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Abstract. There is a high potential for data leakage in biomedical ma-
chine learning applications since biomedical data resources share, reuse
and import data from each other routinely. We have investigated poten-
tial data leakage in the prediction of protein-protein interactions using
the Gene Ontology knowledge graph, by comparing the performance of
models trained and tested on the same versions of data versus training
on archived data and predicting only for newly discovered protein inter-
actions. Our results were not able to detect an influence of data leakage,
indicating that if this problem exists, its magnitude is not affecting the
performance of knowledge graph-based protein interaction predictions.

1 Introduction

Machine learning methods have become a significant trend in several research
fields in recent years, and the semantic web is no exception. As machine learning
is increasingly being used, concerns about data leakage have been raised [1].
Leakage occurs when information about the target of a data mining problem
that should not be legitimately available to mine from is introduced [3], and it
can lead to overestimation of the model’s performance.

In biomedical applications, such as protein-protein interaction (PPI) pre-
diction, data leakage can also be an issue. It is not uncommon that multiple
databases and resources reuse the same sources of information. The majority of
PPI prediction methods that are based on knowledge graphs (KGs) [7,11] ex-
plore the Gene Ontology (GO) KG that defines the universe of classes associated
with proteins functions. The GO KG, composed of the GO [9] and GO annota-
tions [2] that link proteins to GO classes, is continuously evolving as more data
become available [10]. The majority of GO annotations are inferred by electronic
annotation (IEA), which means they are based on the automated processing of
other data sources. This could result in the same information that is used to
support a PPI in a database (e.g. STRING [8]) to also be used to establish a
GO annotation for the proteins.

1Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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We hypothesize that if this type of data leakage is common, then the per-
formance of GO-based PPI prediction methods would be artificially increased.
To test this hypothesis, we compare PPI prediction models trained on older
GO data and PPI interactions and tested on previously unknown interactions
captured in more recent versions of STRING with same version training and
testing. Furthermore, by training the models on labeled examples from the past,
we more closely simulate real-world applications.

2 Methods

PPI prediction is cast as a classification task that takes as input the GO KG
and a set of protein pairs. The first step of our approach is using historical data
to build the PPI datasets. Then we use the GO KG and the protein pairs to
predict interactions using several machine learning algorithms.

2.1 Data

The PPI datasets were obtained from the STRING Database1 which is one of
the largest available PPI databases that integrates both physical interactions as
well as functional associations between proteins collected from several sources.
We considered the following criteria to select protein pairs from STRING: (i)
each protein must be annotated with the GO; (ii) protein interactions must be
experimentally determined or from curated databases (as opposed to computa-
tionally determined); (iii) interactions must have a confidence score above 950
to retain only high confidence interactions. We employed random sampling to
create negative pairs composed of the human proteins present in the positive
pairs but without any STRING interactions between them, building a balanced
dataset.

We built several PPI datasets using three archived versions of the STRING
database (v9.1, v10, and v10.5) and the current version (v11). For the current
version, we created three datasets each excluding protein pairs present in each
of the older versions (see Table 1). Regarding the GO KG, we obtained archived
versions of the GO and GO annotations in 2015, 2017 and 2019 from the Gene
Ontology Data Archive2.

2.2 Protein-Protein Interaction Prediction

We follow the setup in [7] that predicts relations between KG entity pairs that
are not encoded in the graph using similarity-based semantic representations.
We employed three KG-based semantic similarity measures to compute semantic
similarity: two taxonomic measures (ResnikMax [5], SimGIC [4]) and one based
on graph embedding methods (RDF2Vec [6]). We applied six well-known classes

1https://string-db.org
2http://release.geneontology.org/
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STRING Version Date Number of positive pairs
v9.1 04/2015 12 681
v10 05/2017 26 863
v10.5 01/2019 31 384
v11 (excluding pairs in v9.1) 10/2020 41 227
v11 (excluding pairs in v10) 10/2020 31 642
v11 (excluding pairs in v10.5) 10/2020 23 571

Table 1. Number of positive pairs in each version of the STRING database.

of machine learning models to train classifiers using the scikit-learn library: K-
nearest neighbor (KNN), genetic programming (GP), decision tree (DT), XG-
Boost (XGB), random forest (RF), and multi-layer perceptron (MLP). The clas-
sification performance was evaluated using the weighted average of F-measures
(WAF).

3 Results and Discussion

We conducted two types of experiments: (i) Same version, where we train the
model with randomly chosen 10 000 protein interacting pairs from the archived
STRING version and test it with the remaining pairs; (ii) Future version,
where we train the model with randomly chosen 10 000 protein pairs from the
archived STRING version and test it on data from the current STRING version
(excluding interactions present in the archived version). The same randomly
chosen 10 000 protein pairs are used in both settings.

Since we used three archived versions, the Future version experiments also
allow us to measure the impact of using increasingly older versions of STRING
and GO in training. Table 2 shows no substantial differences between Same
version and Future version experiments.

The results do not support a clear indication for data bias. While for the
2019 version, it is always slightly easier to predict future PPIs, this is reversed
in the 2017 version, and varies between methods for the 2015 version, so no
clear trend is discernible. The median weighted F-measure for the Same version
experiments is 0.844, while it is 0.845 for the Future version (see Figure 1).

In addition to not detecting data leakage, the results also indicate that the
relation between the functions of a protein and its interactions do not funda-
mentally change over time. Even for more recently discovered interactions that
can be biologically different, protein functions are still a good predictor of PPIs.

4 Conclusion

Biomedical data resources share, reuse and import data from each other rou-
tinely. This can be a potential source of data leakage for machine learning ap-
plications. We investigated potential data leakage between the GO KG and the
STRING database in the task of PPI prediction, by comparing performance on
unseen interactions using archived data. Our results were not able to detect an
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Fig. 1. Weighted Average F-measure Boxplot using the Same version and the Future
version to test.

influence of data leakage, indicating that if this problem exists, its magnitude is
not affecting the performance of KG-based PPI predictions.
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ML SSM
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01/19 05/17 04/15
Same Future Same Future Same Future
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