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Abstract

BLACK, short for Bounded LTr sAtisfiability ChecKer, is a recently developed software tool for satisfia-
bility checking of Linear Temporal Logic (LTL) formulas. It supports formulas using both future and past
operators, interpreted over both infinite and finite traces. At its core, BLACK uses an incremental SAT
encoding of the one-pass tree-shaped tableau for LTL recently developed by Reynolds, which guarantees
completeness thanks to its particular pruning rule. This paper gives an overview of the tool, surveys
the main design choices underlying its implementation, describes its features and discusses potential
future developments.
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1. Introduction

Linear Temporal Logic (LTL) is the de-facto standard modeling language for temporal properties
of reactive systems, both in formal verification and artificial intelligence. It is a modal logic
usually interpreted over infinite state sequences, but the finite-trace semantics has recently
gained attention as well [1, 2].

One of the most important tasks performed on LTL formulas, and one of the first to have
been studied [3, 4], is satisfiability checking, i.e., checking whether there exists a model of
a given formula. Satisfiability checking is important in many applications, from automated
planning [5] to sanity checking of specifications [6]. Many techniques have been developed
over the years to solve the problem, ranging from tableau systems [4, 7, 8] to reduction to model
checking [9], from temporal resolution [10, 11, 12] to automata-theoretic techniques [13]. In
particular, tableau methods are useful both as a theoretical tool and as an effective solving
technique. Classic tableau methods are graph shaped [4, 7], since they create a graph structure
that is then traversed in a second pass to find suitable models for the formula. In contrast, some
one-pass tableaux methods have been proposed by Schwendimann [14] and, more recently,
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by Reynolds [8]. The latter in particular is purely tree-shaped, as each branch of the tree is
independently expanded and accepted or rejected in a single pass. Thanks to this feature, it
has been proven to be efficiently implementable [15] and easily parallelizable [16]. Moreover,
its modular structure allowed it to be extended to different logics, in particular LTL with
past operators [17] and real-time extensions of LTL such as Timed Propositional Temporal Logic
(TPTL) [18].

BLACK, short for Bounded LTL sAtisfiability ChecKer, is a recently developed software tool
for satisfiability checking of LTL formulas, based on an incremental SAT encoding of Reynolds’
tableau [19]. Given an LTL formula ¢, the tool encodes in a SAT formula the tableau for ¢
up to depth k, for increasing values of k, until an accepted branch is found or a witness of
unsatisfiability is detected. In contrast to similar approaches a la bounded model checking, the
algorithm underlying BLACK is complete even without computing any completeness threshold,
thanks to the SAT encoding of the pruning rule of Reynolds’tableau. The modularity of Reynolds’
tableau transfers to its SAT encoding. Thanks to this, BLACK is able to support both future
and past temporal operators [20], and formulas interpreted both on finite and infinite traces,
with minimal changes to the underlying encoding. Thanks to the direct relationship between
tableau branches and models of the formula, BLACK easily supports the extraction of a model
for satisfiable formulas. Experimental evaluations performed against other state-of-the-art tools
show BLACK competitive performance and low memory consumption [19].

From an engineering point of view, BLACK has been designed and developed with speed,
stability, flexibility and portability as primary goals. It is implemented as a shared library,
with a well-defined API, that can be invoked in client applications, with the tool itself being
a simple command-line wrapper over the library. As the underlying SAT solver, it supports a
variety of backends, such as MathSAT [21], Z3 [22], MiniSAT [23] and CryptoMiniSAT [24].
The tool and the library are multi-platform, with support for Linux, Windows, and macOS, with
easy-to-install binary packages available for all platforms.’

In the rest of the paper, we further describe the tool and its features, we overview its under-
lying algorithm and its design and implementation choices. Then, we discuss possible future
developments.

2. The SAT encoding of Reynolds tableau

BLACK’s algorithm for satisfiability checking is depicted in Fig. 1. At each iteration, for
increasing values of k, the encoding of the tableau up to depth k is tested to either find (the
encoding of) a suitable accepted branch, or a witness of unsatisfiability (i.e., the encoding of
a tableau with only rejected branches). An example tableau for the formula GF(p A X —p) is
shown in Fig. 2. The formulas [¢]*, |¢|*, and |¢|% encode the tableau up to depth k in different
ways. For a complete definition of the encoding we refer the reader to Geatti et al. [19, 20]. Here,
we state the main properties of such formulas, in order to understand the algorithm in Fig. 1.
Given an LTL formula ¢, the formula [¢]* is the k-unraveling of ¢. It represents the expansion
of the tableau tree up to depth k. Intuitively, if [¢]* is unsatisfiable, all the branches of the
tableau are rejected by propositional contradictions before depth k + 1, and vice versa.

"BLACK can be downloaded from https://github.com/black-sat/black
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1: procedure BLACK(¢)
2 k<+0 {GF(pAX=p)}
3 while True do \
1 if [¢]* is UNSAT then {F(p A X=p),XGF(p A X—p)}
5: return ¢ is UNSAT e N
6 end if o AR X TP XGR(p AXp)}
. o . \L

7 if |¢|* is SAT then

- A X~
8 return ¢ is SAT ;{,Ij’ GF(p X\\p)}
9: end if . .

{=p,p,X-p,...} {-p,XF(pAX-p),XGF(pAX-p)}

10: if |¢|% is UNSAT then X 1
11: return ¢ is UNSAT {F(p AX—p),GF(p AX—p)}
12: end if . Ny
13: ke k1 7 {pX P XGF(p AXp)}
14: end while P

15: end procedure

Figure 1: BLACK’s main procedure [19] Figure 2: A tableau for the formula G F(p A X —p)

Lemma 1. Let ¢ be an LTL formula. Then, [¢]* is unsatisfiable if and only if all the branches of
the complete tableau for ¢ are crossed by propositional contradictions before depth k + 1.

The formula |$|* is called the base encoding of ¢, and includes the k-unraveling conjuncted
with additional clauses that represent the acceptance conditions of tableau branches. Hence, if
|p|¥ results satisfiable, we found at least one accepted branch.

Lemma 2. Let ¢ be an LTL formula. If the complete tableau for ¢ contains an accepted branch
of depth k + 1, then |p|* is satisfiable.

Lemma 3. Let ¢ be an LTL formula. If|p|* is satisfiable then the complete tableau for ¢ contains
an accepted branch.

Finally, the |¢|% formula is called the termination encoding of ¢. It consists in the k-unraveling
conjuncted with additional clauses that represent the pruning rule of Reynolds’ tableau, i.e.,
the rule that reject branches that would otherwise be expanded forever trying to fulfill an
unfulfillable future request. This is, for instance, the case of the tableau for the formula G—p A
gU—p. If the formula is unsatisfiable, the formula only contains rejected branches.

Lemma 4. Let ¢ be an LTL formula. If |¢|% is unsatisfiable, then the complete tableau for ¢
contains only rejected branches.

Together, these Lemmata allow us to prove the soundness and completeness of the procedure.
See Geatti et al. [20] for the full proofs.

Theorem 1 (Soundness and completeness). Let ¢ be an LTL formula. The BLACK algorithm
always terminates and answers satisfiable on ¢ if and only if ¢ is satisfiable.

As shown by Geatti et al. [20], the encoding can be easily extended to LTL+Past formulas,
i.e.,, LTL augmented with past operators. Furthermore, BLACK has been recently extended to
work on formulas interpreted over finite traces as well. This addition involves minimal changes
to the |¢|* formula, in order to not accept looping models.



3. Design and implementation

BLACK has been written in C++17 with the goals of speed, low memory consumption and
stability. The latter requirement is particularly important given the types of applications of a
formal verification tool: the satisfiability checker must be trustable as much as possible. For
this reason, the development has been integrated from the start with a continuous integration
pipeline and an extensive test suite that achieve 100% code coverage. The result is a pretty solid
tool with no signs of memory errors, undefined behaviors and memory leaks.

Integral part of the testing pipeline is the trace checking feature. Given a particular option,
BLACK can output the model of satisfiable formulas in JSON format. Besides being a useful
output format, this allows BLACK itself to parse its own output to check whether the given
state sequence is indeed a model of the given formula. Note that this task is much easier
than satisfiability checking, and it only involves a simple structural recursion on the formula
independent from BLACK’s solver. The trace checking is applied to the result of all the over
3300 formulas of the test suite, increasing the confidence in the correctness of the tool.

As already mentioned, the tool is actually implemented as a thin wrapper over a shared library
that can be linked by any client application, increasing the flexibility of the tool. The library
provides facilities to create and parse LTL formulas, and, most importantly, to manipulate them
with a functional-style pattern matching mechanism. This drastically decreases the amount of
code required to implement formulas transformations and to implement the SAT encoding itself.
Then, the library provides an abstraction layer over the available SAT solvers. This layer hides
the differences between the backends, transforms the given formulas, if needed, in conjunctive
normal form, and invokes the SAT solver. BLACK’s solver, that implements the procedure
described in Section 2, is implemented on top of these facilities. Thus, besides satisfiability
checking, the BLACK library can provide a useful basis for other types of applications that
involve the manipulation of LTL formulas or the use of SAT solvers.

4. Conclusions and future developments

We briefly described BLACK, a satisfiability checker for LTL formulas based on the SAT encoding
of the one-pass tree-shaped tableau by Reynolds [8].

Many future developments are possible, both in terms of increased performance and additional
functionalities. On the performance side, a promising development is the parallelization of the
solver. Work is in progress to find a suitable way to exploit multiple processing cores. Other
optimizations such as the improvement of the CNF generation are possible.

An important additional feature would be the support of the model checking task in addition
to satisfiability checking. This may concretely consist in the support of a subset of NuXmv [9]
modeling language with LTL specifications, with the model checking problem reduced to
satisfiability in the standard way. Additional algorithms such as IC3 [25] can be implemented
to provide a portfolio of techniques to better suite any given scenario.

Lastly, BLACK can conceivably be augmented to support extensions of LTL. As an example, an
extension of Reynolds’ tableau exists for the real-time TPTL logic [18], and work is in progress
to extend it to the monodic two-variable fragment of first-order LTL as well [26].
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