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Abstract
In this paper, we propose an explainable diabetic retinopathy (ExplainDR) classification model based
on neural-symbolic learning. To gain explainability, a high-level symbolic representation should be
considered in decision making. Specifically, we introduce a human-readable symbolic representation,
which follows a taxonomy style of diabetic retinopathy characteristics related to eye health conditions
to achieve explainability. We then include human-readable features obtained from the symbolic repre-
sentation in the disease prediction. Experimental results on a diabetic retinopathy classification dataset
show that our proposed ExplainDR method exhibits promising performance when compared to that
from state-of-the-art methods applied to the IDRiD dataset, while also providing interpretability and
explainability.
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1. Introduction

Diabetic Retinopathy (DR) is one of the leading causes of vision loss affecting the working
age population worldwide [1]. Thanks to the success of deep learning, convolutional neural
networks (CNNs) based deep learning approaches have been recently applied to DR classifica-
tion problems [2, 3, 4]. Most of the research efforts devoted to CNN-based DR classification
methods have been devoted to designing robust neural architectures (e.g. ResNet and DenseNet)
for enhanced classification accuracy [5, 6]. Although deep-learning-based DR classification
approaches have demonstrated excellent performance, understanding the decision making
process remains a challenge because of the black-box nature of the deep learning methods. This
lack of explainability has hindered the adoption of deep-learning based methods in clinical
settings.
To gain confidence that developed deep learning methods are robust, researchers have de-

signed and used visually interpretable tools. For instance, gradient-weighted class activation
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Table 1
Diabetic Retinopathy Severity Grading Criteria [14].

Severity Grade Description
No DR: No visible sign of abnormalities
Mild NPDR*: Presence of MAs only
Moderate NPDR: More than just MAs but less than severe NPDR
Severe NPDR: > 20 intraretinal HEs, Venous beading,

Intraretinal microvascular abnormalities, No signs of PDR
PDR**: Neovascularization, Vitreous/pre-retinal HE

*NPDR: Non-Proliferative DR, **PDR: Proliferative DR

mapping (Grad-CAM) [7] is a popular approach that can highlight suspected lesions [8]. How-
ever, most of these post-processing tools generate images (e.g. attention maps) that can only be
interpreted by expert ophthalmologists. To circumvent this issue, in [9], a capsule network [10]
was adopted to encode visually interpretable feature scores for X-ray images in a human-level
representation – importantly, these scores can also be interpreted by radiologists. However,
this approach could not be considered an explainable model per se since a taxonomy style of
characteristics or attributes (such as eyes, a nose, and a mouth that can be used to define a given
face) was not involved in the decision making process [11].
In order to achieve interpretability and completeness for an explainable DR classification

model, we have to understand how DR severity is defined clinically. Table 1 summarizes grading
criteria for DR severity. Clinically, DR is diagnosed based on the presence of one or more
retinal lesions such as Microaneurysms (MA), Hemorrhages (HE), Soft Exudates (SE) and Hard
Exudates (EX) [12]. In addition, Diabetic Macular Edema (DME) severity is also assessed based
on the presence of EXs in the macula region [13].
Neural-symbolic learning [15, 16] is a suitable approach to produce computational tools for

integrated machine learning and reasoning for explainability [17]. Neural-symbolic learning
uses deep neural networks to generate high-level symbolic representation that humans can
understand. Logical operations are then conducted using symbolic representation for decision
making. In [18], a neural-symbolic learning system for visual question answering was presented
to find an answer from a structural scene representation. This system encoded an image
into a compact symbolic representation and then performed symbolic program execution that
included logical operations manually designed for reasoning. However, due to the manual
design, updating logics for improving performances is not an easy task since the logics should
consider relationships between each other.

In this paper, we propose an explainable diabetic retinopathy (ExplainDR) classification model
based on neural-symbolic learning to generate a human-readable symbolic representation. The
proposed symbolic representation follows a taxonomy style of diabetic retinopathy characteris-
tics consisting of several abnormalities such as MA, HE, SE and EX via a deep neural network
for segmentation. The proposed human-readable feature representation is meant to be directly
interpretable by both ophthalmologists and patients.
In this paper, we aim to develop a neural-symbolic AI approach to accurately diagnose

DR. Such an approach may be of clinical value, because we first generate high-level symbolic
representations that are subsequently used to make a DR diagnosis. In other words, our approach
has the advantage to remain easily interpretable by both clinicians and patients. The algorithm
was tested on the the IDRiD dataset [14], and heavily relied on lesion segmentation and disease



severity gradings.

2. Related Works

2.1. Visually interpretable based deep learning models

In order to improve the black box based deep learning models, visually interpretable tools
[19, 20, 21, 22] for map generation (e.g. attention maps) have been recently applied to DR
problems. In [23], an attention network was used as a clustering method to generate an
attention map that can highlight the suspected lesions. This can also be achieved with Class
Activation Mapping (CAM) [19, 24]. In [25], a regression based activation map was developed
to include severity level information in the generated saliency map. In [8], a Grad-CAM method
that can evaluate the suspected lesions without requiring architectural changes or re-training
[7], was adopted to use different CNN architectures for improving visual interpretability. In
[26], a combination of lower-layer and higher-layer saliency maps was developed to accurately
locate the lesions. Although the above methods could provide clinical value, they still could not
explain why and how the developed models could visually localize the suspected lesions.

2.2. Neural-Symbolic Learning

The goal of neural-symbolic learning is to provide a coherent, unifying view for logic and
connectionism to contribute to the modelling and understanding of cognition and, thereby,
behavior [15]. The neural-symbolic learning includes a neural network implementation of a
logic, a logical characterisation of a neural network system and a hybrid learning system that
profitably achieves symbolic and connectionist approaches together to artificial intelligence.
Deep neural networks can learn complex input data such as images, audio and text to generate
high-level representations, which are useful in decision making [27]. A logic network on top of
a deep neural network to learn the relations of those abstractions, can then help systems to be
able to explain itself. In [28], DeepProbLog was developed by combining an end-to-end learning
with reasoning, where outputs of the neural networks were applied as inputs to ProbLog [29].
In [30], a neural-symbolic framework called logical neural networks (LNN) was designed to
simultaneously provide key properties of both neural networks for learning and symbolic logics
for knowledge and reasoning. LNN considers every neuron to have a meaning as a component
of a formula in a weighted real-valued logic. In LNN, an idea of a 1-to-1 correspondence between
neurons and the elements of logical formulae was presented by observing the weights of neurons
that can act like AND or OR operations. Based on this idea, LNN has achieved a differentiable
model that can minimize a logical loss function for refutation of logical contradiction.

3. Explainable Diabetic Retinopathy Classification

In this section, we propose an explainable diabetic retinopathy (ExplainDR) classificationmethod
based on neural-symbolic learning. Fig. 1 illustrates an overview of the proposed ExplainDR
method. Our proposed neural-symbolic learningmethod includes a U-Net segmentation network
[31] used to generate a high-level symbolic representation and a fully connected network (FCN)



Figure 1: An overview of the proposed explainable diabetic retinopathy classification.

for learning the generated symbolic representation to predict decision instead of designing
logical operations [32]. The U-Net segmentation network extracts a higher-level representation
in a symbolic space than the pixel-level representation. To produce the high-level symbolic
representation in a taxonomy style, we train the U-Net segmentation network using four
segmentation labels, namely Microaneurysms (MA), Hemorrhages (HE), Soft Exudates (SE) and
Hard Exudates (EX) which are the main factors to decide about DR severity. Based on the four
output images 𝐼 𝑖, 1 ≤ 𝑖 ≤ 4 produced by the segmentation network for each eye condition (i.e.
𝑖 = 1 for MA), we extract a human-readable feature vector as symbolic representation using a
quantization technique. This feature vector counts the segmented regions in each segmentation
output image 𝐼 𝑖 by setting

𝑆 𝑖 = {𝑥 𝑗}
𝑁 𝑖

𝑗=1 (1)

where 𝑆 𝑖 is a set of the segmented regions 𝑥 𝑗 in 𝐼 𝑖 and 𝑁 𝑖 is the number of segmented regions
within each set 𝑆 𝑖. The human-readable feature vector is then given by

𝐹𝑠𝑦𝑚 = [ |𝑆1| , |𝑆2| , |𝑆3| , |𝑆4| ] ∈ ℕ4, (2)

where |𝑆 𝑖| is the number of segmented regions in 𝐼 𝑖. The human-readable feature vector is trained
using the FCN instead of performing the logical operations to avoid the efforts of designing
considerable logic combinations for decision making.

For instance, from an unseen test image, the human-readable feature vector is obtained from
each segmented output through the trained segmentation network. Based on the trained FCN,
the decision prediction is performed using the human-readable feature vector. We then generate
explanation by combining the human-readable feature vector and the predicted decision as
follows:

• The DR diagnosis of “image 1” is “moderate NPDR” because there are 33 MA, 13 HE, 5 SE
and 27 EX regions, respectively.

• The DR diagnosis of “image 2” is “mild NPDR” because there are 20 MA, 5 HE, 1 SE and 3
EX regions, respectively.



Additionally, similar to other interpretable DR methods, the visually interpretable images (i.e.
segmented images) are also provided. Therefore, we achieve an explainable DR classification
method, which includes human-readable symbolic representation in the decisionmaking process,
whereas typical AI black-box models only address pixel-level representations.

3.1. Extension of the symbolic representation

Our proposed human-readable feature vector consists of the simple symbolic representation in
only four dimensions, and for the four eye conditions (e.g. MA, HE, SE and EX). In order to
improve the simple symbolic representation, we propose to consider the sizes of the segmented
lesions for better symbolic representation while removing false or noisy segmented lesions.
Each segmented lesion 𝑥 𝑗 is classified into one of three subsets: small, medium or large size as
follows:

𝑆 𝑖𝑠𝑚𝑎𝑙𝑙 = {𝑥 𝑗 ∶ 𝜏0 < 𝑠𝑗 ≤ 𝜏1,∀𝑗} ,

𝑆 𝑖𝑚𝑒𝑑𝑖𝑢𝑚 = {𝑥 𝑗 ∶ 𝜏1 < 𝑠𝑗 ≤ 𝜏2,∀𝑗} ,

𝑆 𝑖𝑙𝑎𝑟𝑔𝑒 = {𝑥 𝑗 ∶ 𝜏2 < 𝑠𝑗 ≤ 𝜏3,∀𝑗} ,
(3)

where the size 𝑠𝑗 is given by the number of the connected pixels in each segmented lesion 𝑥 𝑗. 𝜏
is a threshold that experimentally defines the small, medium and large sizes of the segmented
lesions. The improved human-readable feature vector is then given by:

𝐹𝑠𝑚𝑙 = [|𝑆1𝑠𝑚𝑎𝑙𝑙| , |𝑆1𝑚𝑒𝑑𝑖𝑢𝑚| , |𝑆1𝑙𝑎𝑟𝑔𝑒| , … , |𝑆4𝑠𝑚𝑎𝑙𝑙| , |𝑆4𝑚𝑒𝑑𝑖𝑢𝑚| , |𝑆4𝑙𝑎𝑟𝑔𝑒|] ∈ ℕ12. (4)

We note that the extended human-readable feature vector is still under a taxonomy style that
can offer logical explanation according to the different sizes of the segmented lesion within
each eye condition.

4. Experiments

4.1. Experimental settings

In our experiment, we use the Indian Diabetic Retinopathy Image Dataset (IDRiD)1 [14], since
this is the one public dataset that provides both lesion segmentation and disease severity
gradings. The images have the resolution of 4288 × 2848 pixels. Each image is resized to
1024×1024 pixels. In the lesion segmentation dataset, four labels such as Microaneurysms (MA),
Hemorrhages (HE), Soft Exudates (SE) and Hard Exudates (EX) are included. In the severity
grading dataset, five labels for diabetic retinopathy (DR) such as no DR, mild NPDR, moderate
NPDR, severe NPDR and PDR are provided. Additionally, three labels for diabetic macular
edema (DME) such as no EX, presence of EX outside and within the macula center are also
given. The lesion segmentation dataset has 187 training images and 95 test images in total 282
images. The severity grading dataset provides 413 training images and 103 test images in total
516 images.

1https://idrid.grand-challenge.org



In the IDRiD challenge [14], they provided a specific accuracy evaluation metric counts when
the following condition is satisfied:

(𝑦𝐷𝑅 == ̂𝑦𝐷𝑅) and (𝑦𝐷𝑀𝐸 == ̂𝑦𝐷𝑀𝐸) , (5)

where 𝑦 is a true label, and ̂𝑦 is a predicted label for DR and DME. In Equation (3), the thresholds
are experimentally set at 𝜏0 = 10, 𝜏1 = 500, 𝜏2 = 1000 and 𝜏3 = 10000 respectively.
In the segmentation network, the ResNet34 structure [33] is used with the Adam optimizer

following a batch size of 2, a learning rate of 0.0001 and a dropout probability of 0.1 for 20 epochs
with early stopping. The data augmentation of the segmentation networks includes random
flipping, gamma contrast with a range (0.5, 1.5) and a contrast limited adaptive histogram
equalization. The FCN layers are given by: [12, 25, 50, 75, 100, 75, 50, 25, 12]. In the FCN
layers, the Adam optimizer is adopted with a batch size of 16, a learning rate of 0.01 and a
dropout probability of 0.1 for 20 epochs with early stopping. The segmentation network is
first trained using the lesion segmentation training set. The FCN layers are then trained using
the proposed symbolic feature vectors obtained from the severity grading training set via the
trained segmentation network. We split the training sets into 80% for training and 20% for
validation.

4.2. Results

In order to observe the effect of our proposed ExplainDR method, we conduct an ablation study
to evaluate the extension of the human-readable feature vector. We compare the proposed
ExplainDRmethodwith the state-of-the-art methods using the IDRiD dataset. Fig. 2 qualitatively
shows the segmentation results for eye conditions such as MA, HE, SE and EX using six images
from the severity grading dataset. According to small, medium and large (sml) size regions
of each eye condition, the 6 extracted human-readable feature vectors for each image are as
follows:

(1) smlMA: 37, 0, 0, smlHE: 26, 2, 2, smlSE: 0, 0, 0, smlEX: 197, 5, 3
(2) smlMA: 59, 0, 0, smlHE: 54, 4, 4, smlSE: 0, 0, 0, smlEX: 96, 2, 0
(3) smlMA: 25, 0, 0, smlHE: 27, 4, 1, smlSE: 10, 0, 0, smlEX: 90, 0, 1
(4) smlMA: 8, 0, 0, smlHE: 9, 0, 0, smlSE: 0, 0, 0, smlEX: 122, 3, 1
(5) smlMA: 4, 0, 0, smlHE: 6, 0, 0, smlSE: 0, 0, 0, smlEX: 1, 0, 0
(6) smlMA: 1, 0, 0, smlHE: 5, 0, 0, smlSE: 2, 1, 1, smlEX: 0, 0, 0

The explanation along with the predicted decision using the human-readable features are
generated as follows:

(1) The image 1 is classified as severe NPDR because 37 small MAs, 26 small HEs, 2 medium
HEs, 2 large HEs, 197 small EXs, 5 medium EXs and 3 large EXs are detected.

(2) The image 2 is classified as PDR because 59 small MAs, 54 small HEs, 4 medium HEs, 4 large
HEs, 96 small EXs, and 2 medium EXs are detected.

(3) ...
(4) The image 6 is classified as mild NPDR because 1 small MA, 5 small HEs, 2 small HEs, 1

medium HE, 1 large HE are detected.



Figure 2: Segmentation results of the proposed ExplainDR in the severity grading dataset.

Here, we note that the above explanations can be compared to the severity grading criteria
shown in Table 1 by summing all the numbers of the small, medium and large size regions
for each eye condition. This helps non-experts to analyze the generated explanations for
self-diagnosis.
To observe the impact of symbolic feature extension of the proposed ExplainDR method,

Table 2 shows an ablation study for: 1) ExplainDR with 4 dimensions of the simple symbolic
features and 2) ExplainDR with 12 dimensions of the extended symbolic features. The extension



Table 2
An ablation study of the proposed ExplainDR method.

Name Accuracy
ExplainDR + Simple Symbols 0.4757
ExplainDR + Extended Symbols 0.6019

Table 3
The leaderboard on the DR and DME test sets in the IDRiD challenge.

Name Accuracy Approach Input Size
External
Dataset

LzyUNCC 0.6311 ResNet + Deep Aggregation 896 × 896 Kaggle
ExplainDR + Extension 0.6019 Symbols + FCN 1024 × 1024 -
VRT 0.5534 CNN 640 × 640 Kaggle, Messidor
Mammoth 0.5146 DenseNet 512 × 512 Kaggle
HarangiM1 0.4757 AlexNet + GoogLeNet 224 × 224 Kaggle
AVSASVA 0.4757 ResNet + DenseNet 224 × 224 DiaretDB1
HarangiM2 0.4078 AlexNet + Handcrafted 224 × 224 Kaggle

of the symbolic representation outperforms that of the simple symbolic representation since
the detailed categorization of the simple symbolic representation provides more discriminative
symbolic representation than the simple symbolic representation. For performance comparison,
Table 3 summarizes accuracy performances of the proposed ExplainDR method and the state-of-
the-art methods [14]. The proposed method without utilizing any external dataset (e.g. Kaggle2,
Messidor3 and DiaretDB14) shows the second-best performance with interpretable images and
texts in the leaderboard on the IDRiD dataset. Whereas, the state-of-the-art methods with
external datasets provide the accuracy performances without any explanation.

5. Conclusion

This paper presented an explainable diabetic retinopathy (ExplainDR) classification method
based on neural-symbolic learning which generated a high-level symbolic representation via a
segmentation network. The generated symbolic representation was extended according to the
sizes of the segmented lesions to produce more discriminative symbolic representation. The DR
severity is predicted by the fully connected network, which was trained using the extended
symbolic representation. We qualitatively showed that our proposed symbolic representation
was human-readable in the taxonomy style associated with the eye health conditions, as well as
an explanation with the reasons of the DR severity. The proposed ExplainDR method showed
promising performances to the state-of-the-art methods in terms of classification accuracies on
the IDRiD dataset as well as providing interpretability and explainability.
The limitations of our works are: 1) The accuracy and explainablity performances of the

proposed ExplainDR are affected by the quality of the segmentation results; 2) Different decision
outputs can be observed due to the nature of stochastic learning (e.g. FCN); and 3) An enhanced
design is needed to adopt other datasets if there is no annotation of the lesion segmentation
and the DR classification together. Our future works accordingly are as follows: 1) Study of the

2https://www.kaggle.com/c/diabetic-retinopathy-detection
3https://www.adcis.net/en/third-party/messidor
4http://www2.it.lut.fi/project/imageret/diaretdb1



effect of the segmentation performance; 2) Use of least-squares based methods as a deterministic
learning approach instead of the stochastic learning approach; and 3) Study of adoption of other
datasets without annotation of the lesion segmentation.
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