
Using Directional Arc Consistency with
Asynchronous Forward-Bounding algorithm
Rachid Adrdor1, Lahcen Koutti1

1Ibn Zohr University, Faculty of Sciences, Department of Computer Science, Agadir, Morocco

Abstract
The AFB_BJ+-AC* algorithm is one of the latest algorithms used to solve Distributed Constraint Op-
timization Problems (DCOPs). It is based on simple arc consistency (AC*) to speed up the process of
solving a problem by permanently removing any value that doesn’t belong to its optimal solution. In this
paper, we use a directional arc consistency (DAC*), the next higher level of AC*, to erase more values
and thus to quickly reach the optimal solution of a problem. Experiments on some benchmarks show
that the new algorithm, AFB_BJ+-DAC*, is better in terms of communication load and computation
effort.

Keywords
DCOP, AFB_BJ+, AC*, Directional Arc Consistency

1. Introduction

A large number of multi-agent problems can be modeled as DCOPs such as meetings scheduling
[1]. In a DCOP, variables, domains, and constraints are distributed among a set of agents. Each
agent has full control over a subset of variables and the constraints that involve them [2]. A
solution to a DCOP is a set of value assignments, each representing the value assigned to one of
the variables in that DCOP.

To solve DCOPs, algorithms with different search strategies have been suggested in the liter-
ature, for example, Adopt[3], BnB-Adopt[4], BnB-Adopt+[5], BnB-Adopt+-AC*[6], SyncBB[7],
AFB[2], AFB_BJ+[8], etc. AFB_BJ+-AC*[9, 10, 11] is one of the recent algorithms that uses arc
consistency (AC*) to solve DCOPs.

In this paper, instead of using the basic level of arc consistency (AC*), we use directional
arc consistency (DAC*). DAC* allows AFB_BJ+ to generate more deletions and thus quickly
reach the optimal solution to a problem. The new algorithm is called AFB_BJ+-DAC*. It
uses DAC* to filter agent domains by performing a set of cost extensions from an agent to its
neighbors, then executing AC*. Our experiments on different benchmarks show the superiority
of AFB_BJ+-DAC* algorithm in terms of communication load and computation effort.

2. Background

2.1. Distributed Constraint Optimization Problem (DCOP)

A DCOP [11, 12, 13] is defined by 4 sets, agents 𝒜 = {𝐴1, 𝐴2, ..., 𝐴𝑘}, variables 𝒳 =
{𝑥1, 𝑥2, ..., 𝑥𝑛}, domains 𝒟 = {𝐷1, 𝐷2, ..., 𝐷𝑛}, where each 𝐷𝑖 contains the possible val-
ues for 𝑥𝑖, and constraints 𝒞 = {𝐶𝑖𝑗 : 𝐷𝑖 ×𝐷𝑗 → R+} ∪ {𝐶𝑖 : 𝐷𝑖 → R+}. In this article, we
consider that each agent of a given DCOP is responsible for a single variable and that at most
two variables are related by a constraint (i.e. unary or binary constraint) [14].

We consider these notations: 𝐴𝑗 is an agent, where 𝑗 is its level. (𝑥𝑗 , 𝑣𝑗) is an assignment
of 𝐴𝑗 , where 𝑣𝑗 ∈ 𝐷𝑗 and 𝑥𝑗 ∈ 𝒳 . 𝐶𝑖𝑗 is a constraint between 𝑥𝑖 and 𝑥𝑗 . 𝐶𝑗 is a constraint
on 𝑥𝑗 . 𝐶𝜑 is a zero-arity constraint that represents a lower bound of any problem solution.
𝐶𝜑𝑗 is the contribution value of 𝐴𝑗 in 𝐶𝜑. 𝑈𝐵𝑗 is the cost of the optimal solution reached so
far. [𝐴1, 𝐴2, . . . , 𝐴𝑛] is the lexicographic ordering of agents (the default ordering), Γ(𝑥𝑗) =
{Γ− : 𝑥𝑖 ∈ 𝒳 | 𝐶𝑖𝑗 ∈ 𝒞, 𝑖 < 𝑗} ∪ {Γ+ : 𝑥𝑖 ∈ 𝒳 | 𝐶𝑖𝑗 ∈ 𝒞, 𝑖 > 𝑗} is the set of neighbors

OVERLAY 2021: 3rd Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
September 22, 2021, Padova, Italy
" rachid.adrdor@edu.uiz.ac.ma (R. Adrdor); l.koutti@uiz.ac.ma (L. Koutti)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:rachid.adrdor@edu.uiz.ac.ma
mailto:l.koutti@uiz.ac.ma
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Proc. 1: ProjectUnary()

1 𝛽 ← 𝑚𝑖𝑛𝑣𝑖∈𝐷𝑖
{𝑐𝑖(𝑣𝑖)} ;

2 𝐶𝜑𝑖
← 𝐶𝜑𝑖

+ 𝛽 ;

3 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
4 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖)− 𝛽 ;

Proc. 2: Extend(𝑥𝑖, 𝑥𝑗 , 𝐸)

1 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
2 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
3 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)← 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝐸[𝑣𝑖] ;
4 if (𝐴𝑖 is the current agent)
5 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖)− 𝐸[𝑣𝑖] ;

Proc. 3: DAC*()

1 foreach (𝑎 ∈ 𝐷𝑗) do
2 if (𝑐𝑗(𝑎) + 𝐶𝜑 ≥ 𝑈𝐵𝑗)
3 𝐷𝑗 ← 𝐷𝑗 − 𝑎 ;𝐷𝑉 𝑎𝑙𝑠[𝑗].𝑎𝑑𝑑(𝑎) ;

4 foreach (𝐴𝑘 ∈ Γ+) do
5 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
6 𝐸[𝑣𝑗]← 𝑐𝑗(𝑣𝑗) ;

7 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥𝑗 , 𝑥𝑘, 𝐸) ;
8 𝐸𝑉 𝑎𝑙𝑠[𝑗𝑘].𝑝𝑢𝑡(𝐸) ;
9 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑖𝑛𝑎𝑟𝑦(𝑥𝑘, 𝑥𝑗) ;

Proc. 4: ProjectBinary(𝑥𝑖, 𝑥𝑗)

1 foreach (𝑣𝑖 ∈ 𝐷𝑖) do
2 𝛼← 𝑚𝑖𝑛𝑣𝑗∈𝐷𝑗

{𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)} ;
3 foreach (𝑣𝑗 ∈ 𝐷𝑗) do
4 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)← 𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗)− 𝛼 ;
5 if (𝐴𝑖 is the current agent)
6 𝑐𝑖(𝑣𝑖)← 𝑐𝑖(𝑣𝑖) + 𝛼 ;

Proc. 5: ProcessPruning(msg)

1 𝐷𝑉 𝑎𝑙𝑠← 𝑚𝑠𝑔.𝐷𝑉 𝑎𝑙𝑠 ;
2 foreach (𝐴𝑘 ∈ Γ) do
3 foreach (𝑎 ∈ 𝐷𝑉 𝑎𝑙𝑠[𝑘]) do
4 𝐷𝑘 ← 𝐷𝑘 − 𝑎 ;

5 𝐸𝑉 𝑎𝑙𝑠← 𝑚𝑠𝑔.𝐸𝑉 𝑎𝑙𝑠 ;

6 foreach (𝐴𝑘 ∈ Γ−) do
7 𝐸𝑥𝑡𝑒𝑛𝑑(𝑥𝑘, 𝑥𝑗 , 𝐸𝑉 𝑎𝑙𝑠[𝑘𝑗]) ;
8 𝐸𝑉 𝑎𝑙𝑠[𝑘𝑗].𝑐𝑙𝑒𝑎𝑟 ;
9 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐵𝑖𝑛𝑎𝑟𝑦(𝑥𝑗 , 𝑥𝑘) ;

10 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑈𝑛𝑎𝑟𝑦() ;

11 𝐶𝜑 ← 𝑚𝑎𝑥
{︀
𝐶𝜑, 𝑚𝑠𝑔.𝐶𝜑

}︀
+ 𝐶𝜑𝑗

;

12 𝐶𝜑𝑗
← 0 ;

13 DAC*() ;
14 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

of 𝐴𝑗 . 𝑌 = 𝑌 𝑗 = [(𝑥1, 𝑣1), . . . , (𝑥𝑗 , 𝑣𝑗)] is a current partial assignment (CPA) or a feasible
solution. 𝑙𝑏𝑘[𝑖][𝑣𝑗] are the lower bounds of a lower neighbor 𝐴𝑘 obtained for 𝑌 𝑗 . 𝐷𝑉 𝑎𝑙𝑠 is a
list of arrays containing values deleted by each agent 𝐴𝑗 . 𝐸𝑉 𝑎𝑙𝑠 is a list of arrays containing
extension values. 𝐺𝐶 (resp. 𝐺𝐶*) is the guaranteed cost of 𝑌 (resp. in AC*).

𝐺𝐶(𝑌) = 𝐺𝐶*(𝑌) =
∑︁

𝐶𝑖𝑗 ,𝐶𝑖,𝐶𝑗∈𝒞
𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝑐𝑖(𝑣𝑖) + 𝑐𝑗(𝑣𝑗) | (𝑥𝑖, 𝑣𝑖), (𝑥𝑗 , 𝑣𝑗) ∈ 𝑌

2.2. Soft arc consistency

Soft arc consistency techniques are used when solving a problem to delete values that are not
part of its optimal solution. They are based on three operations:

The binary projection (Proc. 4) is an operation which subtracts, for a value 𝑣𝑖 of 𝐷𝑖, the
smallest cost 𝛼 of a binary constraint 𝐶𝑖𝑗 and adds it to the unary constraint 𝐶𝑖. The unary
projection (Proc. 1) is an operation which subtracts the smallest cost 𝛽 of a unary constraint
𝐶𝑖 and adds it to the zero-arity constraint 𝐶𝜑. The extension (Proc. 2) is an operation which
subtracts, for a value 𝑣𝑖 of 𝐷𝑖, the extension value (𝐸[𝑣𝑖]) of 𝑣𝑖 from a unary constraint 𝐶𝑖 and
adds it to the binary constraint 𝐶𝑖𝑗 , with 0 < 𝐸[𝑣𝑖] ≤ 𝑐𝑖(𝑣𝑖). All of these operations are applied
to a problem under a set of conditions represented by soft arc consistency levels [15], namely:

Node Consistency (NC*) : a variable 𝑥𝑖 is NC* if each value 𝑣𝑖 ∈ 𝐷𝑖 satisfies 𝐶𝜑+ 𝑐𝑖(𝑣𝑖) <
𝑈𝐵𝑖 and there is a value 𝑣𝑖 ∈ 𝐷𝑖 with 𝑐𝑖(𝑣𝑖) = 0. A problem is NC* if its variables are NC*.

Directional Arc Consistency (DAC*) : a variable 𝑥𝑖 is DAC* with respect to its neighbor
𝑥𝑗(𝑗>𝑖) if 𝑥𝑖 is NC* and there is, for each value 𝑣𝑖 ∈ 𝐷𝑖, a value 𝑣𝑗 ∈ 𝐷𝑗 which satisfies
𝑐𝑖𝑗(𝑣𝑖, 𝑣𝑗) + 𝑐𝑗(𝑣𝑗) = 0. 𝑣𝑗 is called a full support of 𝑣𝑖. A problem is DAC* if any variable 𝑥𝑖
of this problem is DAC* with its neighbors 𝑥𝑗(𝑗>𝑖).

To make a given problem DAC*, we first compute, for each variable 𝑥𝑖 with respect to its
neighbors of lower priority 𝑥𝑗(𝑗>𝑖), the extension values appropriate to the values of its domain
𝐷𝑖 (Proc. 3, 𝑙. 6). Next, we perform the extension operation (Proc. 3, 𝑙. 7) by subtracting the
extension values from the unary constraints 𝐶𝑖 and adding them to the binary ones 𝐶𝑖𝑗 (Proc. 2).
Then, each neighbor 𝑥𝑗 performs, successively, a binary projection (Proc. 4), a unary projection
(Proc. 1), and finally a deletion of non-NC* values.

2.3. AFB_BJ+-AC* algorithm

Each agent 𝐴𝑗 carries out the AFB_BJ+-AC*[9] according to three phases. First, 𝐴𝑗 initializes
its data structures and performs the AC* in which it deletes permanently all suboptimal values
from its domain 𝐷𝑗 . Second, 𝐴𝑗 chooses, for its variable 𝑥𝑗 , a value from its previously filtered
domain 𝐷𝑗 in order to extend the CPA 𝑌 𝑗 by its value assignment (𝑥𝑗 , 𝑣𝑗). If 𝐴𝑗 has successfully

Proc. 6: AFB_BJ+-DAC*()

1 Init. of data structures
2 if (𝐴𝑗 = 𝐴1)
3 𝐶𝜑 ← 𝐶𝜑 + 𝐶𝜑𝑗

; 𝐶𝜑𝑗
← 0;

4 DAC*() ;
5 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

6 while (¬𝑒𝑛𝑑) do
7 𝑚𝑠𝑔 ← 𝑔𝑒𝑡𝑀𝑠𝑔() ;
8 if (𝑚𝑠𝑔.𝑈𝐵 < 𝑈𝐵𝑗)
9 𝑈𝐵𝑗 ← 𝑚𝑠𝑔.𝑈𝐵 ;

10 if (𝑚𝑠𝑔.𝑌 is stronger than 𝑌)
11 𝑌 ← 𝑚𝑠𝑔.𝑌 ; 𝐺𝐶 ← 𝑚𝑠𝑔.𝐺𝐶 ;

12 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = ok?)
13 𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵 ← 𝑇𝑟𝑢𝑒 ;

𝐺𝐶* ← 𝑚𝑠𝑔.𝐺𝐶* ;
14 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑚𝑠𝑔) ;

15 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = back)
16 𝑌 ← 𝑌 𝑗−1 ; 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔(𝑚𝑠𝑔) ;
17 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = fb?)
18 sendMsg : lb

to 𝐴𝑖

(𝑙𝑏𝑗(𝑌
𝑖)[], 𝑚𝑠𝑔.𝑌) ;

19 if (𝑚𝑠𝑔.𝑡𝑦𝑝𝑒 = lb)
20 𝑙𝑏𝑘(𝑌

𝑗)← 𝑚𝑠𝑔.𝑙𝑏 ;

21 if (𝑙𝑏(𝑌 𝑗) ≥ 𝑈𝐵𝑗) 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

Proc. 7: ExtendCPA()

1 if (𝑙𝑏(𝑌 ∪ (𝑥𝑗 , 𝑣𝑗)) ≥ 𝑈𝐵𝑗) ∨
(𝐶𝜑 +𝐺𝐶*(𝑌 𝑗−1) + 𝑐𝑗(𝑣𝑗) ≥ 𝑈𝐵𝑗)

2 for 𝑖← 𝑗 − 1 to 1 do
3 if (𝑙𝑏(𝑌)[𝑖− 1] < 𝑈𝐵𝑗)
4 sendMsg : back

to 𝐴𝑖

(𝑌 𝑖, 𝑈𝐵𝑗 , 𝐷𝑉 𝑎𝑙𝑠, 𝐶𝜑) ;

return ;
5 broadcastMsg : stp(𝑈𝐵𝑗) ;
6 𝑒𝑛𝑑← 𝑡𝑟𝑢𝑒 ;

7 else
8 𝑌 ← {𝑌 ∪ (𝑥𝑗 , 𝑣𝑗)} ;
9 if (𝑣𝑎𝑟(𝑌) = X)
10 𝑈𝐵𝑗 ← 𝐺𝐶(𝑌) ; 𝑌 ← 𝑌 𝑗−1 ;
11 DAC*() ;
12 𝐸𝑥𝑡𝑒𝑛𝑑𝐶𝑃𝐴() ;

13 else
14 sendMsg : ok?

to 𝐴𝑗+1

(𝑌, 𝐺𝐶, 𝑈𝐵𝑗 , 𝐷𝑉 𝑎𝑙𝑠,

𝐸𝑉 𝑎𝑙𝑠, 𝐶𝜑, 𝐺𝐶*) ;
15 𝐸𝑉 𝑎𝑙𝑠.𝑐𝑙𝑒𝑎𝑟 ;
16 if (𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵)
17 sendMsg : fb?

to 𝐴𝑘>𝑗

(𝑌, 𝐺𝐶, 𝑈𝐵𝑗 , 𝐺𝐶*) ;

18 𝑚𝑢𝑠𝑡𝑆𝑒𝑛𝑑𝐹𝐵 ← 𝑓𝑎𝑙𝑠𝑒 ;

extended the CPA, it sends an ok? message to the next agent asking it to continue the extension
of CPA 𝑌 𝑗 . Otherwise, that is to say, the agent 𝐴𝑗 fails to extend the CPA, either because it
doesn’t find a value that gives a valid CPA, or because all the values in its domain are exhausted,
it stops the CPA extension and sends a back message to the appropriate agent. If such an agent
doesn’t exist or the domain of 𝐴𝑗 becomes empty, 𝐴𝑗 stops its execution and informs the others
via stp messages. A CPA 𝑌 𝑗 is said to be valid if its lower bound doesn’t exceed the global upper
bound, which represents the cost of the optimal solution achieved so far. Third, 𝐴𝑗 evaluates the
extended CPA by sending fb? messages to unassigned agents asking them to evaluate the CPA
and send the result of the evaluation. When an agent has completed its evaluation, it sends the
result directly to the sender agent via an lb message. The evaluation is based on the calculation
of appropriate lower bounds for the received CPA 𝑌 𝑖. The lower bound of 𝑌 𝑖 is the minimal
lower bound over all values of 𝐷𝑗 with respect to 𝑌 𝑖.

3. The AFB_BJ+-DAC* algorithm

The AFB_BJ+-DAC* algorithm (Proc. 6) is the improved version of the AFB_BJ+-AC* algorithm,
which uses DAC* to further reduce the domains of a given DCOP. AFB_BJ+-DAC* follows the
same steps as the AFB_BJ+-AC* (§2.3), except that it performs DAC* instead of AC* before
each extension of CPA (Proc. 7). DAC* is based on executing a set of cost extensions from
unary constraints to binary ones, then on executing of AC*. DAC*() (Proc. 3) is the procedure
responsible for calculating the extension costs (i.e., costs to be transferred) and 𝐸𝑥𝑡𝑒𝑛𝑑() (Proc.
2) is the one that performs the extension of costs from the unary constraints towards the binary
ones (§2.2). All the extension costs used by an agent are stored in a list, 𝐸𝑉 𝑎𝑙𝑠, and routed to
its lower neighbors via an ok? message in order to keep the symmetry of 𝐶𝑎𝑐

𝑖𝑗 constraints in
each agent and its neighbors. The list of extension values, 𝐸𝑉 𝑎𝑙𝑠, is processed in the procedure
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑢𝑛𝑖𝑛𝑔() (Proc. 5, 𝑙. 7-8).

Theorem 1. AFB_BJ+-DAC* is guaranteed to calculate the optimum and terminates.

Proof. The AFB_BJ+-DAC* algorithm outperforms AFB_BJ+-AC* [9] by executing a set of cost
extensions. These extensions have already been proved which are correct in [15, 16], and they
are executed by the AFB_BJ+-DAC* without any cost redundancy (Proc. 2, 𝑙. 4), (Proc. 3, 𝑙. 9),
and (Proc. 5, 𝑙. 7-8).

4. Experimental Results

We experimentally compare AFB_BJ+-DAC* with its older versions [8, 9] and with the BnB-
Adopt+-DP2 algorithm [17], which is its famous competitor. Two benchmarks are used in these
experiments:

A B C D
0

200

400

600

800

1,000

case

nu
m

be
r

of
m

es
sa

ge
s

AFB_BJ+

AFB_BJ+-AC*

AFB_BJ+-DAC*

BnB-Adopt+-DP2

A B C D
0

2,000

4,000

6,000

case

nu
m

be
r

of
nc

cc
s

AFB_BJ+

AFB_BJ+-AC*

AFB_BJ+-DAC*

BnB-Adopt+-DP2

Figure 1: Total of𝑚𝑠𝑔𝑠 sent and 𝑛𝑐𝑐𝑐𝑠 for meetings scheduling

A B C D
0

1,000

2,000

3,000

case

nu
m

be
r

of
m

es
sa

ge
s

AFB_BJ+

AFB_BJ+-AC*

AFB_BJ+-DAC*

BnB-Adopt+-DP2

A B C D
0

2,000

4,000

6,000

8,000

case

nu
m

be
r

of
nc

cc
s

AFB_BJ+

AFB_BJ+-AC*

AFB_BJ+-DAC*

BnB-Adopt+-DP2

Figure 2: Total of𝑚𝑠𝑔𝑠 sent and 𝑛𝑐𝑐𝑐𝑠 for sensors network

Meetings scheduling [1]: are defined by the number of meetings/variables, the number of
participants, and the number of time slots for each meeting. We have evaluated 4 cases A, B, C,
and D, which are different in terms of meetings/participants [1].

Sensors network [18]: are defined by the number of targets/variables, the number of sensors,
and the number of possible combinations of 3 sensors reserved for tracking each target. We
have evaluated 4 cases A, B, C, and D, which are different in terms of targets/sensors [1].

To compare the algorithms, we use two metrics, the total of messages exchanged (𝑚𝑠𝑔𝑠)
for the communication load and the total of non-concurrent constraint checks (𝑛𝑐𝑐𝑐𝑠) for the
computation effort.

Regarding meetings scheduling problems (Fig. 1), the results show a clear improvement of
the AFB_BJ+-DAC* compared to others, whether for 𝑚𝑠𝑔𝑠 or for 𝑛𝑐𝑐𝑐𝑠. But with regard to
sensors network problems (Fig. 2), the BnB-Adopt+-DP2 retains the pioneering role, despite
the superiority of the AFB_BJ+-DAC* to its older versions.

By analyzing the results, we can conclude that the AFB_BJ+-DAC* is better than its earlier
versions because of the existence of DAC* which allows agents to remove more suboptimal
values. This is due to a set of cost extensions applied to the problem. Regarding the superiority
of the BnB-Adopt+-DP2 over the AFB_BJ+-DAC* in sensors network problems, this is mainly
due to the arrangement of the pseudo-tree used by this algorithm that corresponds to the
structure of these problems, as well as the existence of DP2 heuristic facilitates the proper choice
of values.

5. Conclusion

In this paper, we have introduced the AFB_BJ+-DAC* algorithm. It is based on DAC* to
increase the number of deletions made by each agent on its domain. DAC* mainly relies on
performing a set of cost extensions in one direction from an agent to its lower priority neighbors
in order to perform AC* multiple times and thus generate more deletions of non-optimal values.
Experiments on some benchmarks show that the AFB_BJ+-DAC* algorithm behaves better
than its older versions. As future work, we propose to exploit the change in the size of the agent
domains in variable ordering heuristics.

References

[1] R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, P. Varakantham, Taking dcop
to the real world: Efficient complete solutions for distributed multi-event scheduling,
in: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 1, IEEE Computer Society, 2004, pp. 310–317.

[2] A. Gershman, A. Meisels, R. Zivan, Asynchronous forward bounding for distributed cops,
Journal of Artificial Intelligence Research 34 (2009) 61–88.

[3] P. J. Modi, W.-M. Shen, M. Tambe, M. Yokoo, Adopt: Asynchronous distributed constraint
optimization with quality guarantees, Artificial Intelligence 161 (2005) 149–180.

[4] W. Yeoh, A. Felner, S. Koenig, Bnb-adopt: An asynchronous branch-and-bound dcop
algorithm, Journal of Artificial Intelligence Research 38 (2010) 85–133.

[5] P. Gutierrez, P. Meseguer, Saving messages in adopt-based algorithms, in: Proc. 12th DCR
workshop in AAMAS-10, Citeseer, 2010, pp. 53–64.

[6] P. Gutierrez, P. Meseguer, Improving bnb-adopt+-ac, in: Proceedings of the 11th Interna-
tional Conference on Autonomous Agents and Multiagent Systems-Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, 2012, pp. 273–280.

[7] K. Hirayama, M. Yokoo, Distributed partial constraint satisfaction problem, in: Interna-
tional Conference on Principles and Practice of Constraint Programming, Springer, 1997,
pp. 222–236.

[8] M. Wahbi, R. Ezzahir, C. Bessiere, Asynchronous forward bounding revisited, in: Interna-
tional Conference on Principles and Practice of Constraint Programming, Springer, 2013,
pp. 708–723.

[9] R. Adrdor, R. Ezzahir, L. Koutti, Connecting afb_bj+ with soft arc consistency, International
Journal of Computing and Optimization 5 no. 1 (2018) 9–20.

[10] R. Adrdor, L. Koutti, Enhancing AFB_BJ+AC* algorithm, in: 2019 International Conference
of Computer Science and Renewable Energies (ICCSRE), IEEE, 2019, pp. 1–7.

[11] R. Adrdor, R. Ezzahir, L. Koutti, Consistance d’arc souple appliquée aux problèmes dcop,
Journées d’Intelligence Artificielle Fondamentale (JIAF) (2020) 63.

[12] T. Grinshpoun, T. Tassa, V. Levit, R. Zivan, Privacy preserving region optimal algorithms
for symmetric and asymmetric dcops, Artificial Intelligence 266 (2019) 27–50.

[13] F. Fioretto, E. Pontelli, W. Yeoh, Distributed constraint optimization problems and applica-
tions: A survey, Journal of Artificial Intelligence Research 61 (2018) 623–698.

[14] D. T. Nguyen, W. Yeoh, H. C. Lau, R. Zivan, Distributed gibbs: A linear-space sampling-
based dcop algorithm, Journal of Artificial Intelligence Research 64 (2019) 705–748.

[15] J. Larrosa, T. Schiex, In the quest of the best form of local consistency for weighted csp, in:
IJCAI, volume 3, 2003, pp. 239–244.

[16] M. C. Cooper, S. De Givry, M. Sánchez, T. Schiex, M. Zytnicki, T. Werner, Soft arc
consistency revisited, Artificial Intelligence 174 (2010) 449–478.

[17] S. Ali, S. Koenig, M. Tambe, Preprocessing techniques for accelerating the dcop algorithm
adopt, in: Proceedings of the fourth international joint conference on Autonomous agents
and multiagent systems, ACM, 2005, pp. 1041–1048.

[18] R. Béjar, C. Domshlak, C. Fernández, C. Gomes, B. Krishnamachari, B. Selman, M. Valls, Sen-
sor networks and distributed csp: communication, computation and complexity, Artificial
Intelligence 161 (2005) 117–147.

	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problem (DCOP)
	2.2 Soft arc consistency
	2.3 algorithm

	3 The AFB_BJ+_DAC* algorithm
	4 Experimental Results
	5 Conclusion

