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Abstract
In this paper we describe the design and development of a real-world software system that integrates machine learning
augmenting a pre-existing remote surveillance framework. Machine learning was embedded as a service in the system,
plugged-in between back-end data flux handlers; the system has been redesigned following a microservices architecture to
make it scalable and to allow a progressive adoption of the machine learning-powered assistance in the event management
process. A case study of the application in an actual security company is analysed and discussed, where we show how this
innovation helped human operators to better shield themselves from the "information overloading".
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1. Introduction
In this paper we describe the design and development
of a real-world software system that integrates big data
analytics and machine learning into a pre-existing remote
surveillance framework operated by security company
that monitors a number of sites through closed circuit and
IP cameras, anti-theft sensors (e.g., volume and pressure
sensors, door opening sensors, etc.) and also physical
sensors (e.g., humidity and temperature).

Figure 1 shows a fragment of the process commonly
followed to handle events and alarms coming from a
surveillance network. When an alarm is received, first the
operators check the surveillance videos. If such videos
are not available or they do not clearly show the event,
the operator requests an on-site check to the security
staff. Such action and its outcome, as well as the outcome
to all the actions taken during the process, is stored in
the system database. Then, if the event is in progress,
the operator starts the true alarm handling process. Oth-
erwise, if the notified event is not actually in progress,
the operator must check for other alarms on the same
site and, if any, restart the handling process for such new
events. If no other site alarms are active, the operator
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must try to understand the reason of the notified alarm. If
it is recognized as a false alarm, the case is simply closed.
On the other hand, if the alarm is improper, i.e., it is due a
system anomaly, the operator starts an anomaly handling
process.

The software adopted by the company to support such
a process was a monolithic application that offered only
basic functionalities such as collecting signals and data
streams, presenting the events in a managing console and
saving them in a persistent database. Therefore, most
of the operations described by the event management
process above required a substantial amount of manual
work by the control center operators.

While the human intervention cannot be avoided in
such a context, as in any security-related context, machine
learning can be exploited to assist the operators in several
steps of the process, leaving the humans with only the
most critical steps to accomplish (see, e.g., [1, 2, 3, 4] for
examples belonging to different surveillance contexts).

However, embedding machine learning in the com-
pany pre-existing software presented several challenges.
First, we are modifying a production, real-time critical
system, so we need to gradually add such a support, in
order to let the operators adapt to the new functionali-
ties while verifying their reliability without interrupting
the company services. Second, the closed, monolithic
architecture of the company software described above
makes any modification to the pre-existing process very
complex and error-prone. It is also worth noting that
such a software, developed many years ago, was already
not adequate to accomplish the current high QoS levels
and to be compliant with the latest safety regulations.

Therefore, we decided to rebuild the system from
scratch, extracting only some relevant modules/algo-
rithms from the old software in order to embed it in
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Figure 1: Surveillance event handling process

the new release, to maintain some kind of "continuity".
In particular, while having a completely redesigned core,
the system has been designed to offer the basic function-
alities of the previous one (to maintain the above service
continuity) and extend them in order to

• acquire data and information on objects and
events from multiple sources such as IoT devices,
open systems and mobile services;

• combine and correlate the real-time big data
streams in order to make easier and faster the con-
trol center operators job, in particular the event

classification, the data storage and the log certifi-
cation;

• offer decision support tools to assist operators in
the real-time management of events.

All the three extensions above could be based on simple
(sometimes pre-existing) algorithms, but also take advan-
tage from machine learning. Thus, ML can be seen as a
(plug-in) service in the overall system architecture. This
consideration, together with a number of technical as-
pects concerning the modular structure of the applica-
tion and its deployment environment, made us opt for



a service oriented architecture [5] as its development
basis. More in detail, to be as lightweight as possible,
we adopted a microservices architecture [6] to effectively
split the complexity of the overall system into small spe-
cialized units, each with its REST API and containerized
using Docker [7]. This allowed us to develop a scalable,
versatile, and easily maintainable system, as opposed to
the previous one. In particular, microservices allowed us
to fragment the overall system functionality in a set of
meaningful basic units that, apart from the known ad-
vantages in term of scalability and maintanability, make
easier the progressive addition of ML support as a ser-
vice (or set of services) interacting with the core system
services to enhance their functionalities.

2. System Architecture for a
Reliable Event Handling

At a macro level, the base requirements of the new system
are the following:

1. Acquire data, events and states from an heteroge-
neous set of sources spread in a wide geographical
area and connected through a digital network;

2. aggregate such data streams in a configurable
and scalable way, since the number and type of
sources may vary;

3. correlate events through time and space logical
rules;

4. visualize all the collected and elaborated informa-
tion on an interactive web dashboard;

5. store all the data, as well as all the actions taken
by the control center operators, on a persistent
memory;

6. provide a search engine with configurable queries
to access such historical data.

Starting from such requirements, collected through
interviews with the company staff and control center
operators, we designed a microservice-based system ar-
chitecture that aims to be easily testable, maintainable,
and extensible. Figure 2 gives an overview of the devel-
oped system.

The data is pushed in the system by a number of spe-
cialized source services (drawn in green in the figure):
in the currently deployed platform, we provide services
which support reading data from sensors using MQTT [8]
and SNMP [9] as well as from specific proprietary sensors
such as Papago [10]. These services satisfy requirement
1.

The overall system leverages on three services that pro-
vide different "analysis horizons" on the event streams:
the Prometheus [11] service (yellow), which wraps the
corresponding software package, acts as the main data
collector of the overall architecture, providing access

to the events of the last three days gathered from all
the sources and suitably aggregated (requirement 2).
Prometheus is an open-source systems monitoring and
alerting software, which provides a multi-dimensional
data model with time series, and allows a variety of in-
teractions with other third-party software components.

Next, there is the the Redis [12] (gray) service that
wraps the well-known fast in-memory data store (sup-
porting real-time data streams), which acts as a cache
memory to provide the consumers a fast access to the
event information streams. It essentially takes the role
of "live working memory" for the events and the corre-
sponding management procedures, which are stored in
the database until they reach the closing state. It is worth
noting that the output of sensors like temperature and
humidity, whose handling does not require the human
intervention (e.g., temperature sensor alarms are based
on simple logic rules), are not stored in Redis.

Finally, the SQLite [13] service (gray) provides persis-
tent storage for all the data flowing through Prometheus
and Redis. This is mainly needed to later extract the ev-
idences needed by the authorities (requirements 5 and
6).

To support requirement 4, the blue front-end services
present the gathered and processed data in different for-
mats, tailored for the specific needs of the different sys-
tem users. In particular, three "IG Server" services handle
the GUI for the operators, their supervisors and the sys-
tem administrators. Such user interfaces present to the
users the data streams coming from the sensors, read
from the Redis service, as well as the data coming from
Prometheus. A special "configurator" GUI is used to con-
figure the system. The last two front-end services di-
rectly interact with Prometheus: the first is based on the
Grafana software package [14], which provides advanced
visualization and dashboards for the processed and ag-
gregated data, whereas the alertmanager service pushes
alerts automatically generated from Prometheus through
PromQL queries directly into email and Telegram mes-
sages.

Finally, the red services are at the core of the architec-
ture. In general, they read from both Prometheus and
Redis and apply actions, possibly modifying the Redis
data streams accordingly. In particular, gest_notifier is
a critical module that notifies the supervisors (via text
messages) about event escalation, i.e., alarms that are trig-
gered by an event not being correctly and timely handled
by the control center operators. On the other hand, the
gest_control service manages the QoS by monitoring that
the operator reaction times follow the company SLA, also
generating alarms in case of inefficiencies (requirement
3). The gcounter service generates aggregate statistics
from the Redis data and posts them back to Prometheus
to support longer-term alarms (requirement 2). Finally,
the gest_source service is the action actuator, i.e., it is



Figure 2: System architecture

called by the operator interfaces to actually apply the
actions ("take charge", "start/pause/close workflow", etc.),
executes them, and generates the action events that are
stored back in Redis to log the handling process.

The data_analysis service, also drawn in red, is de-
scribed in the next section. It provides ML support to the
overall process, and in particular assists the operators by
interacting with the graphical interfaces.

All the microservices above were developed in Python
and containerized, to be easily deployable on the com-
pany’s infrastructure through an overall container de-
ployment script that, in particular, takes into account the
service inter-dependencies.

3. Machine Learning Services
Integration

The event handling process, in the critical context where
our system works, must be timely and effective. The
architecture described in the previous section (Figure 2)
has been designed to be reliable and fast, but the process
(Figure 1) still includes a number of checks, calls, and
lengthy actions that require a substantial amount of work

to the operators.
Clearly the human intervention cannot be avoided

when trying to solve potentially dangerous events. How-
ever, ML can help the operators in many ways, as com-
mented in the introduction. Thus, we initially focused on
an aspect that is well known to benefit from automatic
reasoning: mitigating the effects of an event flooding on
the operators by pre-selecting or pre-classifying events.

Indeed, an operator that manages events is the classical
FIFO order may spend too much time on less-significant
events and delay the solution of the really critical ones.
To avoid this, the Data Analysis service provides an adap-
tive event classification routine that prioritizes the events
so that the ones that are considered more important, i.e.,
that may lead to real alarms, are presented first to the
operators. Such a service stands between the gest_source
and lgo_server services, learning from the operator ac-
tions and suitably modifying his data views in order to
suggest the event classification.

Operators close each event handling process by la-
belling the events as true alarms, false alarms, inappropri-
ate alarms (i.e., due to a system failure) or "other alarms"
(typically due to test or maintenance). We focus on the
true and false ones, since the other two types of events



are a minority class that would be difficult and useless to
consider in our context.

Thus, initially, we extracted a number of significant
features from the events, relating them with the operator-
assigned label. Such features include information such as
the unique alarm ID, the alarm central where the event
was generated, the related customer, the activated sensor
name, the timestamp of the alarm, etc.

Then, we cleaned and refined these features to further
focus on the information that seems to be more relevant
for our classification task. As an example, we substituted
the alarm timestamp, which conveys too much informa-
tion, with the alarm weekday and the corresponding part
of the day (morning, afternoon, evening, night). More-
over, we performed a K-means clustering [15] on the sen-
sor names (suitably transformed in a numerical vector
through a word embedding process), in order to extract
an artificial "sensor type" feature. The significance of the
selected features was validated by calculating the mutual
information of each feature w.r.t. the classification label
(see, e.g., [16] for an overview of mutual information ap-
plied to feature selection) on a set of 169,347 past events
provided by the company.

Once the final 128 features were devised, we extracted
an initial training dataset from the set of past events
above. Unfortunately, the dataset was heavily imbal-
anced, since the false alarms were much more than the
true ones [17]. Thus, we tried both a random undersam-
pling of the majority class and the well-known Synthetic
Minority Oversampling Technique (SMOTE, [18]) to re-
balance it.

Finally, we built a deep neural network [19] with 128
input neurons (one for each feature), two hidden layers of
64 neurons each with RELU [20] activation function, and
a single output neuron with sigmoid activation function.
We trained the network on our dataset in order to obtain
the correct classification given the event features. The
classifier validation showed that the dataset re-balanced
through random undersampling achieves a better overall
performance in this context, reaching an accuracy of 0.91,
a recall of 0.93, and a precision of 0.95, with a F1-Score
of 0.92.

The trained network was then embedded in the Data
Analysis service, where each new event is classified be-
fore being presented to the operators. However, since a
wrong "false alarm" classification may always happen,
we do not simply drop the events considered not harmful
by the neural network from the stream, but rather we ex-
tract the classification probability that can be read from
its output neuron and use it to alter the priority value that
is used to sort the events on the operator dashboards. In
this way, a possibly false alarm will be handled later, but
never dropped. After the event is handled, the correct,
final classification given by the operator is sent back to
the neural network to fix its previsions, if needed.

4. Conclusions
Thanks to its design and to the use of ML, the developed
system meets highest quality standards, in particular:

• it allows to to acquire, aggregate and process data
and information from a variety of IoT devices,
which means offering a better service in terms of
quality and flexibility;

• it guarantees high scalability and easy configura-
bility;

• it is fully compliant with data privacy, integrity
and security regulations.

The project requirements foresaw to process about
300,000 events a year with the current number of opera-
tors, and manage an alarm within at most 30 seconds, as
set by the standard regulations. Currently the system has
been deployed and is being tested by the company in a
control room operating 24/7 on three turns of eight hours
each, with two or three operators per turn. The staff is
managing about 32,500 anti-theft and intrusion detection
sensors and over 500 environmental IoT devices mainly
targeted to precision agriculture. The network connects
about 30 clients and its nodes are deployed on more than
600 different sources.

Our initial statistics show that the staff is now able to
manage an average of 1,000 events per day, thus yielding
365,000 events managed on yearly basis as a forecast,
which doubles the performances achieved using the pre-
vious support software. The average time from the event
arrival to its classification and taking charge is now 10
seconds, slightly better compared to the performance of
the previous system but in a far more complex scenario.

Finally, the average event management time, includ-
ing classification, site operations, police calls, alarm clos-
ing and archiving, has been dramatically improved from
1,800 to 900 seconds (Figure 3 shows the current statistics
generated by the Grafana service in the application), and
the error ratio has been tackled almost to zero thanks to
the ML priority classification system.
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Figure 3: Average event management time
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