
Low-dimensional Knowledge Graph Embedding
based on Extended Poincaré Ball: Preliminary
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Abstract. Most existing knowledge graph embedding (KGE) methods
are built on Euclidean space, which are difficult to handle hierarchi-
cal structures. While hyperbolic embedding methods have shown the
promise of high fidelity and concise representation for hierarchical data,
logical patterns in knowledge graphs (KGs) are not considered well in
current methods. To address this problem, we propose a novel KGE
model with extended Poincaré Ball and polar coordinate system to cap-
ture hierarchical structures. It first uses the tangent space and exponen-
tial transformation to initialize and map the corresponding vectors to the
Poincaré Ball in hyperbolic space. Then, to solve the boundary condi-
tions, the Poincaré Ball boundary is stretched and zoomed by expanding
the modulus length. Moreover, it is optimized by using polar coordinate
and changing operators in the extended Poincaré Ball. Experimental re-
sults of link prediction on WN18RR and FB15k-237 datasets show that
our model outperforms state-of-the-art baselines.
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1 Introduction

Since knowledge graphs (KGs) are usually incomplete, predicting missing links
in KGs via knowledge graph embedding (KGE) into vector spaces becomes more
and more important. Hierarchical structures are common in KGs and used to
manage the relations and concepts. However, existing KGE methods often en-
counter challenges dealing with hierarchical structures, because it is notably
difficult for models built on Euclidean space to preserve hierarchical structures.

Recent works proposed hyperbolic representation learning [2, 6]. In KGs, hi-
erarchical relationships between entities can be approximated as a tree structure,
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while the number of entities in each layer increases exponentially with depth of
tree increasing. Such a knowledge structure can be well represented with the
Poincaré Ball [9]. However, even most hyperbolic KGE models employ Poincaré
Ball to embed the structures, they still suffer from limitations of restricted ca-
pacity and floating-point precision when majority of entities are embedded near
by the boundary of Poincaré Ball due to long-tail distribution.

To address these issues, we propose a novel hyperbolic knowledge embed-
ding method, which employs the extended Poincaré Ball for KGE and captures
hierarchical structures with polar coordinate system [5].

2 Model

The principle of our model is shown in Fig. 1. In order to learn hierarchical
hyperbolic embeddings to represent logical patterns such as symmetry and anti-
symmetry while preserving latent hierarchies, our model uses polar coordinate to
encode logical patterns with hierarchies in hyperbolic space as shown in Fig. 1(a).
Due to the advantages of Poincaré Ball for gradient optimization [1], our model
first initials embedding in Poincare Ball. However, the capacity of Poincaré Ball
model is restricted by floating-point precision when majority of points locate
near the boundary due to long-tail distribution. To release this limitation, our
method expands the boundary into infinite to increase capacity of model and
adjust some operators to align with Euclidean geometry, which redefines the
distance dB(u, v) and can be shown in Fig. 1(b).
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(a) Hyperbolic Space.
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(b) Extended Poincaré Ball.

Fig. 1. KGE based on Hyperbolic space and KGE based on extended Poincaré ball.

In Poincaré Ball, the whole space is symmetric along the center but the
apparent Euclidean distance from the origin to any point is not equal to the
hyperbolic distance [5]. To make the apparent distance consistent with the actual
hyperbolic distance, we establish a new model called the extended Poincaré Ball
to ensure the distance from any point to the center is equal to which in hyperbolic
space. Suppose that the polar coordinates of any point in the original coordinate
system (Poincaré disk) is(r, θ), and that in the new space is (2tanh−1r, θ). In



this way, the radius of ball space is infinite. Therefore, points near the boundary
are extremely compressed in Poincaré Ball while there is no such problem in the
extended one. Meanwhile, it can be proved that Hyperbolic Cosine Theorem still
holds for the operators in extended Poincaré Ball: cosh(c) = cosh(a)cosh(b) −
sinh(a)sinh(b) cos γ (a, b, c stand for the geodesic distance of triangle and γ
stands for the angle between a, b). Extended Poincaré Ball and Poincaré Ball
share the same distance form when calculated by cosine theorem as well.

Furthermore, inspired by the Hyperbolic Cosine Theorem, in which the hy-
perbolic distance can be composed of modulus and angle, we use polar coordi-
nates to embed KGs into the extended Poincaré Ball. The score function can be
formed as two parts: polar radius (h, r, t) and polar angle (θh, θr, θt) as follow:

dB = αdrB + βdθB (1)

where α, β is the weights to be learned. The whole function shares the similar
way as works proposed by Federico [7] which does not satisfy Cauchy inequality.

It is worth noting that the radius part plays an essential role in levels of
entities in extended Poincaré Ball, and the angle aims to distinguish entities in
the same level. Therefore, we formulate the polar radius with Möbius addition
and multiplication as follow:

drB = ‖2 tanh-1((R⊗c h)⊕c −(r⊕c t))‖2 (2)

where h, r, t stand for hyperbolic embeddings of head entity, relation, and tail
entity, respectively. R stands for relation matrix in hyperbolic space inspired by
MuRP [2]. As stated in the property of extended Poincaré Ball, we classify the
embedding levels of different entities by Euclidean Norm.

Considering convergence and efficiency, we can simplify and obtain the polar
angle as: ∆θ = π − |π − |θ − θ′||. Consequently, a point xB in polar coordinate
system can be calculated in TransE form [4] as:

dθB = ‖(θh + θr − θt)mod2π‖ (3)

From another perspective, angle parts can be replaced with radius parts
by Cosine Theorem in hyperbolic space. However, to better capture complex
relation such as symmetry, anti-symmetry, inversion and composition, it is nec-
essary to utilize extra angle part for downstream tasks like link predictions. On
the other hand, the introduction of angle part can simulate the rotation in Ro-
tatE [8]. Theoretically, any algebraic system hold the fundamental properties of
congruence can be used as angle part in the model when embedding complex re-
lations. Take angles as an example, suppose that a relation θr ∈ [0, 2π) is close to
π, then a symmetric relation can be formed as (θh+θr+θr)mod 2π = θhmod 2π
with arbitrary θh and 6= for asymmetric relations.

Since the Poincaré Ball has a Riemannian manifold structure, we optimize
radius parameters with stochastic Riemannian optimization methods such as
RSGD or RSVRG [3]. Let ∇E denote the Euclidean gradient of L(P ). Using



RSGD, the Riemannian gradient can be computed as ∇R =
(1−‖Pt‖2)

2

4 ∇E . In
summary, the full update for a single embedding is calculated by:

P t+1 = P t − ηt

(
1− ‖P t‖2

)2

4
∇E (4)

where η denotes the learning rate.
According to the isometric projection of Poincaré Ball, the angle part can be

optimized by Euclidean optimization methods such as SGD or Adam.
To train the model, we use the negative sampling loss functions with self-

adversarial training [8].

s =− log (σ (λ− dB(h, r, t)))

−
n∑
i=1

p (h′i, r, t
′
i) log (σ (dB (h′i, r, t

′
i)− λ))

(5)

where λ is margin.
For negative samples,

p
(
h′j, r, t

′
j | {(hk, rk, tk)}

)
=

eyf(h
′
j,tj)∑size

k=1 e
yf(h′

k,t
′
k)

(6)

where p is the probability distribution of sampling negative triples, and α is the
temperature of sampling.

3 Experiments

Table 1. Link prediction results on WN18RR and FB15k-237.

Models
WN18RR FB15k-237

MRR H@1 H@10 MRR H@1 H@10

TransE [4] .226 .043 .501 .294 .204 .465
DisMult [10] .437 .397 .490 .241 .155 .419
RotatE [8] .476 .428 .571 .338 .241 .533
HyperKG [6] .41 - .50 .28 - .45
MuRP [2] .481 .440 .566 .323 .235 .501
Our Model .488 .448 .570 .340 .243 .541

To evaluate our approach, we choose the widely used KG datasets: WN18RR
and FB15K-237. The evaluation metrics are: (1) mean reciprocal rank (MRR),
which measures the mean of inverse ranks assigned to correct entities; and (2) hits
at K (H@K, K ∈ 1, 10), which measures the proportion of correct triples among
the top-K predicted triples. Table 1 summarizes the experimental results of
different models on the task of KG link prediction. It can be seen that our method
achieves the state-of-the-art results on both datasets, which demonstrates the
efficiency of our model.
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