
Towards a Knowledge Interface for
Java Applications

Mario Scrocca1 and Riccardo Tommasini2

1 Cefriel – Politecnico di Milano, Italy
mario.scrocca@cefriel.com

2 University of Tartu, Data System Group, Estonia
riccardo.tommasini@ut.ee

Abstract. We are witnessing the spread of data-driven organizations. In
particular, enterprise software is migrating from legacy monolithic data
systems to microservices, which embrace the distributed nature of data.
Despite offering many benefits, microservices pose several challenges in
the development and maintenance of information systems. Techniques
like Domain-Driven Design and Data Mesh emerged to ease data and
system integration by infusing domain knowledge within the develop-
ing process. In this scenario, knowledge representation and reasoning
(KRR) can come to the rescue. Thus, in this paper, we present the Java
Knowledge Interface (JKI), whose goal is allowing Java programmers to
semantically lift the applications’ data model (compile time) and state
(runtime) with respect to an OWL2 ontology.

Keywords: Poster · Knowledge Representation · Semantic Debugging
· Semantic Programming · Semantic Microservices

1 Introduction

We are witnessing the spread of data-driven organizations. In particular,
enterprise software is migrating from legacy monolithic data systems to mi-
croservices, which embrace the distributed nature of data. Despite offering many
benefits, microservices pose several challenges in the development and mainte-
nance of information systems. Microservices have to speed up the velocity of the
software lifecycle, supported by the adoption of novel techniques for continuous
delivery and integration. Moreover, different independent teams often develop
microservices, which do not necessarily share the exact requirements. In prac-
tice, the adoption of microservices may lead to small incremental changes that
can integrate different data products [6]. Thus, techniques like Domain-Driven
Design [1], Event Sourcing, and Data Mesh3 evolved to ease data and system
integration by infusing domain knowledge within the developing process.

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

3 https://martinfowler.com/articles/data-mesh-principles.html

https://orcid.org/0000-0002-8235-7331
https://orcid.org/0000-0003-3404-5250
https://martinfowler.com/articles/data-mesh-principles.html


2 M.Scrocca and R.Tommasini

Fig. 1: The Java Knowledge Interface

In this scenario, knowledge representation and reasoning (KRR) can come
to the rescue. Indeed, ontologies can model the application domains to ensure
semantic interoperability among different data systems. Intuitively, the combi-
nation of KRR and software engineering (SE) have been studied already [4,5,7]4.
Leinberger et al. [5] studied the usage of SHACL for type checking code that
queries RDF graphs. More recently, Kamburjan et al. [4] discussed the advan-
tages of semantically lifting the state of a software program through ontologies.

In this paper, we present the Java Knowledge Interface (JKI), which falls
into Ontology-driven development [2]. The goal of JKI is to allow Java program-
mers to semantically lift the applications’ data model and state (runtime) with
respect to an OWL2 ontology. Moreover, JKI allows querying and reasoning
for the current application state as a knowledge graph (KG). We demonstrated
the feasibility and relevance of JKI developing an initial proof-of-concept that
exploits a Java Debug Interface (JDI) and OWL API.

Outline. Section 2 defines the proposed JKI. Section 3 describes the imple-
mented proof of concept. Section 4 draws the conclusions.

2 Java Knowledge Interface

In this section, we present the Java Knowledge Interface (JKI). Figure 1 shows
an overview of JKI. As mentioned before, JKI aims at running a multitude of
reasoning tasks over Java applications. In particular, JKI must enable two infer-
ence scenarios: (1) Static, i.e., applying a given reasoning task to the application
data model at compile time. Java applications rely on a specific data model de-
scribing the domain addressed by the software program. JKI requires to map
relevant Java classes (i.e., the application data model) to corresponding OWL
classes in the given TBox. Notably, not all classes of the application model need
to be mapped to the ontology. (2) Dynamic, i.e., executing a given reasoning
task over the application state at runtime. Given a generic running Java ap-
plication, its runtime state is represented by instances of classes of the model
that are handled and interconnected in-memory (heap and stack). JKI should be

4 we invite the reader to consult [2] for a survey of different approaches



Towards JKI 3

responsible for connecting to the running Java application, lifting the state in-
tegrating it in a KG and execute different reasoning tasks on it. The JKI should
implement Semantic State Lifting by mapping the active class instances to the
corresponding OWL individuals. In practice, JKI should allow checking that no
inconsistencies are generated at runtime considering one or more snapshots of
the application state, potentially enriched with external domain knowledge.

The obtained KG offers an abstraction to reason on the domain logic coher-
ence over the implementation details of one or more applications. In particular,
we distinguish two scenarios (A) Intra-Application Inference, where JKI is
executing a given reasoning task over a KG resulting from the state lifting of an
application. (B) Inter-Application Inference, where JKI is executing a given
reasoning task over a KG resulting from the integration of the lifted state of n
different applications. Intuitively, all four combinations are possible. Indeed, the
JKI users might be interested to verify the compliance of a single application
data model to the ontological specification (1A) or check if a static alignment
exists across applications (e.g., different microservices in a distributed architec-
ture) (1B). On the other hand, the JKI users might want to reason about a
single application state (2A) or the integration of many (2B).

3 Proof of Concepts

To validate JKI we developed a proof-of-concept (POC)5 that exploits the Java
Debug Interface (JDI)6, and OWL API [3].

The POC consists of two examples, i.e., app.artmarket and app.eshop,
which respectively represents a paint shop and e-commerce. These examples are
designed to show the benefits of the lifted states for debugging the application
state. The E-Shop demo shows how the integration between the application
state and external data allows validating (consistency checking) the discounts.
For example, including in the ontology, an axiom about discounts available only
to particular customers allows evaluating, at runtime, the validity (consistency)
of the application state. The Art Market demo shows how an ontology allows
reasoning over the knowledge that is not explicitly represented in the classes.
For example, each individual of the class Artist associated to a Paint can be
axiomatically inferenced as an instance of the Painter subclass, thus enabling
querying considering external knowledge about Painters.

The applications data models are made available to JKI using a set of maps
that are configured to bind IRIs of the ontology to Java classes (to generate
individuals) and their fields (to generate data and object properties). Multiple
property relations from the same instance are stored in named lists.

The JKI is implemented using the JDI API to connect to the Java appli-
cation and place breakpoints to collect state snapshots. Indeed, using JDI we
do not need to modify the monitored Java application. The only requirement
is to run the application in debug mode, where it is possible to receive updates

5 https://github.com/marioscrock/java-reasoning
6 https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/

https://github.com/marioscrock/java-reasoning
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/


4 M.Scrocca and R.Tommasini

from the JVM via socket. Once reached a breakpoint event, the JVM execution
is suspended and a JKI component (implementing the InspectToAxiom inter-
face) incrementally inspects the application state and generates ABox axioms
considering a given configuration.

Using OWL API, the POC allows its user to programmatically: (i) add other
axioms to the generated KG, and (ii) answer Description Logic queries on the
KG. The POC periodically runs a reasoning routine every time the JVM is
suspended for a breakpoint. A buffer is kept to ensure that previously added
ABox axioms (generated by the last inspection of application instances) are
deleted and only the active instances are left in the KG.

4 Conclusion and Future Works

In this paper, we presented a proof-of-concept implementation of a Knowledge
Interface for Java programs. JKI supports two kinds of reasoning, i.e., static rea-
soning about the application data model at compile-time, and dynamic reasoning
on the application state at runtime. We showcased the feasibility of JKI with
two examples, i.e., an Art Market and an E-Shop. As future work, we plan to
(i) design an annotation-based mechanism to map the application data model to
the OWL classes, (ii) enable the usage of SHACL shapes to validate the seman-
tically lifted state of the application, (iii) integrate other forms of application
data within the KG, i.e., traces, logs, and metrics [8], (iv) integrate RSP4J [9]
within JKI for stream reasoning about application state changes. Finally, we will
investigate the factors impacting the performances of the JKI.

References

1. Evans, E., Evans, E.J.: Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional (2004)

2. Happel, H., Maalej, W., Seedorf, S.: Applications of ontologies in collaborative soft-
ware development. In: Mistŕık, I., van der Hoek, A., Grundy, J., Whitehead, J. (eds.)
Collaborative Software Engineering. Springer (2010)

3. Horridge, M., Bechhofer, S.: The OWL API: A java API for OWL ontologies. Se-
mantic Web 2(1), 11–21 (2011)

4. Kamburjan, E., Klungre, V.N., Schlatte, R., Johnsen, E.B., Giese, M.: Program-
ming and debugging with semantically lifted states. In: European Semantic Web
Conference. pp. 126–142. Springer (2021)

5. Leinberger, M., Seifer, P., Schon, C., Lämmel, R., Staab, S.: Type checking program
code using SHACL. In: ISWC - New Zealand, Proceedings. LNCS, Springer (2019)

6. Overeem, M., Spoor, M., Jansen, S.: The dark side of event sourcing: Managing
data conversion. In: SANER, Klagenfurt, Austria. IEEE Computer Society (2017)

7. Puleston, C., Parsia, B., Cunningham, J.A., Rector, A.L.: Integrating object-
oriented and ontological representations: A case study in java and OWL. In: ISWC,
Germany, October 26-30, 2008. Proceedings. LNCS, Springer (2008)

8. Scrocca, M., Tommasini, R., Margara, A., Valle, E.D., Sakr, S.: The Kaiju project:
enabling event-driven observability. In: DEBS: Montreal, Canada. ACM (2020)

9. Tommasini, R., Bonte, P., Ongenae, F., Valle, E.D.: RSP4J: an API for RDF stream
processing. In: ESWC, Virtual Event, Proceedings. LNCS, Springer (2021)


	Towards a Knowledge Interface for Java Applications

