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Abstract
In this short paper we present preliminary results on computing, in silico, personalised therapies for
Colorectal Cancer (CRC), one of the deadliest form of tumour for adult humans. We exploit a recent
SBML (Systems Biology Markup Language) model of the tumour growth, which also models the Pharma-
coKinetics/Pharmacodynamics (PK/PD) of two immunotherapic drugs that may be used in combination
treatments.
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1. Introduction

The recent availability of quantitative models of the human patho-physiology (Virtual Physiolog-
ical Human, VPH) has inspired and facilitated new approaches to the design of pharmacological
treatments and the safety and efficacy assessment of therapies and biomedical devices. These
kinds of approaches, collectively referred to as In Silico Clinical Trials (ISCTs), hold the promise
to enable precision medicine, in which Artificial Intelligence (AI) methods support the design
of personalised therapies and the assessment of their efficacy by means of simulation (i.e., in
silico). ISCTs require computational VPH models that take into consideration the physiological
differences between different human individuals and that capture the kinetics and dynamics
of pharmacological drugs. Quantitative VPH models are typically defined as hybrid systems,
where the dynamics is described by systems of Ordinary Differential Equations (ODEs) and
the inter-patient variability is encoded by parameters. These models are often designed and
distributed in open-standard modelling languages, often the Systems Biology Markup Language
(SBML).

2. Modelling

The automatic synthesis of therapies that may involve several drugs is a computationally
complex task. In fact, it is necessary to determine which drugs to use and their associated dosing
regimen, i.e., the drug amounts and the frequency of administration. Also, as it is the case
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for most pathologies and drugs, not all possible therapies are actually feasible; most notably,
there exist known constraints that limit the quantity of drugs that may be administered in a
certain period, in order to deal with drug toxicity. In the general case, the number of possible
therapies is infinite. We study an approach to the problem that is based on the parametrisation of
therapies. In order for the approach to be both feasible and effective, the number of parameters
must be small enough to enable an efficient search over the possible therapies but still large
enough to allow the modelling of all (or most of) the therapies of interest. Our goal, then, is
the synthesis of therapies (assignment to the parameters) that meet a given set of constraints
and optimise a user-defined objective function, which usually combines a set of performance
metrics that include efficacy (i.e., how well the therapies cures the pathological condition) and
the total quantity of administered drugs (generally to be minimised, so to reduce costs and
health risks). We propose a method that uses VPH models described in the SBML language and
that defines the whole optimisation problem inside the model itself. In particular, the parameters
of the treatment will be modelled as additional parameters of the VPH model and the objective
function and the therapy constraints will be modelled as observable model outputs. The fact
that the whole problem is defined in pure SBML, a standard language supported by a large suite
of software and with a large community, has the goal of showing that computational methods
have the potential to be used in an easy and immediate way in clinical contexts.

3. Computing personalised therapies for Colorectal Cancer

This section describes the steps we followed to set up an ISCT to evaluate the effectiveness of
our approach in the synthesis of personalised therapies for the CRC model proposed in [1].
Generation of a virtual population. The starting point to perform an ISCT is the availability
of a complete and representative population of virtual patients (VPs), i.e., assignments to the
VPH model parameters. The CRC model presents 23 real-valued parameters that encode the
inter-patient variability. We used the approach described in [2, 3, 4] to generate a population of
VPs that are of interest (i.e., do actually develop a tumour) and show evolution of the model
observables that are physiologically admissible (i.e., do not violate the laws of biology).
Therapy modelling. We modelled 60-week-long therapies as assignments to a set of 32
parameters. For each of the two drugs, atezolizumab and cibisatamab, each one of 15 parameters
governs the amount of drug that can be administered during a 28-day period and one additional
parameter defines the number of weeks between two consecutive administrations of the drug.
Therapy constraints and objective function. We modelled two constraints, each of which
limits the total amount of each drug cumulatively administered in each 28-day period according
to known toxicity levels and past clinical trials (https://clinicaltrials.gov/ct2/show/NCT03866239).
The objective function combines the total amount of administered drug with a measure of
inefficacy of the treatment. This last measure is computed based on the volume of the tumour at
the end of the treatment and its initial volume. An high value for the inefficacy measure means
that the therapy is not able to keep the tumour growth under control.

https://clinicaltrials.gov/ct2/show/NCT03866239


4. Experimental results

We chose to carry out the experimental evaluation of our approach using COPASI [5], one of
the most well-known software tools supporting both plain simulation and simulation-based
parameter optimisation of SBML models via iterative improving algorithms. The starting
point of our ISCT was the random sampling of 35 VPs from the previously computed complete
population. We compared the optimisation performance of 3 algorithms implemented in COPASI:
the standard Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and the Levenberg-
Marquardt (LM) algorithm, a gradient-descent based method that combines Steepest Descent
and the Newton Method. The hyper-parameters of the algorithms were chosen as to perform
the optimisation in a reasonable time for every patient (within 2 hours on an Intel Xeon E5430
@ 2.66GHz (8 cores) 32GB RAM machine). In order to compare the quality of the personalised
therapies synthesised by each algorithm with a common baseline, we considered the dosing
regimen of [1] as a a reference. Given a therapy, we define the Drug Amount Percentage as
𝑡amount
𝑟amount

× 100%, where 𝑡amount and 𝑟amount are the total amounts of drugs administered by the
given therapy and the reference one, respectively. For each VP, the Inefficacy Percentage for a
given therapy is defined as 𝑡ineff

𝑟ineff
× 100%, where 𝑡ineff and 𝑟ineff are the inefficacy values for the

given and the reference therapy, respectively. The objective function is a linear combination
of these two metrics, where the coefficients are chosen so to balance the search for effective
treatments and the minimisation of administered drug amounts. In our experiments, only 11
VPs out of 35 showed a response to the drugs. This is in agreement with the results from [1].

For such 11 patients, LM was not able to find a therapy that improves the reference one,
while GA and PSO show, on average, good results. The average reduction of the amount of
administered drug is as high as 96.9% for GA and 98.62% for PSO, while the average reduction
of the inefficacy is around 35% for both algorithms. Nonetheless, such personalised therapies
still manage to reduce the tumour growth significantly.

5. Related Work

Many attempts have been proposed in the literature to solve large optimisation problems defined
via logic-, automata- or constraint-based formalisms (e.g., [6, 7, 8, 9, 10, 11, 12] among others).
However, such approaches cannot be applied when the problem model (a complex ODE-based
VPH model, as in our case) cannot be accurately defined within such formalisms and is available
only as a simulator. Indeed, although such VPH models are hybrid systems whose inputs are
discrete event sequences [13, 14], to find an optimal treatment means to find an optimal plan in
hybrid domains. Although symbolic approaches exist to model and solve planning problems in
hybrid domains [15, 16], the typical complexity of the ODEs of clinically-relevant VPH models
makes such models out of reach for them, and appoints numerical integration as the only viable
means to compute (black-box) the model evolutions under a given input function.

The synthesis of personalised therapies exploiting black-box VPH models is addressed in, e.g.,
[17, 18]. In [19, 20] the authors propose a intelligent backtracking simulation-based algorithm
guided by multiple heuristics to seek, on a patient digital twin, an optimal robust personalised
treatment for assisted reproduction, an area with many factors hard to control [21, 22, 23] and



for which treatment personalisation is crucial for success.
One of the main problems in system biology is the estimation of unknown model parameters

that fit a series of experimental data. Various optimisation algorithms are studied in [24, 25, 26]
and applied in real-world case studies in, e.g., [27, 28, 29]. Many of the available tools rely
on SBML simulators (see www.sbml.org). Among such simulators is SBML2Modelica [30],
which focuses on the interoperability between system biology and (hybrid) CPS domain by
translating SBML models to Modelica and the FMI/FMU open standard. This enables the
seamless exploitation of tools and methodologies already established for CPS optimisation and
verification, in particular backtracking-based search and optimisation via the efficient storing
and retrieval of intermediate simulator states [31], verification of closed-loop systems also in
presence of uncontrollable events (e.g., [32, 33, 34, 35, 36, 37, 38]).

6. Conclusions

The good results of the GA and PSO algorithms show the potential of the approach in the
synthesis of personalised therapies. We interpret the failure of the LM algorithm as a clue of
the fact that purely gradient-based optimisation is not suited for this problem, due to the strong
constraints enforced on the therapies. Conversely, population-based algorithms show good
results thanks to their ability to widen their focus throughout the search space.
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