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Abstract
Many autonomous Cyber-Physical Systems (CPSs) (e.g., autonomous vehicles, IoT or medical
devices, etc.) are mission- or safety-critical (i.e., errors may result in, resp., loss of money or
human deaths). This motivates research for their efficient formal verification. Unfortunately,
verifying a CPS entails evaluating a prohibitively huge number of scenarios. In this short paper,
we show the maturity, feasibility and flexibility of Statistical Model Checking by reviewing 3
recent case studies of its successful application to real-world mission- and safety-critical CPSs
in areas as diverse as smart grids, in silico medicine, wireless sensor networks.

1. Introduction
In a Cyber-Physical System (CPS), a (continuous) physical system (plant) is controlled
and/or monitored by a (discrete) software. The deployment of autonomous CPSs [1],
such as, e.g., devices for Internet of Things (IoT) [2], Unmanned Autonomous Vehicles [3]
and medical devices [4], has been speeding up for the last decades, with a projected $1.1
trillion global speding on IoT only [5]. For many of such CPSs, it is important to rule
out errors [6], especially in the software part, since they may lead to a) loss of money in
mission-critical systems [7] (e.g., the 1996 Ariane 5 rocket incident, due to a software type
conversion error, resulted in a $500 million loss); b) death or serious injury for people in
safety-critical systems [8] (e.g., clinical treatments or medical devices).

Unfortunately, standard testing could not provide the required degree of correctness
assurance, and this motivates research on efficient formal verification methods. There are
multiple challenges to overcome when formally verifying a CPS, e.g., the complexity of
the system dynamics, the huge number of scenarios to be evaluated (scenario explosion,
e.g., [9, 10, 11, 12, 13, 14, 15]) and the lack of a unified mathematical model for both the
discrete cyber and the continuous physical parts (e.g., [16, 17]). Such issues make it hard
to apply analytical approaches based on logics or automata, e.g., [18, 19, 20, 21, 22].

Statistical Model Checking (SMC) [23, 24] aims at overcoming such obstructions by
using statistical methods to sample the set of scenarios up to desired accuracy and
precision, while possibly relying on black-box models of the System Under Verification
(i.e., the full system encompassing both the software and the plant), for example available
only via a simulator.
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In this short paper, we review 3 recent real-world case studies, from very diverse
application areas (smart grids, in silico medicine, wireless sensor networks), which were
successfully addressed via SMC. This shows the feasibility and flexibility of SMC when
applied to real-world mission- and safety-critical systems. A complete survey of SMC
methodologies can be found in, e.g., [23, 24].

2. Peak Shaving in Smart Grids
An Electric Distribution Network (EDN) [25] is composed of several substations, each
serving a set of residential households. By using the measurements taken from the home
electricity mains, we know each house power demand, with periodicity at least one hour.
Our objective is to reduce costs for the Distribution System Operator (DSO), by limiting
the demand drawn at each substation at times of peak demand (peak shaving). This
reduces the amount of electricity purchased on the market at peak prices, and reduces
overloading of network components (hence, substation ageing).
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Figure 1: APD prob. [26]

Many works address this problem. Here, we focus on the
methodology in [27, 28, 29, 26, 30], for which SMC-based
verification is proposed. Namely, the problem of achieving
peak shaving is solved by proposing two intelligent services.
Whilist the EDN Virtual Tomography (EVT) service com-
putes time-varying upper bounds for the Aggregated Power
Demand (APD) of the households 𝑈 connected to a sub-
station 𝑠 yielding low operational costs for the DSO, the
Demand-Aware Price Policy (DAPP) service computes in-
dividualised time-varying upper bounds for the demand of
each household in 𝑈 . If a household keeps its demand below
such bounds, a low energy tariff is applied, otherwise an
high tariff is applied. If all households succeed in keeping
their demand below their bounds (by performing load shifting), the APD on 𝑠 will be
below the bound computed by EVT. However, there is no guarantee that such an indirect
steering of the demand of each household will be successful. In [26], a domain-specific
highly parallel statistical model checker (Aggregated Power Demand Analyzer, APD-A)
is designed, which estimates the probability distribution of the APD given probabilistic
deviations from the expected demands of each household. Figure 1 shows the APD-A
results for a set of 186 houses in Denmark.

3. Virtual Patients for In Silico Clinical Trials
A major problem in medicine is assessing safety and efficacy of pharmacological drugs,
medical devices and treatment strategies. In the last years, a research area called In
Silico Clinical Trials (ISCT) has emerged [31], with the aim of using Computer Science
techniques to decrease time and cost for the experimentations, reducing animal and
human testing, prioritising in vivo clinical trials, and enabling precision medicine. A



cornerstone of ISCT is the simulation of the therapy/device under assessment on a
population of Virtual Patients (VPs). VPs are typically computed by parameterising
quantitative mechanistic Virtual Physiological Human (VPH) models, in turn defined
by encoding qualitative knowledge of the human physiology of interest [32, 33]. For an
ISCT to provide compelling evidence of the safety/efficacy of a therapy, such populations
of VPs must be complete, i.e., representative of the entire spectrum of behaviours deemed
of interest (in order not to skip significant behaviors).

Figure 2: Estradiol [34]

In [35, 36, 34], SMC is used to drive intelligent global
search in the VPs parameter space to compute a complete
population of VPs starting from a (non-identifiable) VPH
model and suitable biological knowledge. The effective-
ness of the approach was proven on a (differential equation–
based) model of the female hypothalamic-pituitary-gonadal
axis [37], for which a population of as many as 4,830,264
VPs stratified into layers at different level of granularity of
behaviours was generated (Figure 2 shows the possible time
courses of the Estradiol hormone in the different VP layers),
and whose completeness was evaluated against retrospective
health records. Such VPs were then used in [38, 39] to com-
pute, again in silico, optimal robust personalised treatments for assisted reproduction, an
area currently showing many factors that can be hardly kept under full control [40, 41, 42].
Namely, digital twins of human patients were computed by selecting those VPs best
matching clinical measurements on them, and a black-box simulator of the VPH model
in [37] was driven [43] via intelligent backtracking on such digital twins.

4. Wireless Sensors Network
The last case study consists of a low-level engineering application, namely an audio
streaming application over a Wi-Fi network. Such an application is representative of
a wide area of applications on networked systems [44, 45]. In such a network, several
nodes are equipped with microphones which produce different audio streams and are
transmitted to a base station equipped with a speaker to play the received audio. The
goal is to ensure the synchronization between the different nodes of the network, in
order to guarantee a consistent audio output. To this extent, in [46, 47] a Phase Locked
Loop (PLL) synchronization protocol [48] is designed so that all nodes in the network
agree on a synchronized clock, within a 1𝜇𝑠 tolerance. In order to show that the PLL
synchronization protocol fulfills the main design requirement, the SBIP statistical model
checker [49], which is based on the Behaviour, Interaction, Priority (BIP) framework [50],
is used. Namely, the following property were verified: it must hold that the difference
between the Master clock 𝜃𝑚 and the software clock, computed in every Slave 𝜃𝑠, must
be within a given bound Δ with high probability and accuracy. The obtained result was
that, for the considered setting, the smallest bound that ensures the synchronisation is
Δ = 76𝜇𝑠.



5. Conclusions
In this short paper, we showed the maturity, feasibility and flexibility of Statistical Model
Checking in the verification of real-world mission- and safety-critical CPSs, by reviewing
some of its recent applications to real-world case studies, in areas as diverse as smart
grids, in silico medicine, wireless sensor networks.
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