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Abstract

The design of temporal networks typically follows a top-down approach where a designer handcrafts a
temporal network to model some concrete plan of interest. Instead, the bottom-up approach of mining
is the process of building a temporal network from a set of execution traces of some (typically unknown)
underlying process. Recent research showed that, due to the structural properties of temporal networks,
such a task can be done in polynomial time. In this paper, we give an overview of the current status of
our research and highlight open problems concerning Formal Methods and Artificial Intelligence.
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1. Introduction

Temporal networks are a possible framework to model temporal plans and check the consistency
of their temporal constraints imposing delays and deadlines between the occurrences of pairs
of events in the plan [1]. Over the years the core formalism of Simple Temporal Networks [1]
has been extended in several ways to cope with uncontrollable durations [2], uncontrollable
and controllable choices [3, 4] and, more recently, with combinations of them (see, e.g., [5, 6, 7,
8,9, 10]). The most expressive formalisms of temporal networks are those that simultaneously
handle all such features. Conditional Simple Temporal Networks with Uncertainty and Decisions
(CSTNUD:s, [9, 10]) is a recent formalism that is able to model controllable and uncontrollable
durations as well as controllable and uncontrollable choices simultaneously.

Like any model-based engineering approach, creating a temporal network is a complex,
time-consuming, and error-prone task, where discrepancies between the actual process and
the obtained network might eventually emerge requiring that the designer refines or abstracts
the model being created. This is a top-down, trial-and-error approach. Instead, the opposite,
bottom-up approach is known in the literature under the name of process mining and it aims to
mine (i.e., synthesize) process descriptions (or, more reasonably, model approximations) from
execution traces (i.e., process logs). A trace describes a run of a process, whereas the set of all
available traces can be thought of as a log of a process carried out many times. One of the first
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Table 1
Building blocks to design CSTNUDs.

Time points Contingent links Constraints
[27 8] {a, —|b} - 10
A? B! C A——C A~ =8B
{}:-1

contributions in process mining is that of Agrawal, Gunopulos, and Leymann [11], but, after
this seminal work, many others followed by focusing on different process description languages
[12, 13, 14, 15, 16, 17, 18]. The problem of mining temporal networks subject to uncontrollable
parts received particular attention in [19] and [20]. In this paper, we briefly summarize our
current results and discuss future directions.

2. Mining CSTNUDs

A CSTNUD involves a finite set of time-points 7, a finite set of booleans B, a finite set of
contingent links £, and a finite set of constraints C [9, 10]. A classic convention identifies time
points by upper-case letters (A, B, .. .) and booleans by lower-case ones (a, b, . . . ). Both time
points and booleans are partitioned in controllable and uncontrollable ones (i.e., 7 = 7o U Ty
and B = B¢ U By), where controllable means that their value assignments can be decided by
the executing agent, whereas uncontrollable means that their value assignments can only be
observed once they take place. Time points are executed as soon as they are assigned real values.
There exists a bijection 3: B = T¢ between the set of (all) booleans and a subset of controllable
time points to associate booleans to time points. As soon as 3(b) is executed, the truth value of
b is assigned by the executing agent (if b € Bc), or observed (if b € By/). Each contingent link
models an uncontrollable duration and has the form (A, ¢, u, C'), where A € 7o, C' € Ty, and
f,u € Rwith 0 < £ < u [19, 20]. Once A is executed, then C will be observed to occur at a
time such that C' — A € [/, u]. Finally, each constraint has the form S: A — B < k where S is
a consistent set of literals over B, A, B € R and k € R. When all time points are executed and
all booleans are assigned, if the truth assignment to the booleans satisfies S, then B — A < k
holds. Whenever S = () the constraint is unconditional (i.e., it must always hold).

Every CSTNUD admits a graph-based representation in which nodes model time points,
whereas directed labeled edges model contingent links (double) and constraints (single). When-
ever a node is suffixed by 7 or ! it means that its has an uncontrollable or controllable boolean
associated respectively (for simplicity identified by the same letter in lower-case). Table 1 shows
such core components. A7, B!, and C' are time points, with A associated to the uncontrollable
boolean a and B associated to the controllable boolean b. C' is an uncontrollable time point.
The contingent link A = C models an uncontrollable duration between 2 and 8 time units.
Finally, the arc B — A models the unconditional delay constraint {}: A — B < —1 meaning
that B is always at least 1 after A, whereas A — B models the conditional deadline constraint
{a,—b}: B — A < 10 meaning that if a is observed to be true and b is decided to be false, then
B is within 10 after A.



Table 2
Meaning of the weakening rules: adding (first row), weakening (second and third row).

Contingent Links Constraints

Current New Merged Current New Merged
{a,b} : 8
[1,1] [1,1] {a,—b}:1 {a,b} : 8 {a,=b}:1

A A——>C A——C A———B A——B A——B
{a,—b}:5

(2,8] [10,10] (2,10] {a,c}:3 {a}: 8 {a}: 8
A——C A——C A——C A—DB A—B —_—
{=b}:1 {-b}:8

(3,9] [1,1] [1,9] {a}:5 {a,—b} : 8 {a}:8

A——>>C A——=C A——=C A—B A—B A—B

We initially proposed an algorithm to mine CSTNUDs in [19] whose extended version appears
n [20]. The algorithm processes a set of well-defined and coherent traces and generates a
CSTNUD that contains all time points and booleans appearing in the traces and such that
all temporal and truth value assignments of each trace satisfy in the CSTNUD all constraints
restricted to those subsets of time points and booleans. Each trace is a set of events that happened
at their corresponding absolute times plus the truth value assignment to the booleans (if any)
(eg,Z=0,A=1,B=2-b,...,see[19,20]). Therefore, our mined networks have always a
time point Z (zero-time point) from and to which all constraints are generated. The idea of the
algorithm is fairly simple and can be summarized intuitively in these two main points:

1. Add time points, booleans, contingent links, and constraints whenever they are not in
the CSTNUD being mined.

2. Weaken specific contingent links and constraints whenever they are already in the
CSTNUD being mined.

Weakening means to make contingent links and constraints more general so that they can model
executions coming from the processed traces. For example, if the current CSTNUD contains a
contingent link (A, ¢, u, C) and in the next trace the duration of such link is fixed to be k, then
we modify the CSTNUD so that the “updated” contingent link is (A, min(4, k), max(u, k), C).
Likewise, consider a constraint A — B labeled by S: k in the CSTNUD, where either A or B
is Z. Assume that the next trace entails a constraint A — B labeled by S’": k¥’. If S C &', then
we replace the label S: k of the original constraint with S: max(k, k') (i.e., we operate on the
numeric value only). Instead, if S’ C S, we replace the label S: k of the original constraint
with §’: max(k, k") (i.e., we operate on both the set of literals and numeric value). Of course, if
more constraints satisfy the applicability condition of the rule they will be modified all together.
Table 2 provides some intuitive examples.

The last step of our algorithm applies a final condition that further relaxes numeric values
on constraints to impose a coherence on those constraints whose union of preconditions is a
consistent set of literals. We need this last step because we process traces that might be partial.
We do not discuss it here for simplicity. Overall, the take-home message is simple:

Always keep the most general constraint.



Since we deal with temporal constraints that are interval bounds, we can work with min/max
numeric values. Likewise, since the preconditions on the applications of constraints are sets, we
can work with sub/supersets. The asymptotic complexity of our algorithm is upper bounded by
O(|Z|? x (K + |T|)) where T is the set of input traces and K is the length of the longest trace
in it. We also developed cstnud-miner an open-source software prototype that is available at
https://github.com/matteozavatteri/cstnud-miner.

3. Mining of Temporal Networks: Open Problems

We exploited the well-defined monotone mathematical structure of temporal networks, and we
succeeded in the design of a correct algorithm to mine CSTNUDs with a property of interest that
we called significance. Roughly, a CSTNUD is significant whenever it contains all time points
and booleans appearing in the traces and the temporal and truth value assignments arising from
each processed trace satisfy the constraints restricted to these variables in the mined CSTNUD.
This is what our theory achieved so far. We outline here some future directions.

1. There exist three main kinds of controllability of temporal networks subject to uncontrol-
lable parts: weak, strong, and dynamic. Weak controllability is when all uncontrollable
temporal and truth value assignments are known before starting the execution. Strong
controllability is the dual case in which no uncontrollable part will be known during
execution. Dynamic controllability is when we make our execution decisions in real-time
depending on which uncontrollable temporal and truth value assignments we are ob-
serving. All three kinds of controllability boil down to consistency whenever there is
no uncontrollable part. In [20] we carried out an experimental evaluation by generating
sets of traces belonging to all subformalisms of CSTNUDs. Afterwards, we tested for
consistency (if no uncontrollable parts were present), weak, strong and dynamic control-
lability otherwise. We found that our algorithm mines CSTNUDs which are not strongly
controllable (we provided a counter example). Regarding consistency, weak, and dynamic
controllability (depending on the type of network) we could not find a counter example.
This makes us believe that our algorithm mines CSTNUDs which are weakly and also
dynamically controllable (and thus mines consistent networks when all time points and
booleans are controllable). However, a formal proof of this statement is still missing and
requires to prove the existence of an execution strategy for the mined network.

2. If the aim of (1) would lead to a negative result, and worse still, to a proof that mining
controllable CSTNUDs (whose set of constraints is not, of course, empty) is a hard problem,
then an attempt toward Machine Learning techniques would be justified to obtain an
algorithm to mine (hopefully) controllable temporal networks. Of course, since such Al
approaches may fail, particular attention should be devoted to its “success rate”.

3. Assuming to have (2), it remains to be understood if it might (in practice) be more
competitive than our current algorithm on huge sets of input traces.

4. Last but not least, several extensions of the algorithm are needed to mine networks such
as, for example, those in [21, 22, 23] to handle both time and resource constraints together.

In conclusion these open problems call for a fruitful synergy between Formal Methods and
Machine Learning techniques from Artificial Intelligence.


https://github.com/matteozavatteri/cstnud-miner
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