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Daniel L. Silver!, Ahmed Galila’

T Acadia University, Wolfville, NS, Canada B4P2R6

Abstract

Human learners encounter difficulties when learning an algorithm from small numbers of noisy examples.
The sequence of concepts that are manipulated by the algorithm must be recognized before the algorithm
can be learned effectively. This is accomplished by learning to map the noisy examples of a concept to a
the correct class label or symbol. In this way, human learners bias the development of more accurate
models for an algorithm. Similarly, we propose RNNs can better learn an algorithm, if they concurrently
learn to classify the concepts manipulated by that algorithm. We train recurrent LSTM neural networks
to perform arithmetic operations (+,-,x,/) on sequences of images of noisy handwritten digits. The
networks are trained in the presence and absence of symbols for the noisy digits. The results show that
the models trained to classify the noisy handwritten digits are more effective at performing arithmetic
than the models trained without symbols. Furthermore, we show that thermometer encoded symbols for
digits develops internal representations that capture the quantity and ordinal relationship between those
digits such that the recurrent networks are able to discover more accurate algorithms for all arithmetic
operations for both seen and previously unseen combinations of digits.

Keywords
learning an algorithm, learning arithmetic, inductive bias from symbols, encoding symbolic knowledge,
escaping local minima

1. Introduction

The ability of individual humans to learn a complex algorithm that accurately manipulates
a sequence of concepts is hampered by the variety of real-world examples of these concepts.
Consider the complexity of adding two hand-written digits. This difficulty is overcome as
individuals learn to classify examples of each digit concept using symbols from a common
language [1]. These symbolic class labels effectively transfer knowledge within a society from
one person to another. Deep recurrent neural networks (RNNs) experience similar challenges
when learning a new algorithm from a small dataset containing examples of input-output
sequences. This can be attributed to the existence of many local minima in the hypothesis space
of the network’s loss function [2]. We propose that learning to map noisy examples of concepts
to symbolic labels during recurrent network training provides an inductive bias that guides the
learning algorithm to a more optimal representation in the hypothesis space. The conjecture is
that shared symbols are important to the external exchange of knowledge between intelligent
agents, even though the learned conceptual representation of these symbols are unique to each
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agent [3].

The value of sharing concepts through symbols will be empirically demonstrated in this
paper by training deep RNNs to perform basic arithmetic operations (+,-,x,/) given noisy images
of handwritten digits and arithmetic operators. We limit our experiments to developing RNNs
based on Long Short Term Memory units (LSTMs) using images from the MNIST dataset [4].
The models will accept a sequence of images as input and will output the result of the operation
as a sequence of encoded vectors. The models will also use the output channel to map (classify)
the noisy images to consistent symbols. Training will be performed with and without the
presence of symbols, whereas testing will be done using only the noisy images of the digits.
The test results will be analyzed to show the impact of the symbolic channel on the accuracy
of the models and the models will be examined using activations clustering to show how the
symbols affect the development of the networks internal representation and features.

The major contributions of this paper are: (1) We show that a RNN that is trained to map
noisy examples of concepts to symbols while also learning an algorithm that manipulates those
concepts performs significantly better than one trained without the use of symbols; and (2) We
show that, with properly encoded symbols, a RNN can develop an algorithm for arithmetic
operations that generalizes to unseen combinations of digits.

2. Background

2.1. Sequence Modeling with Recurrent LSTM Neural Networks

Many machine learning problems consider making one or more predictions based on a sequence
of input data. A RNN is capable of developing such models, most notably sequence-to-sequence
(seq2seq) models that develop a form of algorithm that manipulates a sequence of input values
such as “3 + 2 =" to produce an output “5” [5]. In 1997, a type of RNN architecture was introduced
that uses Long Short-Term Memory (LSTM) units versus standard hidden nodes with sigmoid
activation functions [6]. LSTM RNNs provide a proven solution to overcoming what is know
as the vanishing gradient problem that can cripple standard RNNs from learning long-term
dependencies over many time steps [7].

Deep LSTM RNNs may increase the expressiveness of a model, however, it makes the search
for a global minimum in the hypothesis space more challenging. The complex topology of
the network adds regions in the loss function that act as local minima [8]. In the context of
a small dataset, this makes it more likely for the LSTM RNN algorithm to converge to a sub-
optimal minima [2]. Overcoming this difficulty in training deep networks requires increasing
the number of labelled training examples used, pre-training the lower layers of the network
using unsupervised learning with unlabelled examples [2], or building in inductive bias as is
the case with convolutional neural networks [9].

2.2. Related Work

There has been prior work on learning arithmetic equations but almost all use noise-free
symbolic encoding of the digits (ASCII code or one-hot vectors) and not images of handwritten



digits [10, 11]. Even with symbolic encoding of the digits these approaches require neural
components manually biased towards the arithmetic task at hand in order to generalize.

We found one prior effort to learn addition using images of integers of up to seven digits in
a standard font [12]. Good accuracy is achieved but only after training on 150,000 examples.
The authors take the reasonable approach of breaking the problem down into classifying each
digit explicitly and then using a coded symbol for that digit to do addition. We take a similar
direction, however we consider the situation where the symbols for the hand written digits
may only be present for a portion of the training data and are not used explicitly to perform the
arithmetic operation.

3. Theory and Approach

3.1. Theory

Humans have developed language to allow individuals to share knowledge of basic concepts
in the form of symbols in a clear and concise manner [1]. These shared symbols introduce
beneficial inductive bias when learning algorithmic models that manipulate these concepts;
resulting in more accurate models [13]. Consider the following definitions:

Definition 1. A concept is an abstract idea or notion that can be learned and represented inter-
nally in unique ways by an intelligent agent.

Definition 2. A symbol is a noise-free, concise and consistent external representation of a concept
that captures its key regularities or semantics and is meant to be shared between learning agents.

For example, the MNIST dataset contains a wide variety of handwritten examples of the
concept “2”. A neural network would require a large number of noisy handwritten examples
of this digit in order to learn to do arithmetic accurately. In contrast, a symbol for the digit
“2”, such as the one-hot vector “001000000”, has a consistent representation for the concept.
Far fewer examples of “2” encoded in this way is required by a neural network to learn to do
arithmetic. This is why humans learn to classify digits before and concurrently while learning
to do arithmetic.

Hypothesis 1. Similar to how individual human learners overcome the difficulties they encounter
while learning an algorithm that manipulates a sequence of noisy examples of concepts, a RNN can
better learn an algorithm by concurrently learning to classify each noisy example using a symbolic
label of the concept. Learning to classify the example guides the development of more beneficial
internal representations for the concepts and therefore the algorithm.

The conjecture is that symbols are predominantly external communication tools that allow
agents to share otherwise complex noisy concepts that help them avoid local minima in model
development. Clear symbols for concepts, provided on occasion, help a learner develop abstract
representations that provide beneficial inductive bias during learning, therefore reducing the
number of examples required to accurately learn a new concept. Furthermore, appropriately
chosen symbols allow the learner to move beyond developing a simple mapping function from



input to output, to developing an algorithm that represents a more general solution to the
problem, in this case performing arithmetic operations.

3.2. Approach

To test the hypothesis presented above, we construct several LSTM RNN models that learn basic
arithmetic operations (addition, subtraction, multiplication and division) on noisy images of
handwritten digits. We use the MNIST dataset of images of handwritten digits [4] to train and
test our models because the data has been prepared and does not require the neural network to
contain convolutional components to produce good models [9]. This simplification allows us to
better analyse the internal representations of the LSTM networks. Our goals are: (1) To show
that it is possible to develop a RNN model that can learn to perform all four basic arithmetic
operations more effectively with the presence of symbols than without; and (2) To show that
networks that are trained using appropriate symbols are capable of discovering an algorithm
from an impoverished set of examples that generalizes well to unseen combinations of digits.

Learning Arithmetic using LSTM networks. Figure 1 shows how the arithmetic expression
“2 x 3 = 6” can be modeled with a two-layer LSTM RNN using the seq2seq approach [5] with
the operands and operators presented in Reverse Polish Notation as “2 3 x 6”. Reverse Polish
Notation allows us to more easily analysis of the networks and to learn more complex arithmetic
equations in future work without having to use brackets. On the first two time steps, the model
accepts two 28x28 images of handwritten digits from the MNIST dataset. On the third time
step, the model receives the operator (x), in the form of a 28x28 image, and outputs the least
significant digit from performing the operation on the two operands (the quotient for the
division operator). On the fourth time step the model receives the equals sign (=), again in
the form of a 28x28 image, and outputs the most significant digit given the operation and the
two operands (the remainderfor the division operator). The result is represented using one-hot
encoded vectors or thermometer encoded vectors.

Providing a Symbolic Channel. We have examined the use of symbols on both input and
output channels of RNNs and have found them equally useful [14]. In this paper, our approach
is to provide a symbol via an output channel. The model is challenged to perform a classification
on each incoming image from the MNIST dataset. By training the recurrent network to classify
the digit images, the architecture establishes a conceptual representation of each digit and
passes it as context to the next time step. The RNN must use its output nodes for two different
tasks: (a) to associate each noisy handwritten digit with a symbol, and (b) to calculate the result
of the arithmetic operation using internal representations for those symbols.

We can explain the role of the output symbol in terms of Bayesian inference. The probability
of finding an optimum representation h is affected by the presence of evidence, in our case, the
symbol classification C and the noisy input data D. Bayes’ Theorem tells us:

p(C,DIh) - p(h)
p(C, D)

From this, the maximum likelihood hypothesis (assuming prior hypotheses are equally likely
and the digits selected are in common) is given by:

p(hlC,D) = (1)
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Figure 1: A sequential model learning to perform arithmetic (in this case, 2 x 3) on images of handwritten
digits in the presence of symbols. The symbols are provided on the outputs of the first two intermediate
steps in either one-hot (OH) or thermometer (TP) encoded format.

hyr = arghmax p(C,DIh) = p(DIC, h) - p(C|h) (2)

That is, a RNN that correctly maps the noisy digits to their symbolic class labels increases the
likelihood that it will discover a hypothesis that can accurately do arithmetic using those digits.

Encoding of Symbols. We desire a learning system that is able to learn: (1) the quantity that
each digit represents; (2) the ordinal relationship between one digit and another, also known as
successorship; and (3) the function of the operator.

Human learners are able to use the knowledge transferred through the use of the informative
symbols to capture all three semantic aspects. The symbols provided to our neural network
models must represent the same semantics. Although a one-hot vector representation, such as
“000001000” for the digit “5” is a clear symbol, it lacks the representative ability to convey the
first two semantics concerning digits: it does not convey quantity and it does not represent an
ordering over the digits. We are looking for what semiotics refers to as an index type of symbol.
We propose using unary or thermometer encoding [15]. A thermometer encoded integer is a
vector of binary values that has as many elements sequentially set to one as the integer being
represented. For example, the number 5 is encoded as “000011111”. This symbol encoding
conveys the first two semantics concerning digits. Consistent operator images allow the RNN
to learn which arithmetic function it is being asked to perform.

Analysis of the LSTM Networks. To analyse the RNNs, we will use a visualization technique,
known as activations clustering. It captures the output values of each hidden layer and renders
these as pixel intensities in an image [16]. Figure 5 shows an activations cluster for a recurrent
network with four time steps and two hidden layers, 20 units each.

Our expectation is that the activation clusters obtained from the hidden nodes of a model
concurrently trained to classify the noisy inputs as symbols will be relatively consistent as
compared to a model trained without having to classify the noisy inputs. We also expect to
see the “carry one” signal that humans use to do addition represented in the network’s hidden
layers.



We wish to show that digit classification using symbols helps the RNN advance beyond
learning simple mapping functions to learning a general algorithm for arithmetic operations.
Toward this end, we develop RNNs that are trained on only a subset of the examples of operand
combinations and then tested on the remaining combinations. We believe that by providing ap-
propriately encoded symbols during training, our models will generate internal representations
for unseen combinations of digits that allow the model to generalize to the correct arithmetic
results.

4. Empirical Studies

In this section we present a sequence of three experiments to test our hypothesis. The first
examines the fundamental benefit of learning an algorithm while concurrently learning to
classify noisy examples of concepts used by the algorithm. The second experiment uses a
thermometer encoding for the symbols in an effort to develop an algorithm that can generalize to
previously unseen combinations of digits when doing addition. The third experiment extends the
second to all four arithmetic operations. The Python deep learning stack including Tensorflow
and Keras was used to architect, train and test the RNN models.

4.1. Exp 1: Learning the Arithmetic Operations

Objective. To demonstrate that (1) the presence of symbols of the noisy input data improves
the learning accuracy of the RNN models developed for all four arithmetic operators (+,-,x,/),
and (2) the models are able to generalize to previously unseen combinations of digits. To verify
this, we train our models on a subset of all combinations of digits and test on the remaining
combinations.

Method. For each of the four arithmetic operations and for each of the 100 combinations of
two digits, MNIST image examples were randomly selected. For addition and multiplication, all
combinations are included in the dataset. However, for subtraction, no combinations that would
result in negative outputs are included and, similarly, divide by zero combinations are avoided.

For each operator, the combinations of digits are randomly split into a “seen” set of 80
combinations and an “unseen” set of 20 combinations. For each of the seen combinations,
eight pairs of MNIST digits are selected; four are used for training, two for validation and the
remaining two for testing. The “unseen” combinations are used to test if the models generalize
to an algorithm for arithmetic over all possible digit combinations.

We develop five different models using different quantities of symbols to assist learning
arithmetic using the MNIST images. The dataset of seen combinations is replicated five times,
each replica includes a different percentage of symbols present: 0, 25, 50, 75 and 100%. The
symbol (if provided) is presented as an output label during the first two time steps and the
model is trained to classify the handwritten digit based on the label. When a symbol is not
provided, the label vector is composed of ten 0.5 “dummy” values. When tested the models are
provided with only the noisy MNIST images as input.

The five different models have the architecture described in Section 3.2 that accepts a sequence
of four 28x28 images. Two hidden layers are used with 512 LSTM units each. The models output
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Figure 2: A comparison of the mean accuracy and 95% CI for models trained with different percentage
of symbols when tested on both the seen and unseen test combinations.

a one-hot vector. Each model is trained using 5-fold cross-validation and the results averaged.
The networks are trained using the Adam optimizer with the mean square error as the loss
function and a learning rate of 0.001. Training is performed over 200 epochs in batches of 100
and the model performing best on the validation set is saved and used for testing.

Results and Discussion. Figure 2 shows the mean accuracy and 95% confidence intervals for
the various models tested on the seen and unseen test sets. These models are trained using only
four MNIST image examples of each digit combination, thus the low accuracies.

The results show that the RNNs using symbols encoded as one-hot output vectors are capable
of learning all four arithmetic operations using images of handwritten digits. They show that
the accuracy of the models on previously seen combinations of digits increases linearly with
the percentage of symbols provided as class labels for the noisy digits. However, the results also
show that the RNNs were unable to discover an algorithm for the arithmetic operations that
generalizes for previously unseen combinations of operands (mean accuracies are less than 5%).

4.2. Exp 2 - Encoding the Semantics of Digits

Objective. Exp 1 shows that the current RNN approach fails to go beyond learning a mapping
function and actually discover an algorithm to perform the arithmetic operations. This experi-
ment explores the use of symbols encoded as thermometer vectors, as compared to one-hot
vectors, as a possible solution. The objective is the same as that of Exp 1; to develop a network
that can generalize to unseen combinations of digits. We constrain the problem to (1) learning
an algorithm for only addition and (2) using consistent symbolic inputs and not the noisy MNIST
handwritten digits. This reduces the size of the RNN and makes it’s hidden node features easier
to analyse using the activations clustering method described in Section 3.2.

Method. The models developed for this experiment accept a sequence of four vectors at its
input, each vector is composed of thirteen elements. Figure 3 depicts the structure of the input
vectors. The first ten elements represent a digit using one-hot encoding. The remaining three
elements represent the context of the input. Element 11 (C) is set to one on the first two time
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Figure 3: An example of an input vector for the digit 2 on the first time step.
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Figure 4: The constrained symbol-only architecture trained to add 7 and 3. The output is represented
as a one-hot vector (OH) or as a thermometer vector (TP).

steps when we want the network to output a vector that classifies the input digit. Element 12 (+)
is set to one at the third time step to indicate that the addition operation should be performed
and that the least significant digit of the output should be produced. Finally, element 13 (=) is
set to one on the fourth time step when the most significant digit of the result of the addition is
expected at the output. The output layer of the models consists of 10 values representing the
output as either a one-hot vector or a thermometer vector. Figure 4 depicts how the input and
output layers interact on each of the four time steps.

Several RNN architectures were tried using the input and output layers described above. The
best models had two hidden layers of 20 LSTM units each. A dataset was created using the
set of 100 possible combinations of two digits. A subset of 80 combinations are selected as the
“seen” examples of addition, making sure that each unique digit would be present at least once
on either side of the addition operator. The remaining 20 combinations are used as the “unseen”
test set. A 5-fold cross-validation approach is used and the mean accuracy of each trained model
is recorded when applied to the seen and unseen test sets.

Results and Discussion. All models performed at 100% accuracy on the seen test sets. However
the models that use one-hot vector symbols had only 5% accuracy on the unseen test sets,
whereas the models that use thermometer vector symbols performed at 90% accuracy. We
conclude that thermometer encoded symbols provide the information needed for the RNN to
better discover the representation of an algorithm for addition of two operands.

To verify this conclusion, we generated activations clusters for a series of four digit combina-
tions from the unseen test set using the best one-hot vector and thermometer vector models.
Figure 5 shows hidden node activations produced by the two methods for the same combinations
of digits of the unseen test set. The figure shows four rows of two hidden layers, one for each
digit combination. Each row represents a single time step moving from top to bottom. For each
time step, the figure depicts, from left to right, the digit input to the network, the digit output
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Figure 5: A series of activations produced when applying examples from the unseen test set to a model
trained using (a) one-hot encoded and (b) thermometer encoded symbols. The features created by
hidden layer 2, h,, of the thermometer encoded model for the four first operands are compared in (c).

by the network, and the LSTM node activations in the two hidden layers, h; and h,. Note that
both models correctly classify the digits, but the model that uses one-hot encoded symbols errs
on all four additions.

Figure 5(b) shows that when the “+” input is received following the “7” and then “3” operands,
several of the hy node activations (observe the last three on the right) change sharply to signal a
carry-forward. This same signal is not observed in the activations of the one-hot vector output
model of Figure 5(a). Subsequently, the model that uses one-hot vector outputs does poorly,
erring on all four additions.

4.3. Exp 3: Noisy Digits with thermometer Encoded Symbols

Objective. The purpose of this experiment is to show that symbols represented as thermometer
encodings can improve the generalization accuracy of a RNN model trained to learn how to
perform arithmetic from an impoverished dataset. It extends Exp 2 in two ways: (1) it returns
to using the noisy MNIST digits, and (2) it trains a RNN to learn all four arithmetic operations.

Method. This experiment uses the same LSTM RNN network architecture used in Exp 1
and shown in Figure 1. The model accepts a sequence of four 28x28 images, as described in
Section 3.2. The same base dataset is used except thermometer encoded symbols are used as
output labels for all time steps. When output symbols are not provided, a vector composed of
0.5 “dummy” values is used instead. As in Exp 1, the dataset of seen combinations is replicated
five times, each replica includes a different percentage of symbols present, specifically 0, 25, 50,
75 and 100%. Each model is trained five times using 5-fold cross-validation and the statistics
calculated.



100% 84.26%

75.84%
80% 69.58%
60.65% 54.65% I
60% 51.30%
41.55% 5.90% 1
I
40% 25.53%
20% I
4.62%
I
0%
0% Sysmbols 25% Sysmbol 50% Sysmbol 75% Sysmbol 100% Sysmbol
B Accuracy - Seen Accuracy - Unseen

Figure 6: A comparison of the mean accuracy and 95% Cl for models trained with different percentage
of symbols when tested on both the seen and unseen test combinations.

Results and Discussion. Figure 6 shows the mean accuracies and the 95% confidence intervals
for all five models tested on both the seen and unseen test sets. These results show that
increasing the number of symbols available per combination during training improves the
accuracy of the recurrent network when tested on combinations that the model has seen during
training. This confirms the findings in the prior experiments and supports our hypothesis that
artificial neural networks similar to human learners can benefit from the presence of symbols
when training with limited datasets.

5. Conclusion

Much of RNN modeling has focused on developing accurate algorithmic models using sufficient
numbers of training examples. In contrast, humans learn algorithms from impoverished datasets
by using shared knowledge from other humans in the form of symbols. In this paper, we propose
that RNNs can overcome similar learning challenges caused by limited training sets if they
concurrently learn to classify noisy input examples of the concepts upon which they operate.

A series of experiments are conducted to test this theory when training RNNs to perform
basic arithmetic on images of handwritten digits. The results show that: (1) It is possible to
develop a RNN model that can learn to perform all four basic arithmetic operations from an
impoverished set of examples more effectively in the presence of symbols than without; and
(2) Networks trained using appropriate symbols are capable of discovering an algorithm that
generalizes better to all combinations of digits, instead of simply learning an input to output
mapping function. By using thermometer encoded versus one-hot encoded symbols along with
a four step arithmetic sequence we were able to develop LSTM RNNs that generalize well to
combinations of digits that were not seen during training.

In future work we will consider longer sequences of arithmetic operands and operators using
Reverse Polish Notation as well as sequences written in standard notation using brackets to
convey the order of calculations. Such sequences will test the RNNs ability to develop subrou-
tines. We will also consider applying this theory of learning with symbols to other application
domains such as natural language processing and the explanation of image classification.
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