
R4R: Template-based REST API Framework for
RDF Knowledge Graphs

Carlos Badenes-Olmedo[0000−0002−2753−9917], Paola
Espinoza-Arias[0000−0002−3938−2064], and Oscar Corcho[0000−0002−9260−0753]

Ontology Engineering Group, Universidad Politécnica de Madrid
Boadilla del Monte, Spain

{cbadenes, pespinoza, ocorcho}@fi.upm.es

Abstract. Knowledge graphs (KGs) are increasingly being used to make
structured information available on the Web, by means of REST APIs
and/or SPARQL endpoints. In many cases, these REST APIs are gen-
erated on top of the SPARQL endpoints, using existing technology ap-
proaches that are based on proprietary configuration files or ontologies to
create the APIs. These approaches may impose content-based or struc-
tural constraints when composing Web resources. To relax these con-
straints we propose R4R, a more flexible solution based on Web stan-
dards and REST principles that creates and publishes customizable APIs
exposing Web resources from SPARQL queries organized in file system
directories. R4R features include individual and nested resources, pagi-
nated queries, optional fields, web authentication, query parameters and
sorting lists.
Resource type: Software
License: Apache License 2.0
DOI: https://doi.org/10.5281/zenodo.3543320

Keywords: API · Knowledge Graph · REST · SPARQL

1 Introduction

Knowledge graphs (KGs) are drawing increasing attention from both academia
and industry for representing, sharing and using knowledge in applications [7, 3].
They may be made available as RDF-based datasets, including a SPARQL end-
point (e.g., DBpedia), and/or via REST APIs (e.g., Google Knowledge Graph).
In both cases, KGs share many commonalities from the data representation point
of view (both use triples to represent facts), but they are radically different in
terms of query capabilities: SPARQL provides a more expressive query language
than what can be normally done with a REST API, but it can be a barrier for
non-expert users. Web APIs usually present data according to REpresentative
State Transfer (REST) architecture principles mapping HTTP verbs (POST,
GET, PUT, DELETE) to CRUD operations (Create, Read, Update, Delete).

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0)

Fig. 1. Step-by-step processing of a request in R4R

However, API resources do not necessarily match to KG resources. A public
procurement-focused API and a technology-focused API may present, in a dif-
ferent way, the information retrieved from the same KG about companies. One
more focused on merit and the other on innovations.

In this demo we present R4R, an open source framework that facilitates the
publication of a KG via a REST API over HTTP. Our approach proposes a
fully customizable definition of resources, both naming and content (and even
nesting), through a hierarchical organization of data (Figure 1). It deploys a web
service based on SPARQL queries to retrieve the information and provides tem-
plates to compose resources that are organized in folders in a system directory.
Finally, we describe a motivating example where R4R is used to enhance KG
access.

2 KG data consumption via Web API

Several approaches are available to provide Web developers with mechanisms
to ease KG data consumption without dealing with the complexity of Semantic
Web standards and technologies, namely SPARQL. Some of these approaches
have been focused on the provision of Web APIs that allow developers to in-
teract with KG data. There are tools [1][5] that generate Web APIs from set of
SPARQL queries but require setting up programming environments or use fixed
structures for resources. Others [4] proposed a SPARQL Transformer to provide
specific JSON structures from the SPARQL queries but this prevents validating
SPARQL queries from any SPARQL endpoint, or [2] creates a Web service from
the API paths, methods and SPARQL queries provided in a configuration file
based on a key-value structure in proprietary format. In Table 1 we summarized
the main features of the aforementioned approaches, and it also includes the
features of R4R which will be described in the following sections.

Table 1. Web APIs tools for KGs consumption (X= included, x = not included)

Characteristic
Proposal

BASIL[1] grlc[5] RAMOSE[2] R4R

Resources
single X X X X

multiple X X X X
nested x x x X

Methods

GET X X X X
POST X X X x
PUT x x x x

DELETE x x x x
Security basic authentication X X x X

Documentation
Swagger-compliant X X x X

static HTML x x X X

Parameters
filtering x x X X
ordering x x X X

pagination x X x X

Serialization

XML X x x x
CSV X X X x
JSON X X X X
RDF X X x x

Content
JSON-oriented x X X X

SPARQL compatible x x x X

Deployment
remote X X X X
local X X X X

isolated x X x X

3 R4R

The R4R1 open source framework aims to bring it closer to non-expert Web
service developers: (1) customizable resource abstraction and an (2) intuitive
REST-based interface. The purpose of this tool is to facilitate access to KGs
guided by use cases via a REST API. R4R supports isolated deployment
without the need to configure programming environments. Unlike ex-
isting approaches, R4R provides nested resources that let us reference
complex objects. Thanks to this feature, users can, for example, get the char-
acters of a movie through an API call like /movies/{id}/characters where the
resulting characters will depend on the particular movie resource identified with
the “{id}” value. It also maintains SPARQL compatibility by avoiding any
non-SPARQL variables in queries, so that queries can be externally vali-
dated from any SPARQL endpoint. Our approach allows users to generate API
documentation from a YAML file with a Swagger specification as well as with a
static HTML file, for those users not familiar with the Swagger spec-
ification. In regard to parameters, our approach provides filtering, ordering,
and pagination options which allows full flexibility when users have to deal
with resources.

4 Motivating Example

We have prepared a short tutorial1 to create a REST API over DBpedia that
browses movies. Following an intuitive approach to the REST architectural style,

1 https://github.com/oeg-upm/r4r

the characters of a movie, for example, are available thanks to a SPARQL-
query (Listing 1.1) and a template (Listing 1.2) files located in a resources/-
movies/characters folder. As a result, a JSON message with the list of characters
of the movie is obtained by requesting, for example, /movies/WarGames/char-
acters (Listing 1.3).

Listing 1.1. SPARQL query to retrieve characters of a movie
1 PREFIX dbo: <http://dbpedia.org/ontology/>
2 PREFIX dbp: <http://dbpedia.org/property/>
3 PREFIX res: <http://dbpedia.org/resource/>
4 PREFIX dbr: <http://dbpedia.org/resource/>
5 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
6 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
7 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
8 SELECT ?name ?birthDate (?starring AS ?uri)
9 WHERE {

10 ?id dbo:starring ?starring .
11 ?starring foaf:name ?name .
12 ?starring dbo:birthDate ?birthDate .
13 OPTIONAL {?name rdfs:label ?string . FILTER (lang(?string) = ’en’) }
14 }

Listing 1.2. Template to return characters of a movie
1 [
2 #foreach($person in $results)
3 {
4 "uri" : "$person.uri",
5 "name" : "$person.name",
6 "birthDate" : "$person.birthDate"
7 }
8 #if ($velocityCount < ${results.size()})
9 ,

10 #end
11 #end
12]

Listing 1.3. Main characters of the movie WarGames
1 [
2 {
3 "uri" : "http://dbpedia.org/resource/John_Wood_(English_actor)",
4 "name" : "John Wood",
5 "birthDate" : "1930-07-05"
6 }
7 ,
8 {
9 "uri" : "http://dbpedia.org/resource/Ally_Sheedy",

10 "name" : "Ally Sheedy",
11 "birthDate" : "1962-06-13"
12 }
13 ,
14 {
15 "uri" : "http://dbpedia.org/resource/Matthew_Broderick",
16 "name" : "Matthew Broderick",
17 "birthDate" : "1962-03-21"
18 }
19 ,
20 {
21 "uri" : "http://dbpedia.org/resource/Dabney_Coleman",
22 "name" : "Dabney Coleman",
23 "birthDate" : "1932-01-03"
24 }
25]

5 Conclusions and Future Work

R4R facilitates the creation and publication of Web resources following REST
principles through filesystem directories. Resource paths are constrained to fol-
low a tree structure by automatically creating them from directories and avoid-
ing manual editing. In addition, R4R eases KG consumption by providing a
developer-friendly serialization of the SPARQL results without imposing custom
configuration rules but using standard SPARQL and Velocity data structures.
It has been adopted by TheyBuyForYou (TBFY) project [6] to facilitate access
to its public procurement KG2 with more than 150 million triples.

R4R has to be seen as a fully operational first step of building REST API over
KG based on templates to create resources, SPARQL queries to retrieve data
and directories to define resource paths. We plan to extend R4R in the future
to enable write operations (POST, PUT, DELETE) to fully interact with the
KG data and implement additional content negotiation capabilities and formats
(JSON-LD, Turtle, HTML).

Acknowledgments

Work supported by KnowledgeSpaces, PID2020-118274RB-I00.

References

1. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar approach for building web APIs on
top of SPARQL endpoints. In: CEUR Workshop Proceedings. vol. 1359, pp. 22–32
(2015)

2. Daquino, M., Heibi, I., Peroni, S., Shotton, D.: Creating Restful APIs over SPARQL
endpoints with RAMOSE. arXiv preprint arXiv:2007.16079 (2020)

3. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C.,
Gayo, J.E.L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., Ngomo, A.C.N.,
Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., Zimmermann, A.:
Knowledge Graphs (2021)

4. Lisena, P., Meroño-Peñuela, A., Kuhn, T., Troncy, R.: Easy Web API Development
with SPARQL Transformer. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek,
V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic
Web – ISWC 2019. pp. 454–470. Springer International Publishing, Cham (2019)

5. Meroño-Peñuela, A., Hoekstra, R.: grlc makes GitHub taste like linked data APIs.
In: European Semantic Web Conference. pp. 342–353. Springer (2016)

6. Soylu, A., Corcho, O., Elvesæter, B., Badenes-Olmedo, C., Mart́ınez, F.Y., Kovacic,
M., Posinkovic, M., Makgill, I., Taggart, C., Simperl, E., Lech, T.C., Roman, D.:
Enhancing public procurement in the european union through constructing and
exploiting an integrated knowledge graph. In: The Semantic Web – ISWC 2020. pp.
430–446. Springer International Publishing (2020)

7. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge Graph Embedding: A Survey
of Approaches and Applications. IEEE Transactions on Knowledge and Data Engi-
neering 29(12), 2724–2743 (2017). https://doi.org/10.1109/TKDE.2017.2754499

2 https://github.com/TBFY/knowledge-graph-API

