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Abstract
The i* framework is a popular and well-equipped technique for capturing the organizational environment
and requirements of a system. However, i* heavily depends on the designer experience to cope with the
idiosyncrasy of each specific field. While the machine learning field would benefit from a requirements
representation, its complexity makes it unfeasible to directly use i*. The large number of constructs and
nuances between elements puts a severe strain on the designer, leading to the creation of error-prone
models. Therefore, in order to tackle this problem, we present an extension of i*. Our proposal covers
the main gaps between machine learning and conceptual modeling with the aim of creating a suitable
baseline methodology for machine learning requirements engineering. The advantage of our proposal
is that our language specifies the main elements involved in machine learning models and constrains
their interactions, filtering invalid designs and thus reducing the burden of knowledge while making the
process less error-prone.
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1. Introduction

Machine learning (henceforth dubbed ML) is a specific field inside the Artificial Intelligence. The
ML algorithms “learn” from data with the aim of performing different tasks such as forecasting,
classifications, or clustering among others. Thus, a ML model can answer questions like “Will
this patient develop a COVID morbidity?”, “How much this house will cost in 5 years?” or “Will
be an investment in a solar energy installation profitable in 3 years?”.

Despite its widespread use, there is no methodology or language for capturing ML require-
ments. Therefore, most ML projects rely on the expertise of individual data scientists or data
analysts to frame the problem at hand and translate implicit ML requirements into the actual
implementation. While i* is suitable for capturing user requirements, it is defined on a very
high abstraction layer so that it is flexible enough to be applied to almost every field. Therefore,
it often lacks the constructs and rules specific to the field where it is being applied to. As such,
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it is commonly tailored by adding new elements that provide a suitable RE language for the
domain at hand. Ideally, a methodology for capturing ML requirements would be accompanied
by a requirements language that captures the relevant concepts and relationships in the field,
providing data scientists a familiar language to frame the problem at hand.

In recent years, some works have started exploring the applicability of i* to machine learning
projects. For example, [1] used i* to capture non-functional requirements (NFR’s). Nevertheless,
the use of i* on the ML field has been scarce and the has not been properly explored yet from a
data scientist or ML engineer point of view.

Therefore, in this paper, we propose an i* extension and a methodology considering the whole
ML process and its associated requirements. Our proposal covers themain gaps betweenmachine
learning and conceptual modeling with the aim of creating a suitable baseline methodology for
ML requirements engineering. The advantage of our proposal is that our language specifies the
main elements involved in machine learning models and constrains its interactions, filtering
invalid designs and thus reducing the burden of knowledge on the designer while making the
process less error-prone. For instance, in an unconstrained language one could associate an
accuracy metric (a specific classification metric) to the result of a KNN algorithm (a specific
clustering task): both elements are related with ML, but their relationship is incorrect. Going
further, one could use an accuracy metric in an unbalanced classification problem. While this
relationship is semantically correct, the chosen metric is ill-defined for these problems.

The remainder of the paper is structured as follows: Section 2 presents the related work.
Section 3 presents our extension of i* applied to ML. Finally, section 4 provides the discussion
about the results of the model.

2. Related Work

The i* framework is one of the most widespread Goal-oriented Requirements Engineering
(GORE). It is a basic tool for modeling and analysis at both the business and service design
level, taking advantage of its agent orientation for modeling service relationships, and its goal
orientation to facilitate adaptation from generic patterns to specific needs [2].

Despite many extensions across the years, the use of i* in ML has not received much attention
until very recently. In [1] the authors propose the first approach of i* applied to ML, focusing on
non-functional requirements (NFRs). However, the proposed approach ignores the rest of the
aspects involved in an ML project. Consequently, the i* model is not extended with additional
elements related to the field. In [3] the authors show how requirements modelling can be applied
to the ML field. Nevertheless, they provide no extension, preserving the high abstraction layer
of i* while lacking specific constructs from the ML field. Therefore, the construction of valid
models relies entirely on the designer experience in both ML and i*, resulting in an error-prone
process where inconsistencies such as using invalid metrics for the models at hand are likely to
appear. Finally, in [4], the authors focus their efforts on testing and monitoring the effectiveness
of a ML model. However, their study does not cope with requirements capture.

As i* is a widespread language, other extensions have been presented in recent years. In
[5] and [6], the authors present an extension of i* adapted to data warehouses, enhancing its
manageability, as well as the comprehension capability of the user when dealing with complex
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models. However, these extensions are focused on data warehousing and their applicability on
machine learning is limited.

As shown, existing approaches mostly rely on the experience of the data scientist and ML
engineer to use and adapt i* in order to capture them. Compared to these approaches, our
proposal extends i* framework with the information needed from a machine learning engineer
point of view, minimizing the errors that appear with a more generalist approach. Thus, our
model is more restrictive but semantically valid. Second, since our proposal is more directed,
even less experienced ML designers will not skip any important aspect that should be considered
in a ML project. Third, thanks to the reduction of errors and the clearer process, the ML project
is likely to be developed in a shorter time. Fourth, our extension tries to follow the methodology
and guidelines described in [7] for i* extensions. However, note that due paper constraints a
graphical notation could not be included.

3. Requirements Engineering in Machine Learning projects

In this section, we present our proposal for tackling RE in ML based on i*. The aim of our
proposal is to serve as baseline approach to aid in the construction of valid models.

3.1. Capturing Machine Learning requirements

In order to implement a ML project, there are a series of questions that must be answered,
allowing ML designers to frame the problem at hand. Moreover, the MLmodel may require some
specific qualities (as for instance explainability or being capable of dealing class imbalances).
Consequently, these requirements must be captured in advanced in order to constraint ML
algorithms and tasks. Exploring these questions allows us to establish which new constructs
must be added to the base i* while at the same time providing a guideline for practitioners to
fill their requirements model.:

1. Which problem must be solved?: The objective needs to be clearly established at a
qualitative level. By answering this question, we are limiting the valid ML models. This
answer will provide the highest abstraction layer goal of the project. This goal will be
split into more specific goals (as MLGoals).

2. In which time frame should we have the answer?: By answering this question we
constrain the use of data for training the model. Adding this information modifies the
model training data. This answer will affect the Sources and Dataset. For instance, if our
model must predict if a patient will die or not with a 7 days margin, the last 7 days of
data must be removed from the historic training data with the aim of provide a proper
prediction.

3. Which data do you think is important for the model?: The answer to this question
is not trivial and it should be provided by domain experts. This answer will provide the
different Sources that will conform the Dataset element.

4. Which granularity of data is available to tackle the problem?: It is relatively easy
to aggregate data at low granularity level to create answers based on a higher abstrac-
tion layer. On the other hand, handling data with an excessively small granularity can
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impact the time cost of the model. Thus, with this information, temporalResolution and
refreshPeriod parameters belonging to Dataset will be parametrized.

5. Which metrics and hit rate would be valid to consider the project as a success?:
It is important to establish the appropriate model metric as well as the threshold that
allows the model to be accepted. Depending on the nature of the problem, a specific
variable (such as sensitivity or precision) may need to be used instead of accuracy.

6. Is the explainability of the model necessary?: Some machine learning techniques
allow for a detailed description of which which features have been given more importance,
while others (e.g. deep learning) do not provide them at all. Depending on the field of
application or the project, the explainability can be mandatory.

7. Is it likely that the data distribution will change?: Traditional machine learning
models obtain the distribution function based on the data they have been trained on.
However, depending on the nature of the project, it is possible that the trend of the data
may vary (known as Concept Drift) [8] which must be taken into account.

8. Is there any bias in the data? Is data fair from an equity point of view?: Biases in
data are common in real projects. They can lead to unwanted effects, such as racism or
xenophobia [9]. To avoid this result, there are three options: Remove training data, Remove
the variable that implies a bias, or Relabelling training data.This answer will categorize
Equity, a specific parameter of MLQualityAspect.

3.2. ML proposed model

The proposed metamodel is an extension of the i* 2.0 proposed in [10]. i* elements are repre-
sented in blue, whilst the new elements proposed tailored for ML requirements are represented
in yellow (concepts) and green (enumerations). The extension has been defined respecting the
core i* 2.0. As such, any element or attribute apparently missing has been omitted due to space
constraints. The newly added elements include both new properties and relationships that
must be specified for carrying out ML projects. For example, in ML projects it is mandatory to
specify how the models will be validated and evaluated as well as a temporal resolution which
describes the granularity of the expected prediction. Failing to specify this information, the ML
models cannot be configured and trained adequately, leading to the failure of the ML project. In
the following, we describe in more detail each of the newly added elements, which can be seen
in Fig. 1.

First, a Source represents a data source. The information from one or more sources can be
combined into a DataSet, which is used by MLModels. Each dataset has a temporalResolution
and refreshPeriod imposed by the data itself.

Next,MLGoals are divided into 3 different children classes ClassificationGoals, RegressionGoals
and ClusteringGoals. ClassificationGoals and RegressionGoals have a temporalResolution, which
allows us to detect conflicts between the requirements and the datasets at hand.

Furthermore, each specific particular goal class has a relationship with their corresponding
Indicator class. These indicators allow us to specify and measure the degree of satisfaction of
the associated goals (desired value vs actual value). In order to avoid design errors indicators
are drawn from an enumerated list.
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Our model also includes an abstract MLTask class. This class includes specific attributes
which are common to all ML tasks. For instance, all ML algorithms must be trained and tested.
In order to do that, the MLTask allows to specify i) which method will be used for splitting the
data, ii) which will be the size of the train, testing and validation sets, sets and iii) how many
folds will be used if cross validation is selected.

In order to represent the specific nature of eachMLTask, the class is specialized into three more
specific elements. ClassificationTask includes a binaryClass attribute which denotes whether the
classification is binary or multilabel (three or more classes). Furthermore, both ClassificationTask
and RegressionTask include the possibility of creating aggregated ML models through bagging
or boosting. Each of these three classes uses an enumeration with a list of valid algorithms. For
demonstrative purposes, the list is not complete as it would be unreasonably large.

Next to the MLTask class, we have the DataPreparation class. This class has different pa-
rameters related with operations that can be done in a ML project. Some of these parameters
are optional, according to the chosen MLTask. For instance, normalization is a must for a
SVM algorithm, but it is not necessary in a RandomForest approach. On the other hand, a
classRebalancing operation is needed if the dataset is not balanced, despite the chosen algorithm.
This will be controlled through OCL constraints [11].

Finally, the different quality aspects of a ML project have been collected under the special-
ized MLQualityAspects class. These capabilities are linked to the different algorithms with a
ContributionType connection. Thus, some algorithms can make or help to achieve a desirable
MLQualityAspect (for instance, DBScan is an algorithm that ensures OutlierRobustness). On the
other hand, some algorithms can hurt or even break the achievement of other MLQualityAspect
(for instance, KNN has a “hurt” relationship with Scalability since it is affected by a large number
of dimensions). Due to space constrains, the detail set of relationships between algorithms and
MLQualityAspects is not included.

The definition of these constructs and their relationships allows us to define ML requirements
models for complex ML projects. Although we have applied our proposal in one such projects
based on gas turbines, due to paper constraints we cannot include the result in this paper.

4. Conclusions

Although Machine Learning (ML) and Artificial Intelligence (AI) have gained attention in recent
years, a language for specifying ML requirements is still missing. As shown in the related work,
only very recently approaches that make use of the widespread i* framework to capture ML
requirements have appeared. Unfortunately, the complexity of the ML field together with the
high-level abstraction of i* makes the requirements elicitation process a difficult, error-prone
task that relies on the designer experience to properly specialize and use i* constructs.

Compared to these approaches, in this paper we propose a novel, baseline i* extension that
captures the main concepts involved in ML learning projects and their relationships. In this
way, our approach helps designers to build valid ML requirements models. Our approach is
complemented by a series of questions that act as guideline, leading to a more systematic
requirements capture.

As part of our future work, further empirical studies are under way to evaluate the benefits
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Figure 1: Proposed metamodel: i* for ML.
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and limitations of the presented model, especially when applied to other fields. These studies
include evaluating the comprehension and validity of the ML design against a task where the
proposal is not used. To this end, we are working on the visual notation of the proposal, which
will be evaluated together with out methodology using a controlled experiment.

For the planned experiment, two groups of people will develop an ML model to tackle two
different problems. First, each group will tackle its problem without using the methodology.
Then, the tasks will be exchanged between the two groups and carried out using the proposed
metamodel. Both the time taken to solve the task as well as the suitability of the solution will be
evaluated. Finally, each group will be asked to fill a questionnaire regarding the interpretability
of the model created with the proposed approach and the comprehensibility of the notation.
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