows strong
similarities among packages’ components is, on average,
the super class name. This also indicates that most in-
heritances are within the packages that is potentially an
indication for low cohesion and high decoupling between

Figure 14: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

Figure 15: The percentage of each similarity between the ap-
plied clustering technique and the packaging structure using
9 similarity factors.

packages. Method names, as the third strong factor, on
average show relatively high similarity among the pack-
ages’ components.

Although we can confirm that there are a couple of pat-
terns common in all projects (similarity of class names),



still almost every project behaves differently. This can
be further confirmed by looking at the results in Table 2
where each project shows a different aggregated degree
of similarity packaging ranging from 0.36 to 0.81.

Looking from another angle, since class names score
high in terms of similarity factors among the contents in
a package, they can potentially be used to validate the rel-
evancy within a package or other architectural construct.
This claim, however, requires more experimentation on
a larger number of subject systems.

This research is only based on the artifact (class,
method and variables) names, therefore, the role of the
developers’ naming style plays an important role in the
results.

In future work, we plan to include other similarity
factors such as factors that define the functionality of
the artefacts. This, with a long term objective of using
these ’naturally’ occurring similarities in the packaging
of software in the ‘wild’ to build developer-friendly ar-
chitecture conformance protocols which help prevent
architectural erosion.

References
[1] M.-A. Storey, C. Best, J. Michand, Shrimp views:

An interactive environment for exploring java pro-
grams, in: Proceedings 9th International Workshop
on Program Comprehension. IWPC 2001, IEEE,
2001, pp. 111–112.

[2] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, G. Zelesnik, Abstractions for software archi-
tecture and tools to support them, IEEE transactions
on software engineering 21 (1995) 314–335.

[3] J. Veit, Modules, Components, and Elements – Soft-
ware Architecture Terms explained (2021). URL:
https://dev.to/jessica_veit/modules-componen
ts-and-elements-software-architecture-terms-ex
plained-g59.

[4] Tutisani, Modular Software Architecture - Tutisani
Consulting, 2021. URL: https://www.tutisani.com/s
oftware-architecture/modular-software-architec
ture.html.

[5] J. T. Taylor, W. T. Taylor, Software architecture, in:
Patterns in the Machine, Springer, 2021, pp. 63–82.

[6] S. A. Ebad, M. Ahmed, Investigating the effect of
software packaging on modular structure stabil-
ity, Computer Systems Science and Engineering 34
(2019) 283–296.

[7] M. Shaw, D. Garlan, Formulations and formalisms
in software architecture, in: Computer Science
Today, Springer, 1995, pp. 307–323.

[8] Vasiliy, 5 Most Popular Package Structures for Soft-
ware Projects, 2020. URL: https://www.techyourch
ance.com/popular-package-structures/.

[9] R. C. Martin, J. Grenning, S. Brown, Clean architec-
ture: a craftsman’s guide to software structure and
design, Prentice Hall, 2018.

[10] M. Shaw, Architectural issues in software reuse:
It’s not just the functionality, it’s the packaging, in:
Proceedings of the 1995 Symposium on Software
reusability, 1995, pp. 3–6.

[11] D. E. Knuth, An empirical study of fortran pro-
grams, Software: Practice and experience 1 (1971)
105–133.

[12] E. Hautus, Improving java software through pack-
age structure analysis, in: IASTED International
Conference Software Engineering and Applications,
2002, pp. 1–5.

[13] V. Gupta, J. K. Chhabra, Package coupling mea-
surement in object-oriented software, Journal of
computer science and technology 24 (2009) 273–
283.

[14] P. J. Kaur, S. Kaushal, A. K. Sangaiah, F. Piccialli, A
framework for assessing reusability using package
cohesion measure in aspect oriented systems, Inter-
national Journal of Parallel Programming 46 (2018)
543–564.

[15] A. Prajapati, J. K. Chhabra, Madhs: Many-objective
discrete harmony search to improve existing pack-
age design, Computational Intelligence 35 (2019)
98–123.

[16] H. Abdeen, S. Ducasse, H. Sahraoui, I. Alloui, Au-
tomatic package coupling and cycle minimization,
in: 2009 16th Working Conference on Reverse En-
gineering, IEEE, 2009, pp. 103–112.

[17] J. Al Dallal, Identifying refactoring opportunities
in object-oriented code: A systematic literature re-
view, Information and software Technology 58
(2015) 231–249.

[18] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith,
M. Visser, H. Melton, E. Tempero, Understand-
ing the shape of java software, in: Proceedings
of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages,
and applications, 2006, pp. 397–412.

[19] H. Abdeen, S. Ducasse, H. Sahraoui, Modulariza-
tion metrics: Assessing package organization in
legacy large object-oriented software, in: 2011 18th
Working Conference on Reverse Engineering, IEEE,
2011, pp. 394–398.

[20] JavaParser.org, JavaParser - Home, 2021. URL: "htt
ps://javaparser.org".

[21] J. A. Hartigan, M. A. Wong, Ak-means clustering
algorithm, Journal of the Royal Statistical Society:
Series C (Applied Statistics) 28 (1979) 100–108.

[22] K. Wang, J. Zhang, D. Li, X. Zhang, T. Guo, Adap-
tive affinity propagation clustering, arXiv preprint
arXiv:0805.1096 (2008).

[23] K. Khan, S. U. Rehman, K. Aziz, S. Fong, S. Saras-

https://dev.to/jessica_veit/modules-components-and-elements-software-architecture-terms-explained-g59
https://dev.to/jessica_veit/modules-components-and-elements-software-architecture-terms-explained-g59
https://dev.to/jessica_veit/modules-components-and-elements-software-architecture-terms-explained-g59
https://www.tutisani.com/software-architecture/modular-software-architecture.html
https://www.tutisani.com/software-architecture/modular-software-architecture.html
https://www.tutisani.com/software-architecture/modular-software-architecture.html
https://www.techyourchance.com/popular-package-structures/
https://www.techyourchance.com/popular-package-structures/
"https://javaparser.org"
"https://javaparser.org"


vady, Dbscan: Past, present and future, in: The fifth
international conference on the applications of dig-
ital information and web technologies (ICADIWT
2014), IEEE, 2014, pp. 232–238.

[24] J. Liu, J. Han, Spectral clustering, in: Data Cluster-
ing, Chapman and Hall/CRC, 2018, pp. 177–200.

[25] R. Koopman, S. Wang, Mutual information based
labelling and comparing clusters, Scientometrics
111 (2017) 1157–1167.

[26] A. F. McDaid, D. Greene, N. Hurley, Normal-
ized mutual information to evaluate overlapping
community finding algorithms, arXiv preprint
arXiv:1110.2515 (2011).


	1 Introduction
	2 Background
	3 Experiment Design
	3.1 Comparison Analysis
	3.2 Comparison Factors
	3.2.1 Class Names
	3.2.2 Outgoing Methods
	3.2.3 Incoming Methods
	3.2.4 Field Declarations
	3.2.5 Accessed Variables
	3.2.6 Outgoing Classes
	3.2.7 Incoming Classes
	3.2.8 Class Methods
	3.2.9 Supper Classes


	4 Clustering
	4.1 Spectral Clustering
	4.2 Clustering vs Packaging

	5 Evaluation
	5.1 Results and Discussion

	6 Conclusion

