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Abstract
The analysis of legacy systems such as electro-mechanical circuits requires the extraction of the under-
lying specification from a high level point of view. We consider P-stable abstraction, an analysis for
transition systems that synthesizes the properties of a given set of events in terms of their eventual and
stable effects on the system state. The abstract transitions simulate convergent runs of the concrete
model and correspond to a set of temporal properties which are satisfied. We show an application of
the P-stable abstraction on a relay-based circuit, showing its ability to extract a high level description
of the implemented behaviour.
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1. Introduction

Context. Hardware and software solutions adopted in safety critical contexts must be verified.
Several techniques have been developed leveraging a formal modeling of the behaviours under
consideration whose abstraction level must be chosen adequately to describe the properties of
interest. We focus on Relay-based Interlocking Systems (RIS), adopted in the railway domain for
the control of stations: such systems are built on electro-mechanical components (like power
supplies, switches, resistors and relays) which respond to differential equations and depend
on discrete controlling actions. In [1] the authors propose a methodology to analyze RIS by
reduction to a network of hybrid automata: depending on the interest in representing with
precision internal inertial electro-mechanical phenomena connecting stationary conditions,
these automata can be simplified in systems with piecewise constant dynamics, or even as timed
ones. The aforementioned formal representations are amenable for verification with model
checkers like: HyCOMP [2], PHAVerLite [3] or nuXmv [4, 5] for timed automata.

Reverse engineering RIS. We consider a complementary analysis to verification, which
tackles the extraction of the properties that a system satisfies. This research activity is motivated
by the need to reverse-engineer RIS arising in the toolchain presented in [6]. Here, the goal is
to replace the legacy systems used in the control of stations with a new computer-based logic.
One of the difficulties in this task is that it is hard to understand the underlying specifications
of RIS, where the controlling logic is left implicit and hidden by non-trivial physical laws, at the
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level of abstraction needed to specify the software control. Our aim is to automatically build a
high level description of what are the behaviours exposed by a circuit in response to external
events. The specifications extracted from the transition system of the analogue circuit will be
cross checked on the new software-based implementation model. Since the two systems we
want to compare rely on different sets of variables, we want to synthesize properties defined
on the common ones, i.e., the high level observable railway properties, such as the status of
a semaphore lamp or a railroad switch. In addition to this “static” abstraction of a state by
quantification of the local variables, we consider more sophisticated path-based abstractions.
Two implementations may realize a certain behaviour in a different number of internal steps or
by passing through different intermediate conditions. For this reason, in order to extract the
high level effects of an event, we shall consider its eventual stable target.

2. P-stable Abstraction

P-stable abstraction has been firstly introduced in [7] for the characterization of the stabilization
behaviour of a hybrid system. This concept is built on two main elements: (a) the set of properties
of interest P, defining the granularity of the abstraction; (b) the set of external events 𝐸 acting
on the system, whose specifications we want to extract.

Stability is defined in terms of the set of predicates P. Intuitively, given a P-representable
region 𝜑, i.e., a region expressible as a boolean combination of predicates in P, a state 𝑠 is stable
in 𝜑 if it can exit from it only by means of an external event. In other words, if the system is
untouched, all the evolutions of 𝑠 remain in 𝜑 (𝑠 |=𝑐 AG𝜑) 1. When assessing stability, the
minimality of the region is also required: namely, 𝜑 must be the most precise representation
available in the grid induced by P on the state space.

Stability can be broken by an external stimulus 𝑒 ∈ 𝐸 which triggers an evolution that will
converge in a possibly different region 𝜑′ (i.e., 𝑠 𝑒−→ 𝑠′ and 𝑠′ |=𝑐 EFAG𝜑′). In the context
of hybrid systems, this run-to-completion process can involve both discrete and continuous
internal transitions.

The P-stable abstraction of a transition system is a finite state automaton whose locations are
P-stable states. With respect to the known predicate abstraction [8], here, an abstract transition
simulates a convergent path in the closed system and the length of the run is not preserved.
Moreover, the predicates are not evaluated in transient states, i.e., before stability is obtained.

The P-stable abstraction simulates all the runs of the underlying system, provided that the
external stimuli do not occur too frequently: it disregards runs in which an event interrupts a
stabilization still in progress. This restriction is justified when considering human controlled
devices that have a fast internal response.

By taking into account the duration of this stabilization process, the abstract automaton can
be enriched with timing information. The timed P-stable abstraction automaton is a timed
automaton whose transitions are equipped with an interval which must be inclusive of all
possible convergence times. The timing extension of the P-stable abstraction is able to provide
the maximum frequency at which the system is allowed to receive inputs, i.e., the value of a
slow-switching constraint for the external environment that makes the abstraction sound.

1‘|=𝑐’ is a shortcut meaning that the model transition relation is restricted to internal events.
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Figure 1: On the left-hand side, a circuit with three relays C, J,R, regulated by an external lever
Lever; on the right-hand side, a concrete run of the circuit starting from the initial state and its P-
stable abstraction.

Computation via abstract interpretation. [7] formulates the problem in the general frame-
work of abstract interpretation [9] which provides a formal setting to trade precision for effi-
ciency. P-stability is defined in terms of a Galois connection (using sets of states as concrete
domain and sets of formulae as abstract domain). Sound overapproximations are then obtained
by composition with further connections on simpler domains: in particular the abstraction can
be made deterministic, by joining the possible next stable formulae, and stable regions can be
overapproximated with their cartesian abstraction (therefore losing relational combinations
between predicates in P).

The algorithm for the deterministic cartesian abstraction has been implemented with an
abstract reachability analysis, manipulating LRA formulae by combining BDDs (with the CUDD
library [10]) and convex polyhedra (with the PPLite library [11]).

3. Example

Consider the circuit shown in the left-hand side of Figure 1. The involved components are a
voltage generator, three relays and four switches. A relay is an electro-mechanical component
able to control a remote switch: when the current that flows in it is above a certain threshold, we
say that the relay is activated and its magnetic field can close (or open) a remote switch. A relay
may require some time in order to activate after the current starts flowing: we consider relays C
and J with an activation delay of 1 and 2 seconds respectively, and a relay R, whose activation
is instantaneous. The deactivation process is immediate for all of them. All the switches are
controlled by a “master”: switches C, J, R are closed if and only if the homonym relay is active;
switch Lever, instead, is controlled by an external operator.

The circuit is modeled with a hybrid automaton ℋ with 77 continuous variables and 18
boolean variables. At the top of the right-hand side of Figure 1 we show a concrete run of
ℋ; below it, we show the (deterministic and cartesian approximation of the) corresponding
P-stable abstraction obtained with predicates P = {activeC, activeJ, activeR}, and events



𝐸 = {closeLever, openLever}. For exposition purposes we label a state with a vector 𝜇 ∈
{0, 1}3 whose positions denotes the active status of relays C, J, R respectively.

Initially, all the relays are inactive and all the switches are open: the system is stable in
state 000. When Lever is closed, current starts to flow in relay C and after 𝛿 = 1 it gets
activated. With a discrete transition, it closes the corresponding switch, allowing relay J to
start its activation process. After 𝛿 = 2, another discrete transition closes switch J and relay R
is immediately active. It follows that the closure of Lever triggers a run-to-completion process
towards state 111, whose convergence time is 3 seconds. Starting from this state, if Lever opens,
then relay C gets deactivated: nonetheless, thanks to the switch R, relay J continues to receive
current and the system is stable in state 011. If Lever closes again, the system only requires the
activation of relay C to converge again in state 111 after 1 second.

We have synthesized the P-stable abstraction which highlights the stable states, i.e., the ones
from which the system can exit only with an external event. Each transition is equipped with a
time interval, defining the duration of the convergence process: in this case, it defines that if
two subsequent inputs are separated by at least 3 seconds, then the system has always sufficient
time to stabilize and the P-stable abstraction is a sound simulation of all its behaviours.

The reverse engineering value of the obtained automaton relies on the abstraction of the
transient states, which are proper of this particular implementation of the desired logic. As an
example, a state in which R is active but the corresponding switch is still closed is disregarded,
since this process is actually instantaneous and introduced only by the modeling choices. As a
matter of fact, instantaneous transitions between the activation of a relay and the action on the
corresponding switch are fundamental to faithfully model the causality of the events, especially
with circular topologies, but have no physical relevance. Moreover, also the states which are
reachable only within a process with a non-null convergence time are skipped: consider that
“activeR ↔ activeJ” is not an invariant of the circuit, but it is respected in the P-stable abstract
automaton.

4. Conclusions

We presented P-stable abstractions, an approach proposed in [7] for the extraction of the
properties that a hybrid system satisfies. We showed its application on a relay circuit.

In the future we are considering a more general stability-abstraction framework, able to
provide different levels of expressiveness and precision for reverse engineering purposes.
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