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Abstract
The problem of designing effective systems to prevent risks and hazards caused by drones in critical
areas has gained significant attention in recent years. In this short paper, we introduce the idea of com-
puting optimal deployments of anti-drone sensors in a given region using simulation-based optimisation
via heuristic-guided intelligent search and a geometric modelling of the problem, and show preliminary
results in a real-world scenario.
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1. Introduction

In safety-critical areas, such as airports, power plants and government buildings complexes,
small unmanned aerial vehicles (UAVs, aka drones) nowadays represent a major hazard, due to
the risks of collisions, radio jamming, or other terror crimes. To protect such areas, anti-drone
systems are often deployed, which include sensors devoted to the detection and localisation
of drones. Different technologies are available to implement anti-drone systems [1, 2]; here,
we focus on radio-frequency (RF) sensors, which can detect the direction of arrival of signals
emitted by drones and that can determine target location via triangulation. This kind of sensors
can detect signals over large distances (1-5 km) with high accuracy, but require line-of-sight
visibility of the target. A major problem in designing an anti-drone system is to determine
where to deploy sensors in order to maximise their coverage of the region of interest (RoI), i.e.,
the fraction of the region where drones can be localised with high accuracy. Since each sensor
may cost up to several tens of thousands of Euros, it is also crucial to minimise the total cost of
the deployment, which depends both on the number of sensors employed and on their selected
positions (which implies different costs for mounting, wiring, etc.)

2. Modelling

Large critical areas often present certain characteristics that make it difficult to compute an
optimal deployment of anti-drone sensors. In [3, 4], the RoI has been discretised in cells of
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hundreds of square meters each, in order to compute, via Mixed Integer Linear Programming
(MILP), Pseudo-Boolean and Satisfiability/Optimisation Modulo Theory solvers an optimal
placement of relay nodes able to convey, in a fault-tolerant way, the network traffic from wisely
placed RF sensors to the gateway. Such a discretised problem formulation led to the generation
of millions of constraints.

Unfortunately, following similar methods to compute an optimal placement of the RF sensors
themselves would be unviable, as, to achieve the desired accuracy in the computation of the
quality of the deployment, a much finer discretisation of the RoI would be needed. Also,
differently from relay nodes, optimal positions of anti-drone RF sensors could easily belong to
the 3D space, as some sensors could be optimally placed on, e.g., , the roofs or walls of buildings.
All this would make a suitably-discretised version of the problem intractably large.

We introduce a computational geometry–based approach to represent the environment and
the possible positions of the sensors, by defining the RoI and its obstacles (such as buildings
and terrain asperities) as well as RoI priority regions and admissible sensor positions in terms
of bounded convex polytopes. This allows us to achieve any desired level of accuracy, enables
the efficient computation of the coverage of a given deployment via computational geometry
techniques, and paves the way to the use of simulation-based optimisation approaches.

3. Computing optimised deployments of sensors

Our goal is to compute a deployment of a given set of sensors over a 3D region, optimising the
linear combination of two (possibly conflicting) performance metrics: (1) the RoI % not covered
by the sensors and (2) the economic cost of purchasing and physically deploying the sensors. The
coefficient of the linear combination are chosen so that the objective value defines an amount of
money, combining the expense for purchasing and placing the sensors and the implicit cost of
not covering part of the RoI. We implemented a simulator that takes as an input the geometric
description of the environment and a deployment of sensors and computes the associated value
of the objective function (objective value). This simulator uses the Parma Polyhedra Library
[5] to model the environment as sets of polytopes and to perform the necessary geometric
operations (along the lines of [6]), and Monte Carlo estimation to compute an approximation of
the objective value, which is then used by our optimisation algorithm to guide the search.

The latter combines derivative-free optimisation [7] with domain-based heuristics, and bal-
ances exploitation and exploration by alternating two different types of moves (as inspired
from [8]). At each iteration, a step based on the adaptive trust-region method [9] computes and
performs a greedy move that maximally improves the current deployment by moving a single
sensor. Whenever a local optimum is reached (i.e., a deployment such that moving any single
sensor does not yield any improvement), a heuristic-guided random move is performed, where
each sensor is randomly moved (in a new admissible position) by a distance randomly chosen
depending on the sensor’s contribution to the coverage of the RoI.



Figure 1: Objective values of the best solutions found with different numbers of sensors.

4. A case study

We evaluated the performance of our optimiser on a large, real-world scenario: the Leonardo da
Vinci International airport of Rome, Italy. We used sensors with range of 1 km, which could be
deployed both on the ground (but not on the runways, on the roads and on the taxiways) and
on top of the buildings. We varied the number of deployed sensors between 12 and 20. In each
experiment, we first sampled 100 random deployments and sorted them by their objective value
(to be minimised) in ascending order. Then, we executed the optimisation algorithm multiple
times using the sampled deployments as starting points, from the best to the worse. A time
budget of 24 hours was set and the optimisation algorithm was run until either the whole time
budget was consumed or all 100 runs were completed.

In most of the cases, the algorithm was able to quickly improve the objective value and find
much better deployments than those found by random sampling. Among the best deployments
found with different number of sensors (Figure 1), the one that employed 16 sensors showed
the minimal objective value, i.e., was the one that best combined the coverage (73.1% of the RoI
volume covered) and the total expense for the deployment.

5. Related work

Many attempts have been proposed in the literature to solve large optimisation problems
defined via logic-, automata- or constraint-based formalisms (e.g., [10, 11, 12, 13]). However,
such approaches cannot be applied when the problem model cannot be accurately defined within
such formalisms and is available, e.g., only as a black-box (e.g., [14, 15]). In these cases, various
kinds of intelligent black-box search or statistical model checking are often performed in the
search space and a simulator is used to assess the quality of the current parameter assignment
as well as to receive, when possible, some kind of gradient information to guide the search. Such
approaches have proved to scale well in diverse application domains such as, smart grids (e.g.,
[16, 17, 18]), system-level verification of cyber-physical systems (e.g., [19, 20, 21, 22, 23, 25, 24]),
in silico medicine (e.g., [26, 27, 28, 29, 30]). As for the problem of optimally placing sensors in a
large region, existing methods differ depending on the types of sensors considered and on the
goal of the deployment.

Most works focus on monitoring 2D regions, with or without obstacles (e.g., [31, 32, 33, 34,
35, 36]), hence are not easily adaptable to the localisation of flying objects. Approaches working
in the 3D space [31, 37] do exist. However they typically discretise the RoI and the possible



positions of sensors [38, 39], and thus do not scale over large scenarios when the targets must
be localised with high accuracy.

6. Conclusions

In this short paper we have shown how to compute optimal deployments of anti-drone sensors
in a given RoI through simulation-based optimisation via heuristic-guided intelligent search and
geometric problem modelling. We also presented preliminary results in a real-world scenario
(Leonardo da Vinci airport in Rome, Italy) which show our approach promising.
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