
An Implementation of IoT LPWAN SCHC Message

Fragmentation and Reassembly

Diego Wistuba1,2, Sandra Céspedes1,2, Juan Carlos Zúñiga3,
Rodrigo Muñoz1, Sergio Aguilar4, Carles Gomez4, and Rafael Vidal4

1Department of Electrical Engineering, Universidad de Chile, Chile
2NIC Chile Research Labs, Universidad de Chile, Chile

3Sigfox, Canada
4Universitat Politècnica de Catalunya, Spain

{wistuba,scespedes}@niclabs.cl, juancarlos.zuniga@sigfox.com,

rodrigo.munoz.lara@gmail.com, sergio.aguilar.romero@upc.edu,

{carlesgo, rvidal}@entel.upc.edu

Abstract

This extended abstract reports about the im-
plementation of the fragmentation and re-
assembly mechanisms of the SCHC frame-
work for Low Power Wide Area Networks (LP-
WANs). The project aims to program the
methods and routines described in the SCHC
standard protocol for the fragmentation and
reassembly mechanism while being indepen-
dent of the LPWAN technology and remaining
as an open-source project. The implementa-
tion addresses the ACK-on-Error mode, where
an acknowledgement message is sent back to
the sender device only when lost fragments
are detected. Initial tests have been success-
ful using a local communication setting with
network sockets. We are currently porting
the code to support the Sigfox LPWAN using
Google Cloud Platform as a cloud computing
service and the Python framework Flask for
easy testing.

Copyright © for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC
BY 4.0).

In: Proceedings of the IV School of Systems and Networks (SSN
2020), Vitória, Brazil, December 14-15, 2020. Published at
http://ceur-ws.org.

1 Introduction

The Low Power Wide Area Networks (LPWANs) com-
prise a number of technologies to support the exponen-
tial growth of the Internet of Things (IoT) end devices
and associated applications, providing low transmis-
sion data rates, large coverage areas, and long battery
life. Such technologies are, however, constrained by
small packet data sizes. The need to expand the po-
tential of LPWANs leads to the requirement of Inter-
net connectivity and the definition of mechanisms for
supporting IPv6 packet transmissions over LPWAN
[GMT+20].

The Static Context Header Compression and Frag-
mentation (SCHC) is a generic framework applicable
to LPWANs and recently defined in the IETF RFC
8724 [MTG+a]. It is destined to compress IPv6/UDP
headers and support the transport of IPv6 packets if
the datagram, after SCHC compression, still exceeds
the Layer 2 Maximum Transmission Unit (MTU). To
achieve this, SCHC defines a set of static Rules (or
Context), containing information about the compres-
sion/decompression (C/D), as well as the application
of an optional fragmentation/reassembly (F/R) mech-
anism. SCHC can be implemented over any of the
LPWAN radio technologies considered by the IETF
LPWAN Working Group, namely: LoRaWAN, Sigfox,
NB-IoT, and IEEE 802.15.4-based solutions. Any LP-
WAN technology that wants to use SCHC must define
a profile—a set of specific parameters needed to sup-
port the framework.

This project aims to implement the F/R mecha-
nism computationally and test it over real LPWANs,



being independent of the technology used and stay-
ing as open-source code once finished. In particular,
we describe the implementation of the ACK-on-Error
mode over the Sigfox LPWAN. The architecture of
SCHC over the Sigfox network is represented in Fig-
ure 1, composed by a Sigfox device, base station and
network gateway, which is the Sigfox cloud-based Net-
work. Messages transmitted towards the Sigfox net-
work gateway are labeled “uplink”, and messages go-
ing back to the device are called “downlink” [MTG+b].

Figure 1: SCHC over Sigfox architecture. The curved
line represents wireless communication. The dotted
line represents communication towards an application
[MTG+b].

This implementation of SCHC over Sigfox starts ap-
plying the F/R mechanism to a message exceeding the
MTU of an LPWAN profile splitting it into fragments
of size less or equal to this MTU. The fragments are
grouped in windows of a certain length determined by
the profile, and numbered in descending order from
this length to 0. These fragments are then sequentially
sent into the network as uplink messages. In the ACK-
on-Error mode (see Section 2.1), if fragments are lost
then the network sends a downlink message requesting
retransmission of those fragments.

2 Description of SCHC implementa-
tion over Sigfox

2.1 Architecture description

With the goal of being independent of the LPWAN
technology, object-oriented classes were chosen to work
with. A class named Profile was created, meant to be
extended for every SCHC profile. To simulate an LP-
WAN network in this situation, the Sigfox profile for
SCHC was chosen and instantiated, assigning parame-
ters as needed [MTG+b]. Eventually, more extensions
of the Profile class can be created.

SCHC defines various types of messages, of which
the Fragment and the ACK are the most frequent.
Similarly as before, a Message class was created with
a header and a payload as parameters, extended in
Fragment and ACK.

Any message has a header and a payload. The
header is a bit field of a certain length that contains in-
formation about the window to which the fragment be-
longs, its position inside that window, and optional pa-
rameters like error detection fields. It is implemented
in a Header class, and its instantiations take part as
an attribute of the Message class. This aims for easy
management of the previously mentioned parameters.
On the other hand, the payload has a part of the origi-
nal message, and padding may be added as needed. It
is added directly as an attribute of the Message class.

The fragment’s position in the window is repre-
sented in the Fragment Compressed Number (FCN),
and two types of messages are distinguishable: when
the FCN is composed of only zeros (All-0) or only ones
(All-1). These fragments are located at the end of each
window, and particularly the All-1 is at the end of the
last window. The full representation in bits of this
header and payload is defined accordingly inside of the
Message class.

The functionalities of generating all the fragments
from an original message following this format are im-
plemented in the Fragmenter class, and the process
of obtaining the original message given a list of frag-
ments is implemented in the Reassembler class. A
simple view of the F/R mechanism is represented in
Figure 2

Figure 2: SCHC F/R mechanism with a window of
size 3. The FCN and ACK bitmap are displayed for
every fragment. This considers no loss of fragments.

To keep track of the received fragments at the re-
ceiver end of the network, a bitmap is defined. Ev-
ery bit in this bitmap stands for a fragment in each
window, being 0 initially and changing to 1 when the
corresponding fragment is received. This bitmap is
part of the header of the acknowledgement (ACK)
message, which may be sent after each fragment is
received (ACK-Always), when a fragment is detected



to be lost (ACK-on-Error), or not be sent at all (No-
ACK). These reliability configurations are named F/R
modes. The ACK class has the bitmap as a parameter
within its header. This project addresses the ACK-on-
Error mode, defined in [MTG+a]. A representation of
the ACK-on-Error mode is displayed in Figure 3.

Figure 3: ACK-on-Error mode with a non-final win-
dow of size 3. The FCN and ACK bitmap are displayed
for every fragment. Here, the second fragment (with
FCN 01) is lost. Then the receiver sends a downlink
ACK with its bitmap and the sender responds with
the corresponding fragment.

2.2 Implementation description

The project is being developed in the Python pro-
gramming language due to its easy handling of classes
and network sockets. Initially the code was developed
in a local environment, with no network connectivity
other than communication within the same computer
between network sockets, running sender and receiver
scripts. After this stage, the code is currently being
ported to support actual LPWAN end devices.

A sender script and a receiver script are writ-
ten. The sender receives a message meant to be frag-
mented as its input, instantiates the Fragmenter class
and executes its main method, fragment(), which
returns an array of all the SCHC fragments. Then
the sender follows the algorithm described in section
8.4.3.1 in [MTG+a], in order to send these fragments
and acting accordingly when an ACK message is re-
turned by the receiver.

The receiver script constantly waits for fragments
on the network and follows the algorithm described
in section 8.4.3.2 in [MTG+a], sending ACK messages
for every undetected fragment. When every fragment
has been received and located in an ordered array, this
script instantiates the Reassembler class and similarly
executes its main method, reassemble(), which re-
turns the concatenation of every payload.

In local testing, the receiver script is meant to be
run once. This script binds a socket to a port and
enters a loop while hearing for new fragments, storing
them in an array and breaking out of the loop when
the transmission is complete and then executing the
reassembly routine. This script can also test the ACK
message system, emulating fragment loss randomly ig-
noring received fragments with a certain probability.
These tests were made with the attributes of the Sigfox
SCHC profile [MTG+b].

3 Preliminary results

The local tests with this implementation were success-
ful, and the scripts are currently being modified in
order to be run over an actual LPWAN. Using the
Sigfox technology, a callback between its backend and
a cloud computing service was created. Google Cloud
Platform (GCP) was chosen for this purpose, and the
Cloud Functions and Cloud Storage APIs are being
used. The callback, via HTTP, forwards a message re-
ceived by the Sigfox backend to GCP, where a Cloud
Function gets triggered and executes a script. These
scripts are stateless and retain no memory between
executions.

Various changes in the scripts were proposed to sup-
port this new architecture. The receiver script is now
executed as a Cloud Function in the Python framework
Flask every time a fragment is received and writes it
into a file in Cloud Storage, constantly reading and
writing the bitmaps as files. When the final message
of the transmission is received and no lost fragment is
detected, the script reads every fragment into mem-
ory and executes the reassembly routine, saving the
result as another file. When needed, an ACK message
is generated and returned to the Sigfox network as an
HTTP response in order to be sent back to the device
that runs the sender script.

The sender script has not yet been ported to LP-
WAN end devices, but it has been refactored as an
HTTP client that simulates the callback between the
Sigfox network and GCP. The fragmentation routine
is not affected, and the fragments are sent directly to
GCP (or Flask) using an HTTP POST request.

4 Conclusions and future work

The fragmentation and compression functionalities
that SCHC offers have the potential to enable LP-
WANs to support several industrial IoT applications.
It can help for instance supporting bigger payloads
for utilities’ smart meters or visual sensors, recover-
ing messages lost due to radio interference or coverage
issues which may be critical for asset-tracking applica-
tions, adding IP connectivity to sensors/devices that



have very limited resources, enabling device manage-
ment functionalities, etc.

New functionalities are currently being tested with
the setup presented in this document, such as the time-
out between fragments, SCHC abort messages and var-
ious corner cases of the communication.

It is expected that the outcome of this project will
become available as open-source code, which can be
used as baseline to develop industrial applications to
support the aforementioned use cases.

Acknowledgements

This project was supported in part by the ANID Chile
Project FONDEF ID19I10363.

Sergio Aguilar, Rafael Vidal and Carles Gomez were
funded in part by the Spanish Government through
projects TEC2016-79988-P, PID2019-106808RA-I00
(AEI/FEDER, and UE); and the Generalitat de
Catalunya Grant 2017 SGR 376.

References

[GMT+20] Carles Gomez, Ana Minaburo, Lau-
rent Toutain, Dominique Barthel, and
Juan Carlos Zúñiga. IPv6 over LPWANs:
Connecting Low Power Wide Area Net-
works to the Internet (of Things). IEEE
Wireless Communications, 27(1):206–213,
2020.

[MTG+a] Ana Minaburo, Laurent Toutain, Car-
les Gomez, Dominique Barthel, and
Juan Carlos Zúñiga. RFC 8724 - SCHC:
Generic Framework for Static Context
Header Compression and Fragmentation.
https://datatracker.ietf.org/doc/rfc8724/.

[MTG+b] Ana Minaburo, Laurent Toutain,
Carles Gomez, Dominique
Barthel, and Juan Carlos Zúñiga.
SCHC over Sigfox LPWAN.
https://datatracker.ietf.org/doc/draft-
ietf-lpwan-schc-over-sigfox/.


