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1 Introduction
The need for interoperability is dire: Knowledge representation systems employ ontologies that

use disparate formalisms to describe related domains; to be truly useful to the intelligence commu-

nity, they must meaningfully share information. Ongoing research [3, 4, 7, 15] strives toward the

holy grail of complete interoperability, but has been hindered by techniques that are specialized

for particular ontologies, and that lack the expressivity needed to describe complex ontological

relationships. In the sequel, we describe provability-based semantic interoperability (PBSI) [16], a

means to surmount these hindrances; translation graphs, one of our key formalism for describing

the complex relationships among arbitrary ontologies; and ways in which these techniques might

be automated.

2 PBSI and PBSI+

We clarify our uses of syntactic and semantic. The syntax of a knowledgebase regiments the struc-

ture of expressions in it (e.g., that (mother-of Amy) is a well-formed KIF term owes to KIF’s

syntax); semantics attribute meaning to otherwise abstract constructs ((mother-of Amy) desig-

nates Amy’s mother according to the semantics of an ontology). A syntactic translation occurs
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when knowledge from one ontology is moved into another using the same semantics. In other

words, when ontologies describe the same kind of things, and differ only in the way object-level

information is structured, interoperability is achieved by mere syntactic translation. When ontolo-

gies differ not only in syntax, but also in semantics (yet relate meaningfully), a stronger form of

translation is needed: semantic translation enables the transfer of information across such ontolo-

gies. Systems capable of semantic translation (e.g., [4, 6]) provide some language in which to

formalize the semantic connections between ontologies. Unfortunately, the relationships associat-

ing ontologies may be so complex that translation of knowledge from one ontology into another is

not feasible. Moreover, when interoperability is achieved between complex ontologies, justifica-

tion is needed to support trust that the meaning of the data has been preserved.

PBSI provides a language for formalizing the relationships between ontologies via bridging
axioms, and our extension, PBSI+, associates each information exchange with a proof certifying

the conservation of semantic meaning. The basic construct of PBSI+ is the signature, a collection

of statements in the meta-theory which, coupled with a set of axioms, captures a given ontology.

A signature Σ consists of a set σ of sorts, and a set φ of functors. A sort s ∈ σ is a domain — a

collection whose elements are considered the same kind of thing,1 (e.g., the months in the year,

boolean values, natural numbers, US citizens). A functor f ∈ φ maps between objects of the sorts

in σ. In the case that f maps onto the boolean values, f is a relation; if it also takes no arguments, it

is a proposition. Having defined signatures, the specifications of ontologies, we present translation
graphs, a framework for bridging signatures (and so, ontologies) while preserving semantics.

3 Translation Graphs
A translation graph, like the one in figure 1, is a directed graph G = (V,E) where the vertices v ∈V
are each unique signatures, and each edge e = (u,v) ∈ E describes the application of a primitive

operation to u yielding v, viz., adding or removing either a sort or functor. The addition of a new

functor also has associated information potentially relating the new functor to existing functors of

the modified signature.

As a toy example, let signature Σ1 consist of the domains σ1 = {People,Firearms} and just

one functor φ1 = {OwnerOf : Firearms → People}, which is understood to map a firearm to its

owner. Furthermore, signature Σ2 consists of the domain σ2 = {People} and the functor φ2 =
{IsArmed : People → Boolean} so that IsArmed holds for those people who own guns (in this ex-

ample, all signatures implicitly have the boolean domain). A translation graph enabling interop-

erability between these signatures might apply the following primitive operations bridging Σ1 to

Σ2:

1. AddFunctor(IsArmed) with the bridging axiom

∀p [∃gOwnerOf(g) = p] → IsArmed(p)

so that the the relation IsArmed holds for any person, p where there is a firearm that p owns.

1Our current formalization draws on many-sorted logic, and so domains are disjoint. While this is a limitation

on the expressitivity of the language (many ontologies require a subsort hierarchy), it is not a technical restriction.

Specifically, we are investigating the use of other ontology representation languages [11, 8].
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C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Sorts: Person Functions: CalledBy, Called

(remove-functor CalledBy)

B

Sorts: Person Functions: CalledBy

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)

Figure 1: A sample translation graph enabling interoperability between four related ontologies.

2. RemoveFunctor(OwnerOf)

3. RemoveSort(Firearms)

PBSI between the two described ontologies is made possible: Suppose that the first ontology

has among the declarative information in its knowledgebase that Mohammed Al Harbi is the owner

of an AKS-74U assault riffle, and that the knowledgebase of the second ontology contains no

information about Mohammed Al Harbi except that he is a person. A query of whether or not

Mohammed is armed, issued in the second ontology and making use of σ1’s knowledgebase along

with bridging axioms generated by traversing the path from σ1 to σ2, would yield the correct

answer and the associated, certifying proof.

It is important to note that PBSI provides a formal framework and corresponding implemen-

tation to break through the n2 barrier. In the case where translation between several ontologies is

desired, translation graphs provide a means to surmount this n2 problem. This is achieved by use of

an intertheory through which ontologies are interconnected thereby requiring only 2n translation

functions (see figure 2). Of course, an even bigger breakthrough would be secured if PBSI could

be fully automated, and we turn no to that possibility.
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Intertheory

Figure 2: Interoperability between n ontologies (left) typically requires
(n

2

)
connections but with

an intertheory (right), interoperability is achieved using only 2n.

4 Automation
In this section, we discuss ways to automate the process of creating and applying translations

graphs. The procedure to extract appropriate bridging axioms from a translation graph has been

accomplished, and systems whose ontologies are present as nodes in a translation graph can in-

teroperate with other nodes in the graph. PBSI does not always yield translation; in some cases,

bridging axioms can be converted to techniques for syntactic translation, but typically interoper-

ability is achieved by a system issuing a query expressed in its own syntax and semantics and the

search for an answer incorporates knowledge from related ontologies.

A detailed example of the above is presented in the interoperability experiment [2] between our

own advanced reasoning system, Slate, and Oculus’ geospatial and temporal visualization system,

GeoTime. In the experiment, Slate and GeoTime collaborate to solve a portion of a case study used

at the Joint Military Intelligence College. Additionally, the IKRIS Workshop [12] culminated in

a demonstration of interoperability between three systems, Slate [1], Cycorp’s Nöscape [14], and

IBM and Stanford’s KANI [5].2

This automation gets us half way there, but the holy grail of PBSI is to automate not only

the intoperation between systems, but the generation of translation graphs as well. Translation

graphs are of course implemented in code, so the challenge of fully automating PBSI+ becomes

the challenge of so-called automatic programming [13]. Because of the capability of the system

we have designed for intelligence analysts (Slate), we are optimistic about being able to devise

programs that generate the programs that implement translation graphs. Slate integrates deductive,

inductive, and abductive reasoning. To the best of our knowledge, there has not been a single

effort in automatic programming that synthesizes these three elements. The tradition of deductive

program automation [10] is based exclusively on deduction; the tradition of machine learning (e.g.,

genetic programming [9]) is based exclusively on induction; while abduction has not even been

2Demonstrations of these experiments and other Slate-related content is made available online at

http://www.cogsci.rpi.edu/slate/Demos/
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explored in this field. And yet, typically, when humans approach a programming problem they

employ all three of these. They use induction (in tandem with testing and checking) to formulate

conjectures about the problem and their tentative solutions; they use deduction in order to reason

about the consequences of their design decisions and about the correctness of their solutions; and

they use abduction to explain the behavior of their algorithms. We look forward to reporting on

our progress toward full automaticity at OIC 2007.

5 A Robust Example
In the presentation corresponding to this extended abstract at OIC 2007 itself, we will also describe

a PBSI+-enabled interoperabilty example too robust to present within present space constraints.

The example will be based on ongoing DTO-sponsored R&D, in which the aforementioned Oculus

and Slate systems interoperate to enable analysts, working on a challenging case study, to issue

hypotheses and recommendations that would not otherwise be attainable.
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