CEUR-WS.org/Vol-2984/paper9.pdf

Software Architecture Quality Attributes of a Layered
Sensor-Based loT System

Zeljko Stojanov?!, Dalibor Dobrilovic?

"University of Novi Sad, Technical Faculty "Mihajlo Pupin", Zrenjanin, Serbia

Abstract

Quality of complex technical systems is highly dependent on the quality of integrated software systems.
Software system quality is determined with their functionalities and quality attributes that describe
how the functionalities are performed. Although there exists a large list of software architecture quality
attributes that technical systems can satisfy, they do that to a greater or lesser extent. Internet of Things
(IoT) systems are complex socio-technical systems that include a variety of software elements distributed
on specific hardware components and servers. Selecting and fulfilling of the most suitable quality
attributes during system design is a challenging task. In this paper, we present our subjective experience
with scalability, maintainability, security, availability and portability quality attributes during design of a
layered sensor-based IoT system for monitoring industrial environmental conditions. Further research
directions are also presented.

Keywords

software architecture, system architecture, IoT system, quality attributes, layered architecture

1. Introduction

Production of high quality software products is challenging demand for software industry in
highly dynamic and competitive market [1]. This assumes continuous improvement software
characteristics in order to satisfy users and market demands. Software architecture is essential
for the design of effective and usable software systems, their integration into complex socio-
technical systems, and their easy and controllable evolution to adapt to changing business needs.
Since technical systems should respond to proposed business requirements and constraints,
software architecture should help in mapping them to specific design of a system [2]. From the
technical point of view, software architecture reflects fundamental organization of a software
system, its components and their relationships, as well as relations of a software system with its
environment. Creation of a loosely coupled architecture by minimizing dependencies between
components is the key point in architecture design. With this approach with minimized
dependencies, changes during software evolution are localized and do not propagate through
the architecture, which significantly reduces costs and complexity of maintenance.
Functionalities of software systems reflect functional requirements and constraints derived
from business objectives. However, nonfunctional requirements define how identified func-
tionalities will be provided to system user, and should be considered together with functional

Workshop Information Technologies: Algorithms, Models, Systems (ITAMS), September, 2021, Irkutsk, Russia
& zeljko.stojanov@uns.ac.rs (Z. Stojanov); dalibor.dobrilovic@uns.ac.rs (D. Dobrilovic)

@ 0000-0001-6930-5337 (Z. Stojanov); 0000-0002-3083-5725 (D. Dobrilovic)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
+==1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:zeljko.stojanov@uns.ac.rs
mailto:dalibor.dobrilovic@uns.ac.rs
https://orcid.org/0000-0001-6930-5337
https://orcid.org/0000-0002-3083-5725
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

requirements. The following types of nonfunctional requirements can be distinguised [3]: (1)
technical constraints relate to selection of the appropriate software technologies for develop-
ment, (2) business constraints relates to decisions driven from business that affect development
(e.g. reduction of costs by moving to open source platforms), and (3) quality attributes relates
to issues of concern to application users and other stakeholders, while affecting the way of
system functioning. In the Software Architect’s Handbook [4] the following definition of quality
attributes is proposed:

Quality attributes are properties of a software system and a subset of its non-functional
requirements. Like other requirements, they should be measurable and testable. Soft-
ware quality attributes are benchmarks that describe the software system’s quality
and measure the fitness of the system.

Design of effective software architectures is based on common patterns or styles that facilitate
specific organization and communication of software components [3]. Each architecture pattern
has specific and well-known characteristics, which makes it appropriate for specific business
and technical requirements. Large and complex systems usually are based on multiple patterns,
which are combined to respond to specific requirements. Architecture patterns describe com-
ponent types and their properties, their relations and topology, but also outline benefits and
drawbacks of using that pattern. Detailed overview of contemporary architecture patterns, such
as layered, event-driven, service-oriented or microservices architecture, is presented in [5, 6],
while [7] presents reference architecture for for Industrial Internet of Things (IIoT) systems.

Considering quality attributes lead to attribute based architecture design, which incorporates
predictability in architecture design [8]. Using certain attributes requires understanding them
and implementing the most suitable way for measuring their effects on architecture. Since
software architecture is considered in the early phase of software production cycle, determining
the right architecture that satisfy proposed quality requirements rendered as quality attributes is
of great importance for the success of the whole project [9]. The use of quality attributes provides
support for evaluation of proposed software and system architecture. During software system
design several quality attributes are considered. The level of quality attribute satisfaction during
system design affects the overall performance and quality of the system. Quality attributes
should be considered in the early phase of eliciting software requirements, but their testing and
evaluation should be carried out during the whole system life cycle [10, 11, 4].

Based on the above discussion and our experience with different types of software architecture
patterns in data intensive enterprise software systems [12] and smart manufacturing systems
[13], the objective of this paper is to present discussion of specific quality attributes during
the design of layered sensor-based IoT system for monitoring the industrial environmental
conditions in manufacturing settings.

2. Software architecture quality attributes in loT systems

Software architecture quality attributes were recognized more than 40 years ago as very im-
portant for optimizing and saving software life cycle costs [14]. Since then, they attracted
significant attention by researchers and practitioners from software industry. Quality attributes,

together with the proposal of quality assessment process should be included in the relevant
project documentation (e.g. quality plan). A comprehensive overview of the most commonly
used architecture quality attributes in the selected software engineering literature focused on
software architectures [3, 11, 4, 2] is presented in Table 1.

Table 1
The most commonly used architecture quality attributes

Quality attribute Description

Performance Defines the amount of work software product should perform in
a proposed time for correct operation (e.g. increased throughput,
shorter response time).

Scalability Defines the software product capability of increasing in size,
which usually means increasing processing capability with ex-
isting hardware (e.g. additional connections, increased amount
of requests for processing, increased data).

Maintainability Defines how easy is software product for maintenance, includ-
ing frequent modification based on changed functional require-
ments (e.g. easier modifiability, extensibility and flexibility).

Security Defines mechanisms to support security requirements such as
authentication, authorization, encryption and integrity.

Availability Defines software product quality to be able to be continuously
used (e.g. reliability and easy recovery from failures, easy repli-
cation of the most critical elements of the software product).

Integrability Defines how easily software product can be integrated into more
complex technical systems.

Interoperability Defines how easily software product can exchange data with
other software systems within more complex technical systems.

Portability Defines how easily software product can be run on different
software or hardware platforms (it is based on using platform
independent technologies).

Testability Defines how easily software product can be tested in a given
context, which depends on the software complexity, the con-
trollability and isolability of specific software components, and
automatability of test actions and processes.

Usability Defines how easily software product can be used for accomplish-
ing typical tasks by users. It is closely related to Learnability
that defines how easily users can learn to effectively use soft-
ware product.

Energy efficiency Defines how software product consumes energy, which becomes
very important in contemporary distributed loT based systems.
This attribute should be balanced with other attributes such as
reliability, availability or usability.

External quality Internal
attributes attributes

DRI Inheritance tree depth
I Maintainability

Cyclomatic complexity

l Reliability ‘
Program size in lines of code J

Reusabilit
| us i Number of error messages l
‘ Usability Length of user manual ‘

Figure 1: Internal and external attributes of software product (adapted from [11])

In practice, it is not feasible to measure majority of quality attributes, like maintainability or
usability, since they present subjective opinion affected by person education, experience and
knowledge. In order to measure these attributes, some internal attributes of software product
that can be easily measured are determined. These internal attributes relate to measurable
properties of software products, such as cyclomatic complexity, size of files or modules, number
of error messages or failures. Somerville [11] proposed the relationships between internal
attributes and external quality attributes as it is presented in Figure 1.

High complexity and variety of implementation scenarios of IoT systems brings several
challenges in designing architecture of the whole system and software components. Since
IoT and embedded systems are used in many domains such as critical systems, fault-tolerance
systems or real-time systems, considering their quality characteristics is essential for ensuring
their efficient and safe usage [15].

Muccini and Moghaddam [16] presented a systematic mapping study on IoT architectural
styles and patterns. Based on the review of scientific literature the following architectural
concerns were identified: styles, distribution patterns, reference architectures, architectural
platforms, architecture activities, and quality attributes. Based on literature review the following
quality attributes were identified as the most important for IoT architecture: scalability, security,
interoperability, and performance. The following quality attributes were identified as less
important: privacy, availability, mobility, reliability, resiliency, and evolvability. Regarding the
architecture styles, mostly used were layered, cloud based and service oriented.

Kim [17] proposed quality model of IoT applications based on the following characteristics
of IoT systems: participation of hardware devices, collaboration of software and hardware
components, mobility and connectivity of devices, monitoring of devices, and limited resources.
The following quality attributes were proposed in the model: (1) functionality — functional
coverage with functional requirements (suitability) and accuracy of functionalities (accuracy),
(2) reliability — maintaining a specific level of performance, which includes fault tolerance
and recoverability from undesired situations, (3) efficiency — ensuring acceptable performance
regarding speed and resource usage, and (4) portability — capability to adapt to changed envi-
ronment, which includes installability, replaceability. Proposed model was evaluated within a
virtual environment and showed acceptable characteristics.

Ghasemi et al. [18] proposed the architecture of a system based on smart home technology
for the elderly health-care. The proposed system architecture contains three main components:
home server, data center, and physician. Wifi/3G/4G was used for data transfer between
components, while sensed data were transferred via Bluetooth or Zigbee technology from
the sensors to the home server. The proposed system architecture was design to meet the
following quality attributes: availability, performance, modifiability, security, usability and
interoperability. The proposed architecture evaluation was done by using the Architecture
Tradeoff Analysis Method (ATAM) scenario-based approach [19]. The scenarios were produced
through brainstorming and later ranked by stakeholders (user, system architect, and software
developer) via voting. Based on the architecture evaluation, the authors discussed risks related
security and availability issues, and their influence on system performance.

Temkar and Bhaskarb [20] presented a study with evaluation of the quality of a system for
agriculture field monitoring based on Wireless Sensor Network (WSN) and IoT. The system
architecture contains components that enable data collection and monitoring, data processing,
execution, and feedback. Quality evaluation of the system was done by using Analytic Hierarchy
Process (AHP). Quality model of the system considers the following quality attributes: functional
suitability, compatibility, maintainability, usability, performance efficiency, security, reliability,
and portability. Evaluation of software components of the system revealed that the proposed
software quality attributes are suitable for ensuring the quality of software part of the system.

3. Quality attributes of a layered sensor-based loT system

In this section, a model of an IoT system for monitoring environmental conditions within
industrial settings is briefly presented, as a basis for discussing quality attributes of software
architecture. The system was initially developed as a student project based on open-source
software and hardware components [21], while its software architecture is presented in the paper
[13]. The system is designed with a layered architecture which has many positive characteristics
regarding the fulfilment of typical quality attributes (see Table 1). Software architecture of
the system at the highest level is presented in the deployment diagram in Figure 2. Presented
architecture shows deployment of software components at nodes and their distribution in four
layers (perception layer, transport layer, middleware layer, and application layer).

Design of a system with diversity of software and hardware components is highly challenging
regarding the conformance to quality attributes of the system, especially for systems used in
dynamic and evolving industrial settings. The selection of the quality attributes for software
architecture is based on subjective experience of the authors with software architecture and IoT
systems, which can be classified as expert based qualitative evaluation of software architecture
quality [22, 9]. The following quality attributes were considered in the system design: scalability,
maintainability, security, availability, and portability.

Scalability of the system relates to both hardware and software components in terms of
their capacity to fulfil all possible requirements posed to the system. We consider scalability of
the system based on the three dimensions proposed in [23]: (1) processing capacity relates to
increasing the processing capability of software components from perception layer to servers and
user services, (2) information capacity relates to increasing the storage in database component

@
>
o
.§ % Thick Node Firmware Software Component % Thin Node Firmware Software Component
Q
§ Thick sensor node Thin sensor node
&
]
>
i
‘g % ZigBee to WiFi Software Component E BLE to WiFi Software Component
s -
w
§ ZigBee to WiFi Gateway Node BLE to WiFi Gateway Node
i
q; % Web Application for Data Visualization ‘ % Data Analytics Software Component
°
o Web Server) Cloud Data Analytics Server
2
Q2
e}
| —

:

SQLite Database Server
]
>
o
,S él— Monitoring Application
§ .
s User Node
Q.
<<

Figure 2: Software architecture model of a loT system for monitoring industrial environmental conditions

of the system and local storage of individual software components, and (3) connectivity relates
to increasing the number of access points for users and number of sensing elements in the
perception layer. These dimensions were built into the system regarding the selection of layered
architecture pattern, selection of hardware components, selection of technologies and design of
individual software components distributed in all layers.

Maintainability is essential for ensuring proper and continuous functioning of the system
regardless of problems that may occur during its use. It should be built into the system archi-
tecture from the early design decisions, and consider software complexity, technology, tools
and human factor [24]. Maintainability of the proposed architecture is supported by design
in which components are loosely coupled, while the propagation of potential modifications is
straightforward between components in different layers. For example, adding new sensors in
perception layer leads to appropriate modifications in all three components in the middleware
layer, and similarly in the application layer.

Security focuses on enabling reliable and secure 10T systems. The primary concern in the
system we propose is the authenticity of the IoT devices. The IoT devices authentication can be
achieved with various approaches applicable in variety of applications [25, 26]. This aspect is
important for ensuring the originality of data send by trusted devices. The second concern is
the encryption of collected data send for ensuring the confidentiality of data send. Considering
of extensive usage of messaging protocols such as MQTT and CoAP in IoT nowadays their
support for security issues is important as well [27]. This attribute is focused on the security of

the system core elements (servers, DB, and network devices), ensuring the operability of the
system, and confidentiality of data stored.

Availability of the system ensures that core elements of the system enable continuous real
time access to the services for end users. This characteristic relates to fault tolerance and
minimizing time for repairing the whole system or specific components [28]. Availability of the
software components is slightly different depending on the layer in which they are deployed,
since it depends on how easy is to access hardware components were software components
were located. Availability of software components was considered through the selection of open
source software solutions and modular architecture design with clear relationships between
components, which enable easy, fast and cheap maintenance and minimization of potential
failures.

Portability defines how easily software product can be run on different software or hard-
ware platforms [29]. The right way for ensuring this is in usage of standardized technologies
and protocols, thus giving the opportunity for implementation of open-source multiplatform
software. Such software for the core of the system can be messaging protocol brokers such as
Mosquitto and RabbitMQ, and database servers such as MongoDB, Cassandara, MySQL etc. At
the client side, the development of web-based applications ensures the platform independence,
and service accessibility from computers, tablets and smart-phones.

4. Conclusions

Quality of software systems is essential for performance of complex socio-technical systems. IoT
systems have been widely used in different domains, and software part of these systems is quite
complex regarding used technologies and business processes. This requires considering quality
attributes of software architecture in order to ensure proper functioning of the whole systems
and minimizing risks and costs in the system life cycle. In this paper, subjective evaluation
of software architecture quality attributes of a layered IoT system for monitoring working
conditions is presented. Scalability, maintainability, security, availability and portability were
discussed as the most important quality attributes of the presented system.

Further work will be directed to development of metrics suitable for measuring the selected
quality attributes of software architecture of the whole system, as well as individual software
components distributed in layers. Considering other quality attributes, such as interoper-
ability, usability and energy efficiency in further improvements of the system are promising
development and research options.

Acknowledgments

Ministry of Education, Science and Technological Development, Republic of Serbia, supports
this research under the project "The development of software tools for business process analysis
and improvement", project number TR32044.

References

(1]
(2]
(3]

[10]

[11]
[12]

F. N. Colakoglu, A. Yazici, A. Mishra, Software product quality metrics: A systematic map-
ping study, IEEE Access 9 (2021) 44647-44670. doi:10.1109/ACCESS.2021.3054730.
L. Bass, P. Clements, R. Kazman, Software architecture in practice, SEI series in software
engineering, 4th ed., Addison-Wesley Professional, Upper Saddle River, NJ, USA, 2021.

I. Gorton, Essential Software Architecture, 2nd ed., Springer-Verlag Berlin Heidelberg,
2011. d0i:10.1007/978-3-642-19176-3.

J. Ingeno, Software Architect’s Handbook, Packt Publishing, Birmingham, UK, 2018.

D. Duggan, Enterprises software architecture and design: entities, services, and resources,
John Wiley & Sons, Hoboken, NJ, USA, 2012.

M. Richards, Software Architecture Patterns: Understanding Common Architecture Pat-
terns and When to Use Them, 1st edition ed., O’'Reilly Media, Sebastopol, CA, USA, 2015.
S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Martin, B. Murphy, M. Crawford,
The Industrial Internet of Things Reference Architecture, Technical Report of Industrial
Internet Consortium (IIC) Technology Working Group and its Architecture Task Group
IIC:PUB:G1:V1.80:20170131, Milford, MA, USA, 2017.

M. Klein, R. Kazman, Attribute-Based Architectural Styles, Technical Report CMU/SEI-99-
TR-022, Pittsburgh, PA, USA, 1999.

S. Moaven,]J. Habibi, A fuzzy-ahp-based approach to select software architecture based
on quality attributes (FASSA), Knowledge and Information Systems 62 (2020) 4569-4597.
d0i:10.1007/s10115-020-01496-7.

M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, A method for understanding quality
attributes in software architecture structures, in: Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering, SEKE °02, Ischia, Italy,
2002, pp. 819-826. d0i:10.1145/568760.568900.

I. Sommerville, Software Engineering, 9 ed., Addison Wesley, Boston, MA, USA, 2011.

Z. Stojanov, D. Dobrilovic, J. Stojanov, Extending data-driven model of software with
software change request service, Enterprise Information Systems 12 (2018) 982-1006.
d0i:10.1080/17517575.2018.1445296.

Z. Stojanov, D. Dobrilovic, G. Jotanovic, D. Perakovic, G. Jausevac, V. Brtka, Software
architectures in smart manufacturing: Review and experiences, in: I. Bychkov, Z. Stojanov,
A. Tchernykh, A. Feoktistov (Eds.), Proceedings of the 1st International Workshop on
Advanced Information and Computation Technologies and Systems (AICTS 2020), volume
2858 of CEUR Workshop Proceedings, Irkutsk, Russia, 2020, pp. 160-168.

B. W. Boehm,]J. R. Brown, M. Lipow, Quantitative evaluation of software quality, in:
Proceedings of the 2nd International Conference on Software Engineering, ICSE ’76, San
Francisco, CA, USA, 1976, pp. 592-605. doi:10.5555/800253.807736.

Z. Tamrabet, T. Marir, F. MOKHATI, A survey on quality attributes and quality models for
embedded software, International Journal of Embedded and Real-Time Communication
Systems 9 (2018) 1-17. d0i:10.4018/IJERTCS.2018070101.

H. Muccini, M. T. Moghaddam, Iot architectural styles, in: Proceedings of the 12th European
Conference on Software Architecture, volume 11048 of Lecture Notes in Computer Science,
Springer, Cham, Madrid, Spain, 2018, pp. 68-85. doi:10.1007/978-3-030-00761-4_5.

http://dx.doi.org/10.1109/ACCESS.2021.3054730
http://dx.doi.org/10.1007/978-3-642-19176-3
http://dx.doi.org/10.1007/s10115-020-01496-7
http://dx.doi.org/10.1145/568760.568900
http://dx.doi.org/10.1080/17517575.2018.1445296
http://dx.doi.org/10.5555/800253.807736
http://dx.doi.org/10.4018/IJERTCS.2018070101
http://dx.doi.org/10.1007/978-3-030-00761-4_5

[17]

(18]

[19]

[20]

[21]

[27]

(28]

[29]

M. Kim, A quality model for evaluating iot applications, International Journal of Computer
and Electrical Engineering 8 (2016) 66-76.

F. Ghasemi, A. Rezaee, A. M. Rahmani, Structural and behavioral reference model for iot-
based elderly health-care systems in smart home, International Journal of Communication
Systems 32 (2019) e4002. doi:10.1002/dac.4002.

R. Kazman, M. Klein, P. Clements, ATAM: Method for Architecture Evaluation, Technical
Report CMU/SEI-2000-TR-004, Pittsburgh, PA, USA, 2000.

R. Temkar, A. Bhaskarb, Quality assurance of iot based systems using analytic hierarchy
process, Turkish Journal of Computer and Mathematics Education 12 (2021) 6759-6767.
doi:10.17762/turcomat.v12i10.5542.

N. Petrov, D. Dobrilovi¢, N. Mirosavljev, N. Gruji¢, Wireless sensor networks for monitoring
living and working conditions, in: Proceedings of the 8th scientific-professional conference
Information technology for e-education, Banja Luka, Bosnia and Hercegovina, 2016, pp.
170-176.

T. Rosqvist, M. Koskela, H. Harju, Software quality evaluation based on expert judgement,
Software Quality Journal 11 (2003) 39-55. doi:10.1023/A:1023741528816.

G. Brataas, P. Hughes, Exploring architectural scalability, in: Proceedings of the 4th
International Workshop on Software and Performance, WOSP ’04, Redwood Shores, CA,
USA, 2004, pp. 125-129. doi:10.1145/974044.974064.

B. C. D. Anda, Assessing software system maintainability using structural measures
and expert assessments, in: G. Canfora, L. Tahvildari (Eds.), Proceedings of the 23rd
International Conference on Software Maintenance (ICSM 2007), Paris, France, 2007, pp.
204-213. doi:10.1109/ICSM. 2007 .4362633.

C.Jung, J. Choi, R. Jang, D. Mohaisen, D. Nyang, A network-independent tool-based usable
authentication system for internet of things devices, Computers & Security 108 (2021)
102338. d0i:10.1016/j.cose.2021.102338.

T. Shah, S. Venkatesan, Authentication of iot device and iot server using secure vaults, in:
Proceedings of the 17th IEEE International Conference On Trust, Security And Privacy
In Computing And Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), New York, NY, USA, 2018, pp. 819-824.
doi:10.1 109/TrustCom/BighataSE.2018.00117.

V. Seoane, C. Garcia-Rubio, F. Almenares, C. Campo, Performance evaluation of coap and
mgqtt with security support for iot environments, Computer Networks 197 (2021) 108338.
doi:10.1016/j.comnet.2021.108338.

V. Cortellessa, R. Eramo, M. Tucci, From software architecture to analysis models and back:
Model-driven refactoring aimed at availability improvement, Information and Software
Technology 127 (2020) 106362. doi:10.1016/j.infsof.2020.106362.

S. Pennycook, J. Sewall, V. Lee, Implications of a metric for performance portability, Future
Generation Computer Systems 92 (2019) 947-958. doi:10.1016/j . future.2017.08.
007.

http://dx.doi.org/10.1002/dac.4002
http://dx.doi.org/10.17762/turcomat.v12i10.5542
http://dx.doi.org/10.1023/A:1023741528816
http://dx.doi.org/10.1145/974044.974064
http://dx.doi.org/10.1109/ICSM.2007.4362633
http://dx.doi.org/10.1016/j.cose.2021.102338
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00117
http://dx.doi.org/10.1016/j.comnet.2021.108338
http://dx.doi.org/10.1016/j.infsof.2020.106362
http://dx.doi.org/10.1016/j.future.2017.08.007
http://dx.doi.org/10.1016/j.future.2017.08.007

	1 Introduction
	2 Software architecture quality attributes in IoT systems
	3 Quality attributes of a layered sensor-based IoT system
	4 Conclusions

