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Dealing with Mistakes in a Referent Tracking System 
Werner CEUSTERS 

Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY 

1 UIntroduction
Referent Tracking (RT) is a paradigm introduced in 2005 intended to provide a means of 

ensuring unambiguous reference to the particulars in reality that are mentioned in statements of 
given sorts [TD1DT]. Central to this paradigm, which was conceived originally in the context of work 
on electronic health records, is the use of globally unique singular identifiers – called IUIs (for 
Unique Instance Identifiers) – that stand proxy for the entities in reality to which they refer. For 
an identifier (ID) to be a IUI, it must refer to one and only one particular, and this tight 
connection between the particular and its IUI must be asserted by an author in an RT system 
(RTS) [TD2DT]. One purpose of the RTS is to give agents who wish to make statements about entities 
in reality a means to retrieve IUIs for particulars to which identifiers have already been assigned, 
and to create IUIs in other cases. Another purpose is to provide an efficient way to store data 
about particulars in terms of their relations to other particulars and to the universals which they 
instantiate [TD3DT]. The RT paradigm is associated with developments such as the LSID initiative and 
the so-called ‘web of things’, but offers a number of advantages brought about by the strict 
ontological principles under which unique identification is achieved. 

2 UCoping with change
The real world is subject to constant change, and so also is our knowledge thereof. To keep 

track of these two sets of changes, an RTS requires that any assertion concerning a relationship 
between entities is associated with an index for the time period during which the relationship 
obtains, for the time at which the assertion is made, and for the author of the assertion. In [TD4DT], we 
proposed a methodology for realism-based ontology versioning and evolution that makes explicit 
whether changes in a new version are due to changes in (1) reality ( E), (2) the ontology 
authors’ understanding thereof ( B), (3) relevance for inclusion of representations ( Rv), or (4) 
corrections of mistakes (R- or R ). The same methodology can be applied to the RTS because 
the main difference with a realism-based ontology is that the former is used to store information 
about particulars, and the latter information about universals. But because of this difference, the 
RTS will undergo many more changes and this, when used on a large scale, on a constant basis. 

3 UTypes of mistakes
3.1 Mistakes in RTS entries 

An entry in the RTS is erroneous if it either violates the principles of referent tracking or fails 
to mirror the reality to which the RTS is intended to refer. 

In either case the entry contains an ID which is believed to be a IUI, but in reality is not. This 
applies either when the entry does not refer to anything existing (now or in the past), or when it 
contains a non-singular or non-unique reference. In the case of non-singular reference the same 
particular is represented in the RTS as two or more numerically distinct entities. In the case of 
non- unique reference at least two numerically distinct entities are represented as being only one. 

Entries in the RTS come in various flavors. One type of entry, called A-tuples (for 
‘assignments’), are used to assert the existence of some particular in reality at some time, and to 
differentiate this particular from other particulars by assigning it a unique singular ID. Hence, A-
tuples can be qualified as being in error for one or other of the following reasons: 

Ontology for the Intelligence Community (OIC-2007)
November 28-29, 2007 · Columbia, Maryland
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A1:  the ID does not refer 
A2:  the ID refers to two (or more) distinct particulars 
A3:  the ID is not the only ID in the RTS that refers to this particular 
A4: the ID does not refer to the intended particular. 

A second type of entry, called PtoU-tuples, relates a particular to a universal the reference to 
which is drawn from some external ontology. Tuples of this type can also be in error for several 
reasons, including: 

U1: the relationship between the particular referred to by the IUI and the universal in 
question does not hold during the stated time period, 

U2: the ID for the universal does not refer to the intended universal or it refers to no 
universal at all. 

Where the ID for the particular is subject to an A-type error, the following additional PtoU-
errors may occur: 

U3: there is an A1 error in the corresponding A-tuple: the PtoU-tuple is nonsensical 
U4: the ID is subject to a mistake of type A2 and for at least one of the particulars 

referred to by it, the stated relationship does not hold,
U5: the ID is subject of a mistake of type A3, and the particular referred to by the ID 

is not an instance of the universal during the stated time period, 
U6: similar to U5, but involving a type A4 mistake. 

Four further types of mistakes are such that reality is mirrored by the PtoU-tuple in question, 
but what is mirrored is either not what was intended, or is irrelevant: 

U7: the ID is subject of a mistake of type A2, but for UallU particulars referred to by it, 
the stated relationship holds,

U8: the ID is subject of a mistake of type A3, but the particular referred to by the ID 
is an instance of the universal during the stated time period, 

U9: similar to U5, but involving a type A4 mistake, 
U10: there is no A-type of mistake but the stated relationship is irrelevant. 

Finally, entries expressed through PtoP-tuples relate particulars to each other and may 
involve many further sorts of mistakes (P1, P2, …), depending on whether one or both IDs 
involve an A-type of mistake, and whether the relationship in question holds.

3.2 Mistakes of omission 
In [X4X] it is argued that an ontology should contain representational units for all universals that 

are relevant for the purpose for which the ontology is built. The same principle holds in the 
context of an RTS: all portions of reality that are relevant for the purpose for which the RTS is 
maintained should be represented by means of corresponding tuples. If not, the following 
mistakes occur, in both cases leading to the absence of an A-tuple: 

A–1: the existence of a relevant particular is not acknowledged,
A–2: the relevance of a particular for the purpose of the RTS is not acknowledged. 

Similarly, we recognize two further types of errors involving universals or particulars: 
U–1 / P–1: the existence of a relevant relationship between a particular and some 

other entity is not acknowledged,
U–2 / P–2: the relevance of a relevant relationship between a particular and some 

other entity is not acknowledged. 
Whereas mistakes of omission may occur independently of other mistakes, some mistakes of 

type A and type U will automatically bring in their wake mistakes of other types: Thus for 
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example, mistakes of type U6 and U9 will be automatically associated with a mistake of type U–
1.

4 UDealing with mistakes
TTo mirror at any given point in time what is believed by the authors of given assertions to be 

the case in reality at that time, and what was believed to be the case at any earlier point in time, 
entries in the RTS are never deleted. Rather, the corresponding entities acquire annotations to the 
effect that they did not mirror reality during the period when they were believed to do so, and 
possibly also linked to new tuples that function as corrections. 

TBecause of the way an RTS is implemented, no additional templates are required: it suffices 
to modify the structure of the D-templates as defined in [X2X] from 

TDBi B = <IUI Bd B, TBi B, t BdB>

Twhere IUIBdB is the IUI of the entity registering the tuple TBi B – T symbolizing here any tuple – in 
the system and t BdB a reference to the time the registration is carried out, to

TDBi B = <IUI Bd B, IUI BTi B, t, E, C, S>.

TThis change involves RTS entries becoming assigned IUIs of their own which in the 
restructured D-template is symbolized by IUI BTi B. The other components of the D-template are:  

TIUI BdB: the IUI of the entity annotating IUIBTi B by means of the DBi B entry,
TE:  either the symbol ‘I’ (for insertion) or any of the error type symbols as 

categorized in section 3,  
TC: a symbol for the applicable reason for change as discussed in section 2, 
Tt: the time the tuple denoted by IUI BTi B is inserted or ‘retired’, and  
TS: a list of IUIs denoting the tuples, if any, that replace the retired one. 

We use Tthe Bloodsworth case [TTD5DTT] to demonstrate the principles. In TJuly 1984, 9-year-old 
Dawn Hamilton was raped and T murdered. In August 1984, Kimberly Ruffner was imprisoned for 
another rape and attempted murder. A composite sketch of the perpetrator in the Hamilton case 
was shown on the local news. Two anonymous callers advised that Kirk Bloodsworth looked like 
the composite. Bloodsworth was convicted of the murder. In 1993, new forensic tests discovered 
semen on Hamilton's underpants. DNA tests proved it was not Bloodsworth’s. In September 
2003, the DNA sample recovered from Hamilton's underpants was identified as that of Ruffner.

TFor the sake of conciseness, we describe in Table 1 only verbally what a few relevant IUIs 
denote, rather than working with a complete ontology. TFurther relevant tuples not listed in Table 
1 are theT A-tuples representing the assignment of the IUIs to the corresponding first order 
particulars, and the D-tuples that go along with them. T

TTable 2 displays chronologically some of the D- and A-tuples – ignoring their authors – that 
would result from tracking the particulars. TIt provides a nice insight into how the RTS changes 
over time, and how the error correction mechanism goes hand in hand with the representation of 
changes in reality, our understanding thereof, and changes of relevance. The correction 
introduced here is the insertion of the D-tuple to which IUI-109 is assigned: this tuple retires 
PtoP-tuple IUI-9 which contained a Px type of mistake. 
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IUI-1:T  Dawn HamiltonT IUI-2: TDawn Hamilton’s rapeT

IUI-3:T  Composite sketch of Hamilton’s rapistT IUI-4: TThe August 1984 rapeT

IUI-5:T  Kimberly Ruffner T IUI-6:T TKirk Bloodsworth 
IUI-7: Tthe PtoP-tuple representing that TXIUI-5 XT

committed TXIUI-4X

IUI-8:T the PtoP-tuple representing that 
IUI-6 resembles TXIUI-3X

IUI-9:T   the PtoP-tuple representing that TXIUI-6XT

committed TXIUI-2X

IUI-10:T Portion of DNA in Hamilton’s 
underpantsT

IUI-11:T  Portion of Bloodsworth’s DNAT IUI-12:T  Portion of Ruffner’s DNAT

IUI-13:T   the PtoP-tuple representing that TXIUI-11 XT

is dissimilar to TXIUI-10X

IUI-14:T the PtoP-tuple representing that 
TXIUI-5XT committed TXIUI-2X

Table 1: Some relevant particulars and their associated IUIs in the Bloodsworth case. 

Tuple
Type

Tuple
IUI

Tuple

A IUI-101 < XIUI-1X, – , 1975> 
TDT IUI-102

T< T–T, TXIUI-1X01T, July 1984, I, T RvT, {}> T

TAT IUI-103 < XIUI-2X, – , TJuly 1984 T>
TDT IUI-104

T< T–T, IUI-103, July 1984, I, T ET, {}> T

TAT IUI-105 < XIUI-3X, – , TAugust 1984T>
TDT IUI-106

T< T–T, IUI-105, August 1984, I, T ET, {}> T

TAT IUI-107 < XIUI-6X, – , T1961T>
TDT IUI-108

T< T–T, IUI-107, 1985, I, T BT, {}> T

TDT IUI-109
T< T–T, TXIUI-9 XT, 1993, Px, T BT, {}> T

TDT IUI-110
T< T–T, TXIUI-14XT, September 2003, I, T BT, {}> T

Table 2: Tsome of the D- and A-tuples – ignoring their authors – that would result 
from tracking the particulars listed in Table 1 

The Bloodsworth case could be represented in many other ways, for instance by assigning a 
IUI to ‘the rapist of Dawn Hamilton’ before it is known who that is. In that case, an A3 type of 
mistake would have to be corrected. The choice of representation is not something that is 
restricted by the RTS, but rather by the ontologies and the theories upon which they are built. 

5 UReferences
T1T  Ceusters W. Smith B. Tracking Referents in Electronic Health Records. In: Engelbrecht R. et 
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Abstract 

The blogosphere provides a novel window into public opinion, but its 
dynamic nature makes it an elusive medium to analyze and interpret in the 
aggregate, where it is most informative. We are developing new technology 
employing ontologies to solve this problem by fusing the signals of the 
blogosphere and zeroing in on issues that are most likely to migrate offline, 
enabling analysts to anticipate the threats or opportunities they represent. 

 

There are nearly 16 million active blogs on the Internet with more launched every day. Although 
much of what’s discussed in the blogosphere is of little consequence, increasingly, blogs are 
emerging as powerful organizing mechanisms, giving momentum to ideas that shape public 
opinion and influence behavior. For example, Malaysian bloggers have recently become quite 
effective in confronting perceived corruption in their national government despite governmental 
control of the major media [4]. The blogosphere is thus a great bellwether of changing attitudes 
and new schools of thought, but only if analysts know which issues to pay attention to and how to 
identify those issues early in their lifecycle.  

Even where there is freedom of the press, blogs provide a more complete picture of public 
opinion. For example, the New York Times reports that it receives about 1000 letters daily, but 
publishes only about 15 [1]. By contrast, Google's blog search engine reveals that 3000 or so blog 
posts on average cite the New York Times every day, many not in English. 

VIStology’s IBlogs Project 

VIStology's IBlogs (International Blogs) project is a three-year effort funded by AFOSR's 
Distributed Intelligence program to develop a platform for automatically monitoring foreign 
blogs. This technology provides blog analysts a tool for monitoring, evaluating, and anticipating 
the impact of blogs by clustering posts by news event and ranking their significance by relevance, 
timeliness, specificity and credibility, as measured by novel metrics. 
 
Current blog search engines allow users to discover trends in the blogosphere only by 
determining the most popular names or news articles (e.g. Blogpulse.com) or by overall 
popularity of the blog itself (e.g. Technorati.com). These metrics favor attention-grabbing stories 
that may not have lasting significance.  

Ontology for the Intelligence Community (OIC-2007)
November 28-29, 2007 · Columbia, Maryland
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The IBlogs search engine, in contrast, ranks blog posts by their relevance to a query, their 
timeliness, specificity and credibility. Briefly, these are computed as follows (see [8] for details). 
In particular, because of the exophoric and quotational nature of blogs, it is important to identify 
links to news articles that posts cite and analyze them. Blog posts are not standalone documents; 
therefore, information retrieval metrics must take into account the articles they cite as well as the 
commentary they add. 

Relevance: What a blog post is about is determined not only by the text of a post, but also by the 
text of any news article it references. Terms in news articles and blog posts are not ranked by the 
familiar tf*idf metric standard in information retrieval in light of the clumpiness of the corpus and 
journalistic conventions. 

Timeliness: The timeliness of a blog post is determined by comparing the timestamp of a blog 
post with the publication date of a news article that it cites. Timeliness, as distinguished from 
recency, is about proximity to the relevant event. 

Specificity: The number of unique individual entities mentioned in a blog post and any news 
article it cites determines the specificity of a blog post. This is approximated as the number of 
unique proper nouns and their variants. Attention is also paid to depth in a domain ontology. 

Credibility: The credibility of a blog author’s posts is determined by the presence of various 
credibility-enhancing features that we have validated as informing human credibility judgments 
[7]. These include blogging under one’s real name, linking to reputable news outlets, attracting 
non-spam comments, and so on. This analysis must be computed for each author, since blogs can 
have multiple authors. The number of inlinks alone does not determine blog credibility. 

Ontologies in IBlogs 

IBlogs uses ontologies and ontological relations in three ways. First, IBlogs uses an explicit 
domain ontology in OWL for query expansion. Second, IBlogs uses an ontology of the 
blogosphere to represent and normalize blog data. Third, IBlogs outputs data expressing explicit 
ontological relations. 

Architecturally, the IBlogs systems includes a document extraction module, a metrics computing 
module, an indexer (Lucene), a crawler (Nutch), an ontology reasoner (BaseVISor) and a 
consistency checker (ConsVISor). See Figure 1. 
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 Figure 1: IBlogs Components 
 
 

VIStology’s BaseVISor inference engine is used to query domain ontologies. At present, we are 
using a terrorism ontology from Teknowledge. BaseVISor [3] is a forward-chaining inference 
engine that is based on a Rete network optimized for processing triples. It is able to process 
RuleML rules containing n-ary predicates, and incorporates the axioms and consistency rules for 
R-Entailment [6]. BaseVISor allows the system to expand queries based on the domain ontology. 
For example, the query 

 [class:TerroristFinancier Damascus]  

would be expanded to a query that would return blog posts containing any string that has been 
included in the domain ontology as a member of the class “TerroristFinancier” and the term 
“Damascus”.  

ConsVISor is a rule-based system for checking consistency of ontologies represented in RDF, 
OWL, or DAML. We use ConsVISor to help us mediate conflicts and inconsistencies between 
multiple domain ontologies. ConsVISor can be used to determine whether two entities (with or 
without the same name) are coreferential [2]. 
 

News Event 
Ontology 
(implicit) 

Blog 
Ontology 
(Implicit) 
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An ontology of the blogosphere is implicit in the system. The Semantically-Interlinked Online 
Commnities (SIOC) ontology [5] provided a useful starting place, but we found it necessary to 
extend it. While the idea of blogging involves certain essential features, platforms for blogging 
are not standardized. That is, blogs do not specify what links constitute their ‘blog roll’, or which 
links are ‘trackbacks’ to other blogs, and so on. While feeds for blogs may be specified in several 
syndication standards (RSS 1.0, RSS 2.0, Atom), these feeds require further analysis because the 
feed itself is not guaranteed to contain the entire blog post, blog comments, images or profile 
information relevant to determining blog credibility. All this requires parsing and analyzing 
HTML blog pages that are designed for human consumption. 
 
Finally, IBlogs outputs information annotated according to an ontology of news events and 
participants. Our goal is to cluster blog posts by the news events that they are about, where any 
given news event may have more than one news story that reports it, and each of those stories 
may be published at one or more URLs. A news event is thus typically two levels removed from a 
blog post that references it. Our system outputs results in the OpenSearch 1.1 RSS standard 
(opensearch.org), which we have extended with concepts from the Dublin Core metadata standard 
(dublincore.org) and with our own namespace elements for news event representations.  
 
NewsML (newsml.org), and the associated EventML standard, represent news industry-originated 
attempts to standardize representations of news articles and the events they report. These 
standards can be readily converted to OWL ontologies. We will adapt these emerging standards, 
currently used by Reuters and Agence France Press (AFP) among others, to standardize the 
representation of news articles and news events in hope that we will be able to directly use output 
in these formats produced by news providers in the future.  
 
The IBlogs project demonstrates that ontologies are useful for fusing blog information concerning 
the elements of the blogosphere, topical subject matter and semantic relations between posts. 
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Abstract 
Numerous RDF vocabularies and OWL, KIF, and other knowledge representation language 
ontologies have been contributed to the growing body of ontologies available in the public 
domain over the last ten years.  Many of these were created with government-funded research 
support in the US and EU.  Only a small subset is reusable, and fewer are appropriate for use in 
applications supporting evolving Intelligence Community requirements.  This is partly due to 
decreasing funding available in the US in particular, but also because of lack of well-specified 
policies for vocabulary management, metadata, and provenance specification.  In this paper we 
will highlight some of the challenges we have faced in developing and attempting to reuse 
ontologies in support of DARPA and US Department of Defense initiatives, and provide fodder 
for discussion of requirements for public domain ontologies. 

Introduction 
Numerous RDF (Resource Description Framework [1]) vocabularies and OWL (Web Ontology 
Language [2]), KIF (Knowledge Interchange Format [3]), and other knowledge representation 
language ontologies have been contributed to the growing body of ontologies available in the 
public domain over the last ten years.  Many of these were created with government-funded 
research support in the US and EU.  Only a small subset is reusable, and fewer are appropriate 
for use in applications supporting evolving Intelligence Community (IC) requirements.  This is 
partly due to decreasing funding available in the US in particular, but also because of lack of 
well-specified policies for vocabulary management, metadata, and provenance specification.   
 
Many of the ontologies available from the Protégé library [4], the National Center for Biological 
Ontology [5], via Semantic Web Central [6], and other collections are domain-specific, focused, 
for example, on use cases in pharmacogenomics, radiology, or other biomedical or other domain-
specific applications. Of those that are more general in nature and potentially relevant for 
intelligence use, many are incomplete due to funding limitations, reflect varying coverage and 
granularity, and/or were developed with very specific application requirements in mind.  They 
rarely include the level of metadata and provenance necessary to meet IC requirements [7-8].  
Even fewer provide sufficient metadata from a vocabulary management perspective to enable 
users to understand the ramifications of long-term dependence [9]. 
 
Our insights in requirements and methodology for ontology and vocabulary development and 
management for intelligence use are derived from experience on a number of DARPA, ARDA, 
other US Department of Defense and NOAA programs as well as commercial projects. They 
reflect discussions with colleagues in Object Management Group (OMG), World Wide Web 
Consortium (W3C), and related international standards activities as well as direct conversations 
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with and surveys of intelligence analysts. And, while individual researchers may have varying 
opinions on specific aspects of ontology development methodology, choice of language, tooling, 
and so forth, we have found little to no disagreement on critical issues in vocabulary 
management or metadata and provenance requirements.  

Motivation 
A number of the better known, publicly available RDF vocabularies and ontologies, including 
the OWL language itself and general metadata schemes such as Dublin Core [10] and the Simple 
Knowledge Organization System (SKOS)[11], were initially created by small teams of 
developers in collaboration with much larger user communities. It is possible that their utility is 
responsible for their popularity, but we believe this is also due to the commitment made by the 
developers to support their users, resulting in continuous improvement over time.  In contrast, 
while the majority of the ontologies developed under the DARPA DAML program are the direct 
result of significant initial effort on the part of the research community, many of these are 
showing signs of age and reflect the limited funding available for specific ontology development 
even over the course of that program.  For example, a number of projects, including the time 
zone ontology components [12] developed for use with DAML Time [13], OWL-S [14], and 
other domain-specific applications depend on the ontology components for ISO 3166 (codes for 
the representation of names of countries) available in the DARPA DAML library [15].  This 
particular ontology provides the set of the alpha-2 codes specified in ISO 3166-1 as of its 
publication date (2003), but has not been revised since and does not support a number of other 
data values present in the current standard, such as alpha-3 and numeric codes, references to 
administrative languages, and so forth.  This information was likely not needed when the 
ontology was initially developed, and some of the detail has been added in a recent revision of 
the standard. The example highlights issues such as maintaining currency, documenting 
maintenance policies, describing development requirements, the authority of the publisher with 
respect to the original standard, and so forth, however, which are clearly important to those who 
might want to reuse these ontologies in other applications, and particularly for IC applications 
that clearly must be able to count on currency in this and many other “general” vocabulary 
subject areas. 

Vocabulary Management 
The Semantic Web Deployment Working Group has continued work initiated by the Semantic 
Web Best Practices and Deployment Working Group to publish some basic principles for 
managing RDF vocabularies and OWL ontologies based on experience with Dublin Core, 
SKOS, and other ontology development.  Some of the most basic issues under discussion 
include: 

 Naming conventions, including use of URIs and publishing ownership and commitments 
to URI persistence 

 Documentation – for example, following the strategies used for Dublin Core, SKOS, and 
others 

 Maintenance policies 
 Version management strategies 
 Publishing the formal schema (in addition to the documentation) 
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These represent only the tip of the iceberg, however, in consideration of requirements for utility 
in IC applications in our view.  For certain ontologies, such as those reflecting ISO standards 
that are published and managed by a formal registration authority, such as the Library of 
Congress for ISO 639 (language codes) and ISO 3166, we believe that ontology publication 
should become the responsibility of the registration authority.  It is much more likely that 
members of the IC would trust an ontology published by the registration authority for the 
standard, or other publicly recognized authority for a particular subject matter (NIST, for 
example, with regard to units of measure and related standards), than most other potential 
publishers such as a small company. 
 
Ontology-based applications for operational IC use also require significant metadata reflecting 
definition provenance, currency, accuracy, completeness, and a development process that is 
closer to software engineering CMMI-level 3+ compliance than a typical research program 
would entail. 
 
We believe that from a practical perspective, development of policies for ontology and 
vocabulary development and management must be established prior to considering development 
of such public domain resources. 
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1. Overview 
In this paper we describe the Metadata 
Extraction and Tagging Service 
(METS) system in use at DIA. We 
briefly describe the purpose and 
function of the system. We explain 
why we chose to use OWL and 
ontologies rather simple XML for the 
representation of the data it produces. 
We discuss an experiment we 
conducted on using ontologies for 
multi-int data fusion. We describe the 
OWL ontologies we’ve developed. We 
conclude with a list of the ontology 
and data  coordination we hope to do in 
the future.  

2. Background 
A few years ago, we were tasked with 
evaluating the accuracy and usability 
of commercial Information Extraction 
(IE) tools and with determining the 
benefits of using them to "tag" many 
years of message traffic. 
 
IE tools process free-text documents 
and extract from them items of interest. 
These items can cover a wide range of 
types of entities (persons, 
organizations, locations, equipment, 
dates, etc), and events. It is important 
to note that the tools do far more than 
simply identify the presence of such an 
item in the document – they extract 
information about an item. For a 
person, this information could include 
name(s), title, profession, age, hair 
color, etc. It could also include 
information about relationships 
between the person and other entities 
and events – associates and relations, 
membership in a group, ownership of 

things, instigation of or participation in 
an event, etc. 
 
We considered the traditional 
mechanism for XML "tagging" of 
documents. This consists of placing 
XML tags around the references to an 
item in the document, creating XML 
elements. For example, the Intelligence 
Community Metadata Standard for 
Publication (IC-MSP)  defines a set of 
"in-line" tags for this purpose. In the 
latest version (4.0), it allows for a set 
of 18 such tags, including a catch-all. 
 
Although the IC-MSP standard does 
allow for a modest number of 
attributes, including the xlink set, it 
was apparent that it – or indeed any 
representation based on such in-line 
tags – would be hard-pressed to 
capture all the useful information 
produced by IE. Consider the 
following sentence from a sample 
document: 
 
"South of Baghdad near the town of 
Hillah, a suicide bomber blew up 
his car outside the house of Police 
chief Maj. Ahmed Suleiman, killing 
himself and wounding seven, 
officials said." 
 
While the text indicating specific 
entities and events can be tagged, all 
their properties and relationships are 
another matter: 

– owner of car 
– owner of house 
– occupation, name, title of the 

intended victim 
– agent, location, instrument, 

victims, etc of the bombing 
event 
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– spatial relations amongst the 
locations 

 
Many of these concerns could be 
addressed by abandoning the inline-tag 
representation in favor of a more item-
centric representation.  This allows for 
a cleaner and more complete 
representation of the information, 
which facilitates discovery and linking 
of information across data sources.  
We have therefore gone that route. 
 
However, the lack of a semantic 
underpinning for XML made us 
reluctant to use it as the representation 
for METS data. We wanted to see the 
data used throughout DoDIIS, across 
COIs, and we wanted to ensure it could 
be used to support automated 
inferencing. 
 
Accordingly, we elected to use an 
RDF-based semantic representation. 
Initially, we used DAML (DARPA 
Agent Markup Language), and then the 
W3C standard OWL (Web Ontology 
Language). 

3. Ontologies 
At this time, METS uses a set of three 
inter-related OWL ontologies which 
were developed on the program. 
 
The core ontology was designed to 
arrange a broad set of domain-
independent concepts into a class 
hierarchy. A large set of properties, 
both for simple text values (name, 
color, etc) and for relations 
(memberOf, uses, eventParticipant, 
etc) was also arranged into a hierarchy.  
The properties are also identified 
where appropriate as transitive, 
inverses of each other, etc, to further 
facilitate inferencing. 
 
The ct ontology was designed, in like 
fashion, to cover classes and related 
properties that were deemed to be 
specific to the Counter-Terrorism (CT) 
domain; these were tied into the core 
hierarchies (via subClassOf and 
subPropertyOf declarations).  
 
The icmsp ontology was designed to 
mirror the IC-MSP 
PublicationMetadata specification, 

following its XML structure as closely 
as possible within the added 
constraints of RDF. It deviates a bit 
from that specification to use key items 
(Person, Organization, Date, etc) out 
of the core ontology. 
 
Fragments of the class and property 
(relationship) hierarchies are shown 
below. 

 

 

4. METS Description 
METS is a system for processing text 
documents. It is fronted by 4 web 
services: 
• Persistence service ties to a feed of 

messages and newswire articles and 
processes them into a set of data 
stores 

• On-demand service accepts 
arbitrary documents and processes 
them back to the submitter 
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• Query service retrieves processing 
results from the data stores 
matching the query 

• Bulk-transfer service retrieves all 
results produced and stored in the 
specified time interval 

 
METS incorporates a normalization 
component to convert an input 
document (text, HTML, XML, word, 
PDF) into standard XML and OWL 
forms (see below), and to identify the 
metadata. It applies a commercial 
categorization tool and multiple 
commercial extraction tools, 
translating the results into the standard 
forms. It applies heuristics and 
commercial tools to merge (de-
conflict) and clean up the extraction 
results. 
 
The result of the processing is 
represented as an OWL/RDF 
document. All the document metadata 
(security, date, source, etc 
information), including the 
categorization results, is represented in 
the OWL, using the icmsp ontology. 
All the results of the extraction -- 
entities, events, and relationships -- are 
also represented, in conformance with 
the core and ct OWL ontologies 
 
Each input document is normalized 
into XML compliant with the  IC-MSP 
specification. The metadata  about the 
document is represented as called for 
by the PublicationMetadata portion of 
the specification. The categories 
identified by the categorization are 
included in the IC-MSP metadata as 
well. The entities and events identified 
by the extraction are flagged via in-line 
tags (the set of tags used is actually 
much larger than the set allowed by the 
specification, indicating the larger set 
of entity and event types extracted). 
 
METS is operational at DIA on 
JWICS, processing live WISE message 
traffic. Multiple projects are 
developing interfaces to submit 
documents and data requests to the 
METS web services. 

5. A Multi-INT Experiment 
The data processed by METS for 
storage is message traffic (largely 

HUMINT) and newswire articles from 
WISE. As an experiment, we 
supplemented the system with a new 
component which produced OWL from 
IMINT data, and one which attempted 
to correlate the data from the two INTs 
based on location. We enhanced the 
core ontology with more geographic 
and geometric concepts to support this; 
this is of course a prime candidate for 
carving out and replacing with 
standard ontologies.  The results were 
encouraging, but suffered from the 
inability of METS' extractors to 
disambiguate (and therefore provide 
coordinates for) location references in 
many cases. 

6. Future Ontology and Data 
Coordination 
We will continue to work on 
improving the coverage and accuracy 
of the IE in METS. 
 
While the current ontologies were 
developed in-house, in consultation 
with CT analysts and their data 
schemas, we will continue to track and 
participate in efforts toward 
standardization such as this 
conference, work on Catalyst, 
TWPDES, Universal Core, etc, with 
the goal of helping devise ontologies 
that are used and interconnected across 
the community. 
 
We also hope to be coordinating with 
other projects to: 

• identify coreferential items 
across the METS-processed 
documents and other data sources 

• discover more knowledge by 
using the ontology-based 
inferencing capabilities 

7. References 
Information about METS is at 
http://mets.d2lab.net (internet) and 
http://mets.dodiis.ic.gov (JWICS).  The 
three ontologies are at 
http://mets.d2lab.net/onts (internet) and 
http://mets.dodiis.ic.gov/onts (JWICS). 
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Abstract 
 

An ontology is a main component of an evolv-
ing knowledge base that caters to multiple cli-
ents. Consider a scenario where an automated 
procedure (a computer vision algorithm) used in 
an analyst tool detects different kinds of “roads” 
in images, and features in the ontology are used 
to distinguish a “paved” road from a “dirt 
road”. In another scenario, the ontology enables 
reasoning about “locations”, supporting ana-
lysts' geospatial information processing tasks. In 
this paper, we describe the creation of a multi-
use geospatial and visual information ontology, 
GVIO1, building on and integrating with the 
lexical database, WordNet. To ensure that GVIO 
can interoperate with other ontologies in useful 
ways, we inherit as much of the WordNet struc-
ture and content as is relevant for the domain of 
aerial surveillance and link in new con-
tent/structure as necessary. 

1. Introduction 
Geospatial and visual information are essential 
to intelligence gathering. There is a need to as-
sociate meaning with the kinds of entities and 
relationships useful for information processing 
tasks (e.g., geospatial query of a region) [1]. In 
this paper, we describe a Geospatial and Visual 
Information Ontology (GVIO) we are developing 
for analyst-specific information processing tasks 
and computer vision applications. This is a chal-
                                                           

1
 This work was supported by DTO/ODNI under the 

CASE program. We thank Dan Doney, Emile Morse, and 
Dennis Moellman for useful discussions. We also thank 
Glenn Petry at Sarnoff Corporation for his contributions to 
the reasoning application. 

lenging problem as the requirements for these 
applications can be very different. Whereas an 
analyst may be interested in locating “facilities 
near CityX”, the input requirement of a vision 
algorithm (used in an analyst tool) could be sali-
ent “characteristics” of buildings in and around 
CityX. 

2. Problem approach 
We are interested in understanding how an ana-
lyst analyzes the content of aerial video and im-
agery. There is no single source of knowledge 
that sufficiently characterizes the information 
necessary for this type of analysis. Instead, there 
are a variety of independent resources including 
WordNet [2], GML2 (Geography Markup Lan-
guage), LSCOM [3], Cyc [4], and subject matter 
experts (SMEs). 

We start with the lexical database, WordNet, 
as our semantic base. Similar to Swartout et al. 
[5], we create an ontology using top-down and 
bottom-up methods. Our goal is to capture a mix 
of high, mid-level and domain-specific terms in 
the ontology, while maintaining the distinction 
between types and instances defined in WordNet.  

2.1. Top-down WordNet filtering 

We filtered top-level categories in WordNet (Ta-
ble 1), pruning concepts that need not be further 
examined (e.g., Cognition, Food, Feeling and 
Motivation). We manually classified categories 
as geospatially/visually relevant, neither, or 
mixed (relevant and non-relevant). Some catego-
ries are mixed and may not be pruned signifi-
cantly (less than 25%). Other categories (e.g., 
                                                           

2
 http://www.opengeospatial.org/standards/gml 
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Phenomenon, Causal Agent) need further in-
spection to determine the amount to prune (la-
beled, “undetermined”). Since the distribution of 
terms across top-level categories is not uniform 
(e.g., Event has a large number of hyponyms), 
we were left with many unexamined nodes. 

2.2. Bottom-up data collection 

We generated an analyst survey of 400+ terms 
distilling analyst searches for aerial 
video/satellite imagery into three lexical catego-
ries: nouns, verbs and adjectives. This survey 
includes an SME concept list for 2/3D computer 
vision object detection tasks in the urban envi-
ronment. We list sample terms from each lexical 
category in Table 2. 

We link (map) the terms to WordNet synsets. 
This is a manual step due to polysemy – e.g., we 
disambiguate the intended sense of “apron”, “a 
paved surface where aircraft stand while not be-
ing used” (ruling out the “protective garment” 
reading of this word). Rank ordering the terms 
by respective hyponym tree sizes, we list the top-
10 terms in descending order (1). The result is a 
significant reduction in the total number of rele-
vant or mixed synsets – less than 25% of the to-
tal number of synsets in WordNet. Combining 
with top-down filtering, we achieve further prun-
ing (e.g., of terms appearing in the top-level Per-
son category). 

 
Person, Location, Tree, Move,(1) 
Leader, Vehicle, Water, Ground,  
Building, Grass                                                           

2.3. Defining properties 

We defined a set of properties for each lexical 
category. Visual properties of a physical entity 
are features useful for object detection [6][7]. To 
maximize utility for object detection algorithms, 
properties should be quantified, if possible – i.e., 
assigned default values or ranges of values. For 
example, we know “telephone pole”, an artifact, 
has some average “height” based on instances of 
telephone poles observed. Properties also have  

Category Filtering result 
Location <25% 
Event 0% 
Act <25% 
Artifact <25% 
Phenomenon Undetermined 
Entity <25% 
Attribute <25% 
Measure <25% 
Cognition 100% 
State Undetermined 
Time 0% 
Substance >75% 
Relation >75% 
Person >75% 
Communication >75% 
Causal Agent Undetermined 
Possession Undetermined 
Group <25% 
Food 100% 
Shape 0% 
Natural object <25% 
Feeling 100% 
Animal >75% 
Plant >75% 
Motivation 100% 
Table1: Top-down WordNet filtering 

 
Nouns Verbs Adjectives 
airfield carry armored 
barn chase barren 
hospital enter/exit civilian 
loading dock load/unload dark 
telephone 
pole 

meet rocky 

Table2: Sample terms in analyst survey 
 
associated subsumption hierarchies – e.g., in 
Figure 1, “height” is specialized as “sitting 
height” and “standing height” (useful for pose 
detection) and default values are assigned for 
“male” and “female” (derived from anthropom-
etric studies3). In Figure 2, hyponyms of “car” 
                                                           

3http://ergo.human.cornell.edu/DEA325notes/anthrodesi
gn.html 
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inherit “dimension” properties. From WordNet, 
the subsumption hierarchy for “dimension” in-
cludes properties, “height”, “width”, and 
“length”. CityGML4 defines properties for urban 
settings (e.g., buildings); we link these properties 
to our ontology, as appropriate. 

3. Spatial Reasoning from Text 
An interesting analyst application that uses onto-
logical relationships is reasoning about spatial 
entities in text to search imagery/video. Simple 
keyword-based search is prone to vocabulary 
mismatches in query terms vs. index terms (from 
annotations). Often, the annotation space is 
sparse, resulting in missing data (e.g., location 
names). Consequently, search queries with loca-
tion keywords will return no results. A key chal-
lenge is the following: 
 
New sites will not be labeled in im-
agery/video. How do we retrieve im-
agery/video that contain these locations? 
 

We transform a text-based query (2) into a 
spatial query expressed in geo-coordinates (lati-
tude, longitude) in multiple steps (Figure 3).  

 
The ABC Training Center is   (2) 
20 kilometers northeast of 
CityX. 
 
Using a named-entity detector5, we find location 
terms in the original text. We disambiguate a 
missed detection – “location” incorrectly labeled 
as “organization” or “person” – using WordNet. 
Using a predefined set of WordNet location cate-
gories ({WN-Locations}), including “city”, 
“state”, “country”, “capital”, “lake”, “river”, 
“building”, etc., and the “instance of” and “hy-
pernym” relationships, we define a function, 
inferLocation: 
 
 
                                                           

4 http://www.opengeospatial.org/standards/gml 
5 http://alias-i.com/lingpipe/ 

Figure 1: Visual property, “height”,  
specialized as “sitting height” and “stand-
ing height” for concept, “person” 
     

Figure 2: Types of “car” inherit “dimen-
sions” (“height”, “width”, “length”) as vis-
ual properties 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Flow Diagram 
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Direction/Distance North/South/East/West 
of  
Far from, Near 

Quantifier + prepo-
sition 

20 miles From/West of, 
Very Near/Far from 

Simple prepositions In, On, At, …  
Table 3.  Prepositions for analysis 

 
Configuration1: Location1 is 
(located, found) Rel Location2 
Configuration2: Location1 and 
Location2 are Rel (near, far, 
south of each other, …) 
Configuration3: There is Loca-
tion1 Rel Location2. 
Configuration4: Location1 is Rel 
(south of, far, near, …) Loca-
tion2 
Configuration5: Ellipsis: Only 
Location1 is mentioned, Loca-
tion2 is implied. 
Table 4.  Spatial configurations in text 
 
inferLocation(entity) =  
1 if instanceOf(entity)∈ 
  {WN-Locations} or  
 hypernym(entity)∈{WN-Locations},  
0 otherwise   
  

Prepositions are highly polysemous, which 
makes disambiguating meaning very challenging 
[8][9][10]. Table 3 provides a partial list of 
prepositions/relations to be analyzed. We choose 
syntactic configurations from the list in Table 4 
to disambiguate spatial readings between two 
locations.  

4. Conclusions 
In this paper, we presented a multi-use geospa-
tial and visual information ontology. We de-
scribed how object detection algorithms and a 
geospatial reasoning application benefit from 
ontology content. We continue to develop this 
ontology into a general-purpose resource that 
can be used by analysts. 
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A Multi-INT Semantic Reasoning Framework for Intelligence Analysis Support 
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Introduction  
 
As is well known, each intelligence agency has developed its own mechanisms for representing 
data. The resulting stovepipes for transmission pose severe obstacles to the automated integration 
and management of data, giving rise to problems addressed already in a US Government 
Executive Order of August 27, 2004, which expressed a mandate to the effect that intelligence 
agencies must strengthen their mechanisms for the sharing of terrorist information, for example 
through more widespread and systematic use of XML and similar markup standards.1 
 
The volume of available data and the complexity of the National Security environment are 
increasing so quickly as to overwhelm a finite workforce of analysts. Machines must augment 
human cognitive capacity in order to achieve the needed level of situational awareness. In what 
follows, we describe a Lockheed Martin IRAD project to address the problem of integrating the 
data generated by multiple intelligence agencies. We provide an overview of the project and of 
the solutions proposed.  
 
Where traditional methods of what is called ‘information fusion’ have been developed primarily 
for integration of quantitative data, we focus on qualitative data (pertaining for example to 
intention or threat, to religion and family relationships, or to relative spatial location) expressed 
for example in observation reports.2 Experience has shown that a combination of semantic 
technologies is appropriate for capturing such qualitative data. Our goal is to advance the needs 
of intelligence agents in interpreting very large bodies of such qualitative data by fostering 
enhanced situational awareness through the application of semantic technology. Little et al. 
describe those aspects of our project which pertain to the use of ontologies to support multi-INT 
data fusion when enhanced through the consideration of probabilities.3 
 
Proposed Solution 
 
The premise of this IRAD project is that a system can be built which allows multi-INT data to be 
semantically fused and reasoned over by machine.  
 
We are building a common framework which provides services to intelligence analysts in a way 
that does not impose a common vocabulary across the intelligence community or force 
substantial harmonization of agency-specific approaches to knowledge representation. To this 
end we exploit the benefits of modularity in building a common upper-level framework to which 
agency-specific representations can be mapped according to need. The different modules must be 
interoperable, in order to allow pooling of data from different intelligence agencies. They must 
also be of high quality in order to gain gradual common acceptance in ways which bring about 
network benefits of synchronization in the ways in which data are expressed. 
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The sort of higher-level ontology-based integrating framework we have in mind is being realized 
already in the context of the Open Biomedical Ontologies (OBO) Foundry initiative.4,5 Here a 
plurality of ontology modules is being created by different community groups using both Web 
Ontology Language (OWL) and OBO-specific ontology formats against a background of 
common development principles designed to ensure interoperability. The OBO Foundry family 
of ontologies is being used in large-scale projects for the integration of qualitative biomedical 
information, including geospatial information,6 in ways which provide a precedent for the 
present IRAD project.7 They provide a set of shared terminological building blocks which foster 
reliable pooling of more complex representations created in their terms. One crucial component 
of the Foundry initiative is the availability of reliable ontology converters. These ensure that the 
large bodies of biomedical data annotated using ontologies (such as the Gene Ontology8) created 
in the OBO format can be transformed into an OWL Description Logic (DL) format. Similar 
facilities are available to convert OWL-DL ontologies to the CL format within the framework of 
our present project. 
 
Semantic Multi-INT Data Integration 
 
Our project hypothesis is that it is possible to create a similar, unified but modular, knowledge 
space for intelligence-related information integration, comprising both general-purpose open 
source components (pertaining to geography, religion, transport, etc.) and supplementary special-
purpose components provided within various intelligence agencies. The result should provide 
useful augmentation to human analysts in a way that will help them to achieve the sort of (Level 
3) information fusion (situational awareness) which involves integrating characteristics, 
behavior, political and religious affiliations, locations, etc. of individual entities into higher-level 
contexts. 
 
Some of the types of IMINT, SIGINT, HUMINT, ELINT, and open source information we will 
need to integrate are represented in Figure 1. The hypothesis is that even though these different 
bodies of information are described using different ontologies based on different logical 
approaches, they can be unified and reasoned over by automated tools given the right sort of 
computational framework.  
 

 
Figure 1: Varieties of multi-INT Information 
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Two levels: the level of classes and the level of instances 
 
Our project rests on a distinction between two levels of entities and of corresponding information 
that is in some ways analogous to the distinction between T boxes (for terminology) and A boxes 
(for assertions) used in the DL community. On the higher level are classes or types (and 
corresponding generic information); on the lower level are instances or particular entities (and 
corresponding specific information). Classes or types are for example person, settlement, plan, 
train, aircraft. Instances are this particular person John or the particular plan that was agreed on 
by John and four other persons at such and such a time and place. Names of classes or types are 
used to annotate instance-level data, as for example when a report on image data uses GARCON-
F markup to capture the fact that a business jet of a certain type is stationary at a certain airport. 
Ontologies as we conceive them provide the resources to capture generic information in a 
shareable form which makes associated data themselves shareable and algorithmically tractable.  
 
In the domain of intelligence our information comes from a number of varied sources, many of 
which will produce either:  

1) similar information about the same instances,  
2) similar information about distinct instances (which may accordingly be confused),  
3) differing information on the same instance (this can produce conflicting information, 
e.g., concerning the spatial or temporal location of an event),  
4) differing information about different instances (there may be two separate but related 
items being tracked in different ways).  

Where we are reasoning about how instance-level data fit together to form a common operating 
picture, there is inevitably uncertainty. Intelligence reports are noisy and information is 
incomplete. There are active attempts by adversaries at deception. This will mean that all of the 
mentioned alternatives will generate knowledge problems, for example because we sometimes 
believe that two instances are identical when they are in fact distinct. In practical terms it means 
that combining probabilistic reasoning with semantic technology is an important enabling 
capability for multi-INT fusion. And facilities for probabilistic reasoning will accordingly be an 
essential component of our project.  
 
The Need for High-Expressivity Ontology Languages 
 
Intelligence agencies have developed INT-specific terminologies for describing qualitative data 
which define terms and relationships in semantically similar but not identical ways. Many of the 
most advanced of these models have been represented in the OWL-DL format. OWL-DL is a 
W3C standard with many attractive algorithmic properties. Unfortunately it is a low-expressivity 
language, which means that it faces considerable difficulties when used to express complex 
qualitative information especially in areas where time and change are involved.9 For this reason 
our project will draw on the resources not only of OWL-DL but also on the more expressive 
language of Common Logic (CL), a proposed ISO standard.10 We will draw specifically on the 
resources of CL with Well-Founded Semantics,11 which has not only nice computational 
properties when used in support of reasoning over large bodies of data, but also the sort of high 
expressivity we need to represent complex real-world situations. CL provides the expressivity we 
need to describe things that are changing/evolving over time, for example military and 
paramilitary organizations, family and tribal groups, which gain and lose members, change their 
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locations, become allied or alienated.12 Well-Founded Semantics provides fast and efficient 
query answering capabilities even when addressing large data collections comprehending 
numbers of entries in the 10s of millions. Like OWL-DL, Common Logic is XML compliant. At 
the same time CL is marked by a high degree of syntactic flexibility and thus individual CL 
systems may use a non-XML syntax; these are however in every case mappable to a fully XML-
compliant syntax.  
 
Our system will be useful only if it can be executed in responses to real query needs of 
intelligence analysts in response to real-time changes in real-world environments, and thus it has 
to be computationally quite nimble. Given that the use of OWL-DL is becoming more 
widespread it should work well also with OWL-DL resources.  
 
Another key facet of the ontologies of interest to the intelligence community is the ability to 
express relationships between people, and to construct representations of social networks over 
populations of individuals. Our project will expand the models of social networks currently in 
use by adding dynamic spatial and temporal relationships which will be fully integrated within 
the larger modular framework. 
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Figure 2: An Outline of the IRAD Architecture 
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Conclusions 
 
In the foregoing we have described only the basic outlines of the project. In addition we are 
realizing a number of additional components, including image annotation, data import and results 
visualization. Our major focus is to construct the engineering required to take this into 
production (Figure 2), and to bring our pilot testing on artificial data to the level where the 
approach can be thoroughly tested by information analysts on large bodies of real-world data.  
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Formal ontologies are becoming an essential tool for Intelligence analysis. An ontology provides 
upper- and domain-level category systems for decomposing and relating objects, object 
attributes/properties, temporal events, and relations of interest to the intelligence analyst. A great 
deal of intelligence analysis focuses on understanding and reacting to instance-level report data 
of varied fidelity on numerous kinds of entities, events and relations. Some of these entities and 
relations may not be represented explicitly within the ontology’s categorical structure, but may 
be ingested from ancillary systems with which the ontology must interoperate. To an increasing 
degree, intelligence analysts rely on fusing reports from many different sources. These include 
reports from different kinds of sensors, processed intelligence from various systems and 
databases, and human intelligence. The common vocabulary and precisely specified semantics of 
formal ontologies is a critical enabling factor for interoperability. The promise of multi-INT 
fusion is that individually noisy and unreliable indicators can be brought together to form a 
common operating picture (COP) of a given situation [1]. Because the reports being combined 
may vary greatly in quality, it is essential to account for source quality in combining reports. 
This requires understanding data quality and applying methodologies for combining information 
that make use of data quality in a sound and principled manner. Probabilistic reasoning is a well-
understood, theoretically sound, and generally applicable method for combining evidence from 
multiple sources of varying reliability. Computational probabilistic reasoning is a well-
established and growing field of research and application (e.g., [2, 3, 4]. Probability has shown 
its value across a wide range of applications, and many qualitative and heuristic approaches to 
combining information have been explained as “fast and frugal” approximations to the normative 
probabilistic solution [5].  Until recently, there has been little research on marrying the fields of 
formal ontology and probabilistic reasoning. However, this situation is changing (e.g., [6]). This 
paper will address the question of how formal ontologies can best be combined with probability 
theory to provide theoretically sound and practically useful semantic technology for multi-INT 
fusion. We will investigate theoretical concerns associated with the connections between logics 
associated with formal ontology (e.g., description logic, common logic, first-order logic) and 
those of probabilistic mathematics. The goal is to provide a high-level discussion of the issues 
involved with combining ontologies and probabilistic systems as a basis for dialog between these 
two communities, and to identify a broadly construed research agenda for their mutual 
development and interaction. The authors of this paper argue the necessity of articulating a clear 
theoretical foundation as a basis for later development of specific methodologies and languages. 
 
An important question, therefore, is how probabilistic formalisms such as Bayesian Networks 
can be merged with formal ontologies. Probabilistic theories produce qualified conclusions, 
graded by numerical measures of plausibility. By contrast, formal ontologies have focused on 
purely logical reasoning that leads to definite conclusions. Formal ontological categories are 
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related to one another in definite, law-governed ways, and are understood as possessing a purely 
binary truth functionality. Formal ontologies are useful for data integration, particularly at the 
upper-most levels, because they provide for a logical structure for various categories and 
relations, independent of any particular material knowledge of a given domain [7]. In this sense, 
a formal ontology provides a means of understanding all types of objects, attributes and relations 
associated to one another within a given domain by understanding the most basic formal 
structures they share in common [8]. 
 
The question of how formal ontologies can be merged with probabilistic reasoning rests on first 
defining which items are in an ontology per se and which items are associated with the ontology 
(e.g., the reasoning engine, the query language, the results analyzer, etc.). An upper ontology 
provides asserted facts about the ontic world, meaning the world of ‘general being’ as opposed to 
any distinctive philosophical or scientific theory of that world – the ontological. So, according to 
this approach, an upper ontology provides a type of assumed god’s eye view of reality, 
independent of human observations. By their very nature, human observations presume certain 
epistemic (i.e., mind- or knowledge-dependent assertions about reality (e.g., as discussed in the 
lengthy philosophical debates between realist and conceptualist theories of reality) [9-11]. At the 
upper-most levels, for example, an ontology normally contains non-recursive categorical 
relations such as: a TerroristAgent is_a Person, an IED is_a Explosive, an ObjectShape 
is_dependent_on Substance). The lattice of types and subtypes is a logical structure that is 
generally taken as given by both logical and probabilistic domain theories. While there may be 
competing upper ontologies, each with its own type lattice, generally within an ontology, there is 
no uncertainty associated with the categorical relations.  
 
However, the situation changes when we consider the problem of categorizing instance data. As 
an example, consider an individual who is declared a Person-Of-Interest, and is being observed 
to assess whether or not he is engaging in terrorist activities. Information relevant to this problem 
includes, for example, the network of individuals with whom he associates, his religious 
affiliation, purchases he has recently made (e.g., materials that could be used to manufacture 
explosive devices), phone calls to individuals suspected of plotting an attack, etc. The 
decomposition of Person-Of-Interest into sub-categories of Terrorist and non-Terrorist is a 
purely logical assumption. However, categorizing an individual as a terrorist or non-terrorist 
would make use of probabilistic information, such as the base rate of terrorist versus non-
terrorist individuals within the relevant population, the likelihood of the pattern of attributes and 
activities given that the individual is a terrorist versus a non-terrorist, and the credibilities of the 
reports on which we are basing our inferences about his attributes and activities (e.g., [12]). 
 
Probability is an essential tool for performing this kind of inference in a systematic and 
principled manner. To perform this kind of reasoning, a system needs the basic categorical 
knowledge typically encoded in an ontology, and also the likelihood information needed by the 
probabilistic reasoner. This likelihood information can be obtained from statistical summaries of 
past instance data, from the judgment of experienced experts, from physical characteristics of 
sensing systems, or from some combination of the above. This information must be represented 
in computational form to be processed by probabilistic reasoning algorithms. Increasingly, with 
the proliferation of distributed fusion systems and web services, it is becoming important to 
represent this likelihood information not just internally within a given system, but also for 
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consumption by other systems with which it interoperates. Data quality information must be 
represented as metadata associated with a web service. When a service returns a result on a 
situation-specific query, it often must return not just a most likely conclusion, but also 
information on the uncertainty associated with the conclusion, and also pedigree information to 
provide the consumer with an audit trail regarding how the conclusion was reached. 
Interoperating systems require not just shared vocabulary for domain concepts, but also shared 
vocabulary for communicating statistical regularities pertaining to categories in the ontology, as 
well as uncertainties associated with instance-level reasoning results, and pedigree information 
about how conclusions were reached. 
 
An important research issue is how to combine the categorical and relational knowledge 
typically represented in ontologies with the likelihood knowledge required for multi-INT fusion. 
Tantamount to this research agenda is the analysis of how quantitative probabilistic reasoning 
interacts with qualitatively linked ontological categories. The goal of the current paper is to 
examine varied approaches to the interactions between ontologies and probabilistic systems, 
rather than present a clear-cut solution for implementing these kinds of systems (e.g., in multi-
sensor fusion applications and the like). Likelihood information must be represented in 
computational form and combined appropriately with the categorical and relational knowledge 
contained in ontologies. There have been proposals (e.g., [12]) for augmenting ontology 
languages to represent probabilistic information. Others (e.g., [13]) have made use of non-
probabilitic ontologies to represent structural features of a domain, and have incorporated 
probabilistic information from outside the ontology to construct a probabilistic model.   
 
To illustrate how probabilistic reasoning can be combined with ontological reasoning, we have 
developed a simple probabilistic model for multi-INT fusion to identify and head off a potential 
terrorist attack. The representation language is multi-Entity Bayesian Networks (MEBN) [14]. 
MEBN Fragments (MFrags) represent small, separable components of probabilistic knowledge 
about the domain. These MFrags draw on knowledge about ontically existent objects, events and 
relations, which form contexts within which probabilistic reasoning is performed. In the full 
paper and the presentation, we will describe the case study problem in detail, describe how the 
likelihood information is used in conjunction with the categorical and relational knowledge, and 
discuss the question of how to combine probabilistic and ontological technology for problems of 
this kind.  
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1   Introduction 

Increasingly Command and Control (C2) systems require the ability to respond to rapidly 
changing environments and intelligence.  C2 systems must be agile, able to integrate new 
sources of information rapidly for enhanced situational awareness and response to real-time 
events.  Data from varied sources across the world must be integrated and transformed into 
knowledge that can be leveraged.  Machine-to-machine capabilities are also increasingly 
necessary to accomplish mission goals.  To this end, we developed ontologies and rules to 
address emerging mission needs.  We have found that ontologies and rules offer a powerful 
tool for rapid enterprise integration. With these, we were able to integrate new sources of data 
within hours, instead of weeks or months as with traditional software development methods.  
Our work is being showcased at the Joint Expeditionary Force Experiment (JEFX) 2008 for 
its quick integration of data into usable intelligence-fed C2. This paper describes the use case, 
the ontologies used to model the use case, and how they support rapid, enterprise integration 
of C2 and intelligence information, and our prototype Semantic Environment for Enterprise 
Reasoning (SEER).  

2   Use Case 

Initially our research focused on a military C2 domain with a supply convoy moving through 
an unsecured area.  Figure 1 depicts a convoy moving north along a primary route, 
approaching the location  

 
Figure 1. Convoy movement using theater, routes, regions of interest (shown as 
green circle), etc. 

 
where intelligence has reported an enemy sniper is stationed. New information can become 
available at any time, such as the discovery of a new enemy object in theater, change in 
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weather, etc., either via immediate convoy recognition or through various intelligence 
information communicated to the convoy by way of intelligence summaries (INTSUM) and 
visual and ground moving target indications (VMTI and GMTI).  

Both sources of military intelligence, INTSUM provides a summary of the most current 
enemy situation covering a period of time designated by the commander whereas 
GMTI/VMTI provides real time information on ground movers. Both are the result of human 
reported and sensor based intelligence.  Through the ontologies and associated rules, the 
system provides alerts and recommendations to the convoy commander.  The alerts and 
recommendations enhance situational awareness by fusing events; that is, multiple events 
from different intelligence sources are combined to form battlefield conditions, which trigger 
alerts and recommendations. In Figure 1, a convoy has moved so that now its region of 
interest (the circle surrounding the convoy) has encompassed an enemy unit. In this situation, 
the system might generate an alert based on an intelligence report of enemy sniper in the 
vicinity and recommend that the convoy take an alternate route [1]. 
 

 
Figure 2.  A pilot enters an area of degraded satellite communication.  The 
ROI in red shows the projection of the satellite coverage area onto the 
Earth.   

 

 
Figure 3.  Google Earth view showing constellation of satellites in real time 
(satellite positions obtained from WWW).   
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After showing how ground position and intelligence data could be integrated using 
ontologies, we extended our prototype by adding event types, including space events, live 
satellite positions and ship movement, as reported by additional intelligence sources.  We 
added these events in just hours.  As an example, Figure 2 shows a pilot entering into an area 
in which satellite communication is degraded.   Figure 3 shows a constellation of satellite 
positions.   

3   Ontology Design 

To model the objects and events described in Section 2, we constructed five ontologies: 
• TheaterObject – battlefield objects and reports about them.  
• RegionOfInterest – battlefield regions of interest. 
• Convoy – the convoy, its mission, components, etc. 
• Convoy Routes – routes the convoy might take. 
• ConditionsAndAlerts – how the knowledge base aggregates events, resulting in 

conditions and alerts that affect the convoy. 
Figure 4 shows the high level relationships between each original ontology and its major 

concepts (in blue and red; subsequent modifications are in yellow). TheaterObjects are 
MilitaryUnit, Sniper, RoadObstacle, and Facility.  TheaterObjects have a location, and may 
have a speed, heading, and combatIntent (hostile, friendly, etc.). 

To distinguish the entity in theater from reports about it, we specified the class of 
ObservationArtifacts, intelligence reports about objects in theater.  ObservationArtifacts have 
properties such as timeOfObservation, locationOfObservation, speedObservation, etc.  The 
distinction between theater object and observation is important, allowing inference over 
multiple reports about the same object in theater.  

The RegionOfInterest (ROI) ontology models the geospatial areas of special interest 
surrounding TheaterObjects.  An ROI is centered on the position of its focal object, and has 
shape, dimensions and area -- the dimension and area dependent on the type of threat or 
interest.  ROIs are used to define a “safety zone” around a convoy which must not be violated 
by hostile or suspicious objects.  An ROI also models the area around a reported hostile track 
that defines the potential strike area of the threat.   
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Figure 4.  Original ontologies, with modifications (in yellow). 

 
The Convoy ontology, using [2], models the organized blue (US & allied) forces moving 

on the ground and includes the Convoy's mission, components and personnel.  
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The ConvoyRoute ontology represents the paths of a convoy, including critical points 
(CPs) for primary and alternate routes.  Recommended routes can change based on 
application of rules.  

The ConditionsAndAlerts ontology models situations on the battlefield based on 
aggregations of events and actions of theater objects.  Conditions based on events result in 
alerts and recommendations to blue forces.  

With SEER we are able to provide new capabilities very quickly.  For example, by adding 
satellite positions and maritime events (displayed in yellow in the figure) to the 
TheaterObject ontology, instances of those classes are automatically retrieved. We are thus 
able to integrate new sources of data in hours.   

4   SEER Prototype Design 
We integrated the ontologies and rules that model C2 scenarios and battlefield intelligence 
into a loosely coupled service-oriented architecture that uses XML-based messages. The 
high-level design of the application is shown in Figure 5.  The components of the system 
include the following. 
• Enterprise Service Bus (ESB)  
• Google Earth

1
Client  

• SWORIER (Semantic Web Ontologies and Rules for Interoperability with Efficient 
Reasoning) [3]:  

o Reasoner, implemented in AMZI! Prolog Logic Server
2
 

o Knowledge Base (KB), composed of ontologies  in OWL with instances, rules in 
SWRL   

• Situational Awareness Service (SAS) 
• Event Mediation Services (EMS) 
• Adaptors 
• Message Simulator (MS) 
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Figure 5. SEER architecture with SWORIER. 

 

We use Mule
3
 as the ESB abstraction layer over disparate messaging technologies, 

allowing interaction between components with minimal code development.  Mule supports 
                                                        

1 http://earth.google.com/ 
2 http://www.amzi.com/ 
3 http://mule.codehaus.org/ 
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transport and transformation of publisher/subscriber pairs, applying the XSLTs of the 
Adaptors when appropriate.  Mule also detects events, including trigger events that cause the 
swapping of knowledge bases, enabling us to integrate sources for satellite information and 
other events.  

We use Google Earth since it offers seamless integration of multiple data sources via its 
Keyhole Markup Language (KML), and also provides excellent maps and zoom capabilities. 

AMZI! is the platform on which we host the integrated ontologies and rule base to perform 
efficient runtime reasoning. 

The KB consists of integrated ontologies, rules and instances.  OWL ontologies and SWRL 
rules were translated to Prolog, then optimized [3].  Together with the reasoner, these 
constitute SWORIER. 

SAS detects events (message exchanges over the ESB), consults the knowledge base, and 
delivers appropriate alerts and recommendations to the convoy commander via Google Earth 
clients.  Events can be object movement, changes in weather, changes in alert conditions, etc. 
These events constitute reception of simulated INTSUM, GMTI, VMTI, and other 
intelligence reports. The service can dynamically query the KB. 

EMS handles different types of service communication including SOAP synchronous 
request/response, SOAP pub/sub, polling and REST.  SEER uses EMS to interact with 
outside message sources. 

The Adaptors are a set of XSLTs that are invoked by the ESB to translate messages to the 
appropriate format as they move between components.  Events are in an XML format that 
contains the AMZI! command format, and are asserted to the KBs and translated to KML for 
display on Google Earth.  The active KB generates alarms and recommendations (when 
queried by the MS) and these messages are translated to KML for display. 

The MS sends messages over the ESB to simulate events on the battlefield.   
The SEER application works as follows.  First, messages are received on the ESB, either 

from network sources or by the MS. The ESB applies the appropriate XLSTs of the Adaptor 
and commits the new information to the KB and sends KML to Google Earth. 

5  Conclusion 

Ontologies can be applied for rapid enterprise integration, allowing delivery of new 
capabilities for example in C2-Intelligence applications in hours, as long as a clear distinction 
is made between intelligence information reception and actual theater object representation 
and behavior. 
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Abstract 
This paper presents a new paradigm for imagery analysis where imagery is annotated 
using terms defined in ontologies, enabling more powerful querying and exploitation of 
the analysis results. The ontology terms represent the concepts and relationships 
necessary to effectively describe the objects and activities within a domain of interest. A 
platform for viewing and editing imagery annotations is described along with a 
specialized semantic knowledge base capable of efficiently querying the information 
using semantic, spatial, and temporal qualifiers. The ontologies used for representing the 
annotations and domain of interest are also described. 
 

Introduction 
Imagery analysis is the process of examining overhead imagery, identifying the objects 
and activities present in the image, and correlating this data with information not 
available in the image to derive new knowledge. Current practices for capturing imagery 
analysis results as narrative text or in relational databases become a burden when an 
analysts needs to search past reports, correlate facts across multiple reports, and search 
for specific examples of general scenarios. 
 
The purpose of this paper is to describe an imagery analysis environment where 
observations are recorded as structured annotatations using descriptive semantic concepts 
defined in an ontology, enabling more powerful search and exploitation of the 
annotations than can be achieved using traditional methods. The first section describes 
the user environment for the ontology-driven imagery analysis application. The second 
section describes the specialized knowledge base developed to enable efficient storage 
and retrieval of the annotations. The third section describes the ontologies developed to 
achieve the goals of the application. 

Imagery Analysis Environment 
The imagery analysis application is implemented as a plugin for the ESRI ArcMap GIS 
[1], a popular image analysis tool. The plugin includes a custom layer for viewing geo-
registered imagery and marking annotations as well as custom user interface controls for 
creating new and searching existing annotations. The user interface controls’ content is 
generated dynamically based on the ontology terms and relationships in the knowledge 
base. This allows users to immediately leverage modifications and enhancements to the 
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domain ontology without having to wait for deployment of new version of the 
application. 
 
The user creates new annotations by using the custom controls to describe the 
observation using the semantic terms defined in the domain ontology. The application 
automatically captures the timestamp and geospatial details of the annotation. By 
capturing the temporal and spatial extent of the observation, annotations can be linked 
and searched using time, space, and description regardless of whether they originated 
from one or more images. 
 
When viewing imagery, the user can use the custom query controls to filter the visible 
annotations based on spatial, temporal, or semantic qualifiers. For example, when 
viewing an airport, the user can choose to only show observations of support vehicles 
within the hangar area within the past 7 days. This search relies on the ability of the 
knowledge base to understand what qualifies as a support vehicle and to efficiently 
eliminate observations that occur outside the specified spatial and temporal extent. 
 
The user environment also includes an advanced query interface that allows the user to 
write custom queries that cannot be defined using the UI controls. As an example, this 
interface allows the user to query for all cases where aircraft maintenance was observed 
twice within the same week, within the same airport. 

Spatiotemporal Semantic Knowledge Base 
The knowledge base (KB) is the repository for all data in the system. This includes data 
created by the analyst along with any inference from the ontology. The knowledge base 
therefore must support fast access using spatial extents, temporal extents, and 
combinations thereof. The knowledge base uses the Jena Semantic Web Framework [2] 
for query and graph processing, BBN’s Asio Parliament KB [3] as an underlying RDF [4] 
storage mechanism, and libraries from BBN’s Openmap GIS [5] application for spatial 
indexing. 
 
Custom Jena Graph interfaces were developed to integrate Asio Parliament KB and the 
spatial and temporal indexes into the knowledge base. The custom interfaces encapsulate 
the implementation details, allowing transparent use by the query interface. The custom 
graph interface for the indexes facilitates ordering and splitting the queries between the 
semantic and spatiotemporal processing components. 

Ontology Design 
The implemented ontology is designed to formalize a conceptual model of the world, 
enable a dynamic, context relevant user interface, and meet the data requirements of the 
overall system. The ontology is structured into three separate, but interrelated component 
ontologies. The foundational ontology formalizes the conceptual model used by the 
system and exists independent of the analytical domain. The domain ontology captures 
concepts of unique relevance to a domain (e.g. Air Defense). The application ontology 
meets the particular information requirements of the imagery analysis system. Each of 
these ontology components is discussed in more detail in the sections below. 
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Foundational Ontology 
The foundational ontology is designed as an application independent, domain agnostic, 
conceptual model of the world,. It contains formalizations of basic notions of time and 
space and is a suitable model for information systems that maintain information about 
objects in the physical world over time. The foundational ontology is an integration and 
augmentation of best-of-breed, publicly available ontologies. The temporal representation 
used is OWL-Time [6,7], a product of the W3 Semantic Web Best Practices and 
Deployment Working Group. It includes interval and instant based time representations 
and is aligned with XML Schema built-in data types. This alignment eases application of 
existing RDF and XML software tools. The concrete geospatial representation is an 
adaptation of GeoRSS [8], which includes a profile of the Geography Markup Language 
(GML) [9]. Use of GML makes exchange of geospatial data with external tools feasible. 
OWL-Time and GeoRSS have both been integrated with the Basic Formal Ontology 
(BFO) [10]. BFO is a widely studied and published formal ontology that enumerates 
concepts at the highest levels of abstraction. In particular, all entities in the BFO 
formulation of the world are either continuants or occurrents. Continuants are those 
entities that have a continuous existence and endure through time. Examples include a 
piece of rock or the planet Earth. Occurrents are those entities that are bound in time and 
include processes and events. Examples of occurrents include walking the dog and the 
lifecycle of a frog. 

Domain Ontology 
The domain ontology used in this application formalizes air defense concepts. Many of 
these air defense concepts are adapted from publicly available sources of information on 
air defense topics, such as the Federation of American Scientists. The ontology is also 
aligned with National System for Geospatial-intelligence (NSG) feature catalog to 
promote reuse. This catalog provides a list of features and some relationships among the 
features. Names of features from the catalog are consistent with names used in the 
ontology. The NSG feature catalog does include subsumption (subclass/superclass 
relationships). These relationships are added, where appropriate, when NSG features are 
added to the domain ontology.  
 
The domain ontology is aligned with the foundation ontology in order to determine which 
concepts are appropriate to populate the form-based UI for a given function. Specifically, 
some classes are subclasses of IndependentContinuant to express that they are standalone 
entities which an analyst can use to annotate an image (e.g. MiG-21). Other classes are 
subclasses of Qualities to indicate that these concepts can only be used as temporally 
changing attributes of an IndependentContinuant (e.g. the operational status of a MiG-
21). Another example of alignment with the foundational ontology is that some classes 
are subclasses of Process. This indicates that these classes are to be used to indicate that 
some process or event is taking place (ex. fueling a MiG-21). 

Application Ontology 
The application ontology represents data that is specific to the function of this 
application. In other words, it contains application specific information. The imagery 
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analysis application ontology includes image metadata such as the date and time an 
image was taken and the name of the file. 

Results 
The resulting environment provides an application through which a user can examine and 
annotate geo-registered imagery using air defense concepts and relationships described in 
the domain ontology. The inference capabilities provided by the ontology enable the 
system to automatically enrich each annotation and draw further conclusions. This allows 
users to search for annotations using abstractions and characteristics that were never 
specifically captured by the analyst. The spatiotemporal capabilities of the knowledge 
base combined with the semantics of the ontology enable analysts to efficiently query for 
observations that occur within a spatiotemporal extent or are related spatially or 
temporally. Finally, the representation of the ontology and data allows the annotations to 
be easily linked to annotations from other intelligence sources. 

Conclusion 
This paper presents an imagery analysis environment that allows imagery to be annotated 
using highly descriptive semantic concepts and relationships defined in an ontology. By 
combining efficient semantic storage and retrieval techniques with efficient spatial and 
temporal indexing, these annotations can be queried and exploited in more powerful ways 
than can be achieved using traditional keyword search or relational database techniques. 
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Abstract 
This paper describes our work on an integrated system that can assist analysts in exploring hypotheses 
using Bayesian analysis of evidence from a variety of sources.  The hypothesis exploration is aided by 
an ontology that represents domain knowledge, events, and causality for Bayesian reasoning, as well 
as models of information sources for evidential reasoning.  We are validating the approach via a tool, 
Magellan, that uses Bayesian models for an analyst’s prior and tacit knowledge about how evidence 
can be used to evaluate hypotheses. 

1. Introduction
Much of the extensive work on ontologies to date has focused on modeling and representing the 
world of objects.  The ontologies needed for our research supporting the management of 
hypotheses and evidence for analysts, however, must additionally model events and causality.  
Less work has been done on this aspect of ontologies.  In this paper we show how concepts from 
a causal ontology can be used directly as variables in Bayesian networks and how the attributes 
of the causal concepts can be used in matching evidence to the variables.  Moreover, subclass 
relationships in the ontology enable the extension of Bayesian reasoning over types. 

2. Bayesian Reasoning for Evidence Management 
There are numerous real-world situations about which an analyst might wish to hypothesize and 
investigate, but it would be impractical to encode all of them explicitly in a support system for 
analysts.  Instead, our approach is to represent fragments of situations and provide a mechanism 
for combining them into a wide variety of more complete ones [1,4].  The combination occurs 
dynamically as evidence about a situation becomes available or as an analyst revises or enters 
new hypotheses.  A fragment is represented as a Bayesian network with nodes for hypotheses, 
events, and evidence, and links for relating them.  Our ability to combine the fragments into 
more complete situation models is dependent on having a consistent terminology in which the 
fragments are described.  The focus of our work has been on (1) defining and representing the 
terminology, including terms of a domain and terms for evidence in that domain, (2) capturing 
new fragments from a variety of sources, and (3) incorporating the terminology and BN 
fragments into an integrated end-to-end tool, Magellan.

2.1. Capturing the Terminology and Prior Knowledge for a New Domain 
Intelligence analysts are concerned primarily with hypotheses that involve cause-and-effect.  
These are best supported by an ontology emphasizing events and their causal relationships, along 
with a hypothetical world of possible events, actions, and causes.  However, causal relationships 
must be interpreted in the context of real-world objects and their properties, which can be 
represented in a conventional ontology such as those that are part of SUMO.  The evidence for 
reasoning about hypotheses can come from a variety of sources, and the acquisition of evidence 
and events from these sources must also be represented, constituting a third kind of ontological 
representation describing the information sources.  Figure 1 depicts the three ontological models 
we use for modeling situations, relating situations to background knowledge about objects in the 
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world, acquiring evidence, and assessing the likelihood of the situations using Bayesian 
reasoning.  Our tool, Magellan, uses Protégé for capturing the ontologies, RDF for representing 
the terminology, XMLBIF for representing the causal relationships, and RDF and RDQL for 
requesting evidence from information sources.  

Figure 1. An ontology for intelligence analysts has three related parts, corresponding to the world of causality 
and hypothetical events needed for Bayesian reasoning, the real world of things needed to model situations, 

and the world of information and information sources needed for evidence management 

Causality is a special relationship among events for which certain properties hold 
probabilistically.  For example, causality is logically irreflexive and asymmetric, but 
probabilistically transitive.  Causal models are very useful, because they allow prediction of the 
effect of interventions [3,5].

New variables are added to the causal and event portion of an analyst’s ontology using Protégé, 
so that all of the nodes in a Bayesian network fragment are represented in a standard and 
consistent terminology. We extend SUMO with this terminology, so that we can take advantage 
of SUMO’s existing description of general knowledge of the world.  Each variable has a set of 
identifying attributes, which are used to combine fragments (fragments can be combined only if 
their attributes unify) [4]. 

Probabilities are assigned to events in the fragment by performing experiments, estimating 
beliefs, or counting outcomes.  Once assigned, they are updated by conditioning on evidence 
using Bayes rule and the laws of probability.  The fragments are stored in a repository, where 
they can be matched with evidence and combined with other fragments to produce models of 
situations that are as complete, accurate, and specific as possible. 

We also represent in the information source ontology the level of credibility of items of 
evidence, and provide a Bayesian interpretation of credibility.  We define evidence to be a 
collection of findings, each of which describes the state of a Bayesian network variable, and 
distinguish three kinds [7]: 

1. A hard finding specifies that the variable has a particular value. 
2. A soft finding is a distribution on the states of a variable, usually corresponding to an 

“objective” statistical distribution that is not expected to change within a scenario. 
3. A virtual finding is a likelihood ratio corresponding to the credibility associated to an 

evidence source, such as a witness.  Unlike soft findings, virtual findings allow for an update 
of the posterior probability of the evidence variable. 

Our modified version of ACH1 [6] is used by an analyst to enter the appropriate hypotheses and 
any initial evidence that might be available.  The terminology available to the analyst is provided 
via drop-down menus as shown in Figure 2, where the menu entries are the ontology terms from 
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Protégé.  The resultant ACH [2] matrix is converted automatically into a bipartite Bayesian 
network, with initial probabilities assigned based on the relevance factors assigned to cells of the 
matrix.  The network is saved into the repository of fragments. 

Figure 2.  The extended ACH interface is integrated with the ontology of events through pull-down menus 
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instantiated 
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B B A

EDC
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+ =

Figure 3.  Fragments (templates) are merged based on instantiating evidence 

3. Architecture for Bayesian Reasoning 
Figure 4 shows an architecture for Bayesian reasoning, which would be used as follows.  Based 
on initial triggering messages, or based on a hypothesized situation that an analyst would like to 
investigate, an appropriate scenario represented as a Bayesian model is chosen by the analyst and 
a corresponding form is shown listing initial evidence and the domain variables for the scenario.  
The evidence values for the variables can be supplied automatically from the triggering messages 
or can be entered by the analyst.  The Bayesian reasoning component, using a value-of-
information calculation, then determines which pieces of evidence would be most useful in 
confirming or denying the analyst’s hypothesis.  A request for this evidence is sent to the analyst, 
who returns the result to the Bayesian reasoner for incorporation into the scenario, and the 
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likelihood of the analyst’s hypothesis is reassessed.  The process is repeated until the analyst 
decides to stop or there is no more evidence available that changes the plausible outcomes.  

Real 
World 

Causal 
Relation

Online 
Info

Messages & 
Online 

Searches

Three Ontological Models

A

EDC

B B RDF

Explanation 
Interface

Situation 
Models

Represent 
& Use 
Credibility

ACH1 Module

Combine Evidence and
Scenario Fragments

Figure 4. Magellan architecture for Bayesian Reasoning used to explore an analyst’s hypotheses 

4. Conclusion
As we continue to increase the functionality of our Bayesian reasoning system, we will improve 
our representation of events and causality, and increase the capabilities for the application of 
prior and tacit knowledge to the exploration of analysts’ hypotheses.
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Abstract 
 

We describe an approach for enabling ontology-assisted queries onto existing schema-based 
graph database systems without altering the graph query language or the corresponding graph 
database system. Typical schema-based graph database systems enable analysts to formulate 
queries using terms from a schema. Our approach enables analysts to formulate queries using 
terms from a virtual schema, which is composed of an ontology, a graph schema, and mappings 
between them. A software system can then assist the analyst by extracting the predicates and 
terms from queries, and in conjunction with the ontology and a reasoner, produce a set of 
corresponding graph queries that contain only terms from the graph schema. These queries are 
then sent to the graph database for evaluation. This approach enables intelligence analysts to 
focus on analysis that is more complex while the ontology-assisted query capability performs 
lower level reasoning. A distinction is maintained between the ontology reasoning and graph 
query systems to 1) take advantage of the performance of graph query engines while exploiting 
the semantics of the ontologies, 2) provide multiple analysts with an explicit and consistent 
semantic model of the graph data, and 3) enable multiple analysts with different semantic models 
of the data to use their own personal ontologies for analysis.  
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Abstract. This short paper summarizes a survey of ontologies relevant to geospatial 
intelligence.  45 geospatial and temporal ontologies, in 11 categories, were assessed 
against 3 use cases:  annotation, qualitative reasoning, and information integration.  
Specific recommendations and more general conclusions are provided. The paper 
presents an illustration of a feature with several different ontology representations. 
 
Keywords:  ontology, geospatial intelligence, Semantic Web, OWL, temporal  
 

Introduction 
An ontology is a formal, explicit, shared conceptualization of a domain.  As such, it 
defines the concepts and vocabulary used within a community of interest.  The formal, 
machine-understandable representation allows use of the ontology to support logical 
inference. The Semantic Web has motivated increased development and use of 
ontologies, while at the same time driving the need for common ontologies. 
 
A trade study conducted a broad survey of 45 ontologies that apply to the spatial, event, 
and temporal granularity concepts [3]. The study has reviewed thousands of classes and 
properties in order to find the characteristics that make these ontologies best suited to the 
geospatial intelligence community for uses in annotation, qualitative reasoning and 
interoperability. The study has made several strategic recommendations to further the 
development of semantic technology and the application of these ontologies.  
 
To focus discussion and applicability, the study considered three primary use cases 
motivating the development and selection of geospatial and related ontologies.  
 
• Annotation:  using classes and properties to represent relevant characteristics of 

objects 
• Qualitative Reasoning:  reasoning about spatiotemporal relationships between 

objects (e.g. containedWithin, connectedTo, During) 
• Information Integration:  facilitate interoperability by mapping other data 

models to/from a common encompassing reference ontology 
 
The study used seven categories of Geospatial Ontologies1 from the W3C Geospatial 
Incubator Group with four additional categories to fully represent the range of geospatial 
and temporal data: 
                                                 
1 http://www.w3.org/2005/Incubator/geo/ 
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1. Geospatial Feature Ontology 
2. Feature Type Ontology 
3. Spatial Relationship Ontology 
4. Toponym (Place name) Ontology 
5. Coordinate Reference / Spatial Grid Ontology 
6. Geospatial Metadata Ontology 
7. (Geospatial) Web Services Ontology 
8. Geometric Ontology  
9. Coverage Ontology 
10. Geopolitical Ontology  
11. Temporal Ontology  

Ontologies Surveyed 
The study included the following ontologies: 
 

– Basic Formal Ontology 
– DOLCE 
– Cyc (Geodesy, Linear Object, Map Projection, Open Geospatial Consortium, 

Surface Geometry, Temporal Predicates, Time Interval, Terrain, and Topology 
domains) 

– FGDC Content Standard for Digital Geospatial Metadata 
– ISO Geographic Information (Conceptual Schema Language/19103, 

Spatial/19107, Temporal/19108, Application Schema/19109, Feature 
Cataloguing/19110, Spatial Reference-coordinates/19111, Geographic 
Identifier/19112, Metadata/19115, Coverage/19123) 

– SOUPA (RCC, Geomeasurement, Event, Time) 
– SUMO (SUMO, MILO, Geography) 
– Enterprise Conceptual Data Model 
– NSG Application Schema 
– geoRSS (BasicGeo, NEOGEO) 
– Geography Markup Language (ISO 19136) 
– Keyhole Markup Language 
– geonames.org 
– MINDSWAP (geoCoordinateSystems, geoFeatures, geoRelations) 
– SWEET (Space, Time) 
– S-57 (maritime domain) 
– OWL-Time 
– RDF Calendar 

 
Representations of most of the ontologies were available in the W3C OWL Web 
Ontology Language [2], which was the focus of the study.  Some were originally 
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developed using other representations and then converted to OWL, sometimes with some 
loss of expressivity.  Several had not yet been represented in OWL. 

Conclusions 
The principal recommendations of the study were: 
 

• There are a number of acceptable OWL ontologies and related representations 
available that can be re-used and extended for a domain. 

• Update, formalize and control ontologies in a best practice document aligned with 
existing standards. 

• Create an ontology library for the ISO Geographic Information technical 
committee specifications and encourage the U.S. to submit these ontologies to 
ISO for approval. 

• Use the National System for Geospatial Intelligence (NSG) Application Schema 
as the basis of a standard feature type ontology. 

• Representatives from the geospatial intelligence community should participate in 
the new ISO Technical Committee 211 project 19150 to promote spatial upper 
ontologies. 

 
The study also recommends the following guidelines for reusing geospatial ontologies: 
 

• Use OWL for ontology definition. 
• Use the simplest OWL representations that meet application needs. 
• Geospatial Ontologies should be based upon standards consistent with the NSG 

Architecture and with the GEOINT Standards listed in the Defense Information 
Standards Registry (DISR), which are also contained in the NSG Architecture 
Compliance. 

 
For the Geospatial Intelligence user, a recommended ontology/set of ontologies for each 
of the ontology categories and use cases described is shown in Table 1. Each row and 
column also includes the number of applicable ontologies.  For each category or use case, 
these criteria were used: “Fully” means that the concepts in the ontology directly apply 
without modification; “Partially” means that some of the concepts apply, but it is not the 
primary intent of the ontology or requires modification; “Indirectly” means that while not 
being directly applicable, the ontology contributes towards application. Several 
categories are marked “Not Applicable” because the ontology category was not intended 
for the use case (e.g. Qualitative Reasoning).  The rationale for each category 
recommendation is contained in the trade study report [3].  
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Recommended Ontology per 
Use Case 

 
Ontology Category 

Annotation 
(15 fully, 12 partially, 5 

indirectly) 

Qualitative 
Reasoning 

(7 fully, 8 partially, 2 
indirectly) 

Information 
Integration 

(8 fully, 7 partially, 21 
indirectly) 

1. Geospatial Feature 
(7 fully, 6 partially) 
 

GeoRSS (Simple or 
GML) 

Not applicable GML 

2. Feature Type (6 
fully, 2 partially) 

NSG FC / NAS 1.8 (in 
OWL) 

Not applicable NSG FC / NAS 1.8     
(in OWL) 

3. Spatial 
Relationship (3 fully, 6 
partially) 

SOUPA rcc SOUPA rcc SOUPA rcc 

4. Toponym (1 fully, 4 
partially) 

ISO 19112 Not applicable ISO 19112 

5. Coordinate 
Reference (4 fully, 2 
partially) 

ISO 19111, 
Cyc Map Projection 

Not applicable ISO 19111 

6. Geospatial 
Metadata (2 fully, 3 
partially) 

ISO 19115 Not applicable ISO 19115 

7. Web Service (0 
fully, 2 partially) 

Not evaluated Not evaluated Not evaluated 

8. Geometric (4 fully, 4 
partially) 

ISO 19107 SOUPA rcc ISO 19107 

9. Coverage (1 fully, 4 
partially) 

None available Not applicable None available 

10. Geopolitical (2 
fully, 3 partially) 

None recommended Not applicable None recommended 

11. Temporal (6 fully, 
4 partially) 

XML dataypes in 
OWL, OWL-Time 

OWL-Time OWL-Time 

Table 1: Recommended Spatiotemporal Ontologies  
In addition to these recommendations, these follow-up actions were recommended. 

• Existing ontologies that have unique and useful concepts, such as Cyc, 
MINDSWAP, and SUMO, should be linked to NSG ontologies and augmented 
with NGA specific domain concepts from the ECDM and GSIP.  

• Perform a metrics evaluation of the quality of the selected ontologies similar to 
the assessment performed by Burton-Jones on the DAML ontology library [1]. 
This quality assessment developed measurements of an ontology’s syntax, 
richness, interpretability, clarity, comprehensibility and relevance. 

• Given the active interest in service oriented architectures, the use of ontologies to 
describe services (such as OWL-S and SAWSDL) is an active area of research 
and commercial development. An evaluation of ontologies to represent web 
services is recommended for a future study.  

 
The Spatial Ontology Community of Practice (SOCoP) of the US Federal CIO Council 
provides a good forum for exposing and coordinating geospatial ontologies. As 
intelligence agencies employ semantic technology, interoperability should be considered 
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from the outset because semantic queries are not inherently interoperable when 
performed across domains. It is in the best interest of the Intelligence Community to act 
on these recommendations and guidelines to provide interoperable and mature semantic 
technology. 
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Appendix: Illustration of Feature Ontology 
To ground the analysis and allow comparisons across ontologies, the study included 
annotations for a specific feature:  The Pentagon in Washington, D.C., which is in the 
shape of a five-sided polygon as illustrated in Figure 1. 
 

 
Figure 1: Pentagon Feature (GoogleEarth © Google) 

The representation of The Pentagon feature in GeoRSS Simple is as follows: 
 

<rdf:Description> 
  <georss:featurename>Pentagon</georss:featurename> 
  <georss:polygon> 
    -77.05795370823761 38.87258672915797  
    -77.05847549720639 38.87005708744568  
    -77.0555999760046 38.86886750371786  
    -77.05326581781736 38.87064560343153  
    -77.05465594662488 38.87292421787603  
    -77.05795370823761 38.87258672915797 
  </georss:polygon> 
</rdf:Description> 
 

 
GeoRSS GML can encapsulate the GML representation of the feature: 
 

<gml:FeatureCollection  
    xmlns:gml="http://www.opengis.net/gml"     
    xmlns:xlink="http://www.w3.org/1999/xlink"     
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"  
    xsi:schemaLocation="http://www.safe.com/gml/fme 
pentagon3.xsd"> 
  <gml:boundedBy> 
    <gml:Envelope srsName="EPSG:4326" srsDimension="2"> 
      <gml:lowerCorner>-77.0584754972064 
38.8688675037179</gml:lowerCorner> 
      <gml:upperCorner>-77.0532658178174 
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38.872924217876</gml:upperCorner> 
    </gml:Envelope> 
  </gml:boundedBy> 
  <gml:featureMember> 
    <gml:surfaceProperty> 
      <gml:Surface srsName="EPSG:4326" srsDimension="2"> 
        <gml:patches> 
          <gml:PolygonPatch> 
            <gml:exterior> 
              <gml:LinearRing> 
                <gml:posList> 
  -77.0579537082376 38.872586729158  
  -77.0584754972064 38.8700570874457  
  -77.0555999760046 38.8688675037179  
  -77.0532658178174 38.8706456034315  
  -77.0546559466249 38.872924217876  
  -77.0579537082376 38.872586729158 
                </gml:posList> 
              </gml:LinearRing> 
            </gml:exterior> 
          </gml:PolygonPatch> 
        </gml:patches> 
      </gml:Surface> 
    </gml:surfaceProperty> 
  </gml:featureMember> 
</gml:FeatureCollection> 
 

 
The representation of the sample Pentagon feature in KML is as follows: 
 

<Placemark> 
  <name>The Pentagon</name> 
  <styleUrl>#msn_ylw-pushpin</styleUrl> 
  <Polygon> 
    <tessellate>1</tessellate> 
    <outerBoundaryIs> 
      <LinearRing> 
        <coordinates> 

-77.05795370823761,38.87258672915797,0  
-77.05847549720639,38.87005708744568,0  
-77.0555999760046,38.86886750371786,0  
-77.05326581781736,38.87064560343153,0  
-77.05465594662488,38.87292421787603,0  
-77.05795370823761,38.87258672915797,0  

   </coordinates> 
</LinearRing> 

    </outerBoundaryIs> 
  </Polygon> 
</Placemark> 
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Geonames.org returns the following information for The Pentagon: 
 

<Feature rdf:about="http://sws.geonames.org/4778469/"> 
  <name>Pentagon</name> 
  ... 
  <alternateName xml:lang="fr">Pentagone</alternateName> 
  ... 
  <featureClass rdf:resource="http://www.geonames.org/ontology#S"/> 
  <featureCode rdf:resource="http://www.geonames.org/ontology#S.BLDG"/> 
  <inCountry rdf:resource="http://www.geonames.org/countries/#US"/> 
  <wgs84_pos:lat>38.8709455</wgs84_pos:lat> 
  <wgs84_pos:long>-77.0552551</wgs84_pos:long> 
  <parentFeature rdf:resource="http://sws.geonames.org/4744725/"/> 
  <nearbyFeatures 
    rdf:resource="http://sws.geonames.org/4778469/nearby.rdf"/> 
<locationMap>http://www.geonames.org/4778469/pentagon.html</locationMap>
  <wikipediaArticle    
    rdf:resource="http://de.wikipedia.org/wiki/Pentagon"/> 
</Feature> 
 

 
The representation of the Pentagon example using SWEET is as follows: 
 

<material_thing:Building> 
  <space:hasBoundary> 
    <numerics:Polygon> 
      <numerics:hasVertices> 
        <numerics:Point> 
          <numerics:hasCoordinates> 
            <space:GeographicalCoordinates> 
              <rdf:_1> 
                <space:Longitude> 
       <numerics:hasValue>77.05795370823761</numerics:hasValue> 

          </space:Longitude> 
        </rdf:_1> 
        <rdf:_2> 
          <space:Latitude> 
 <numerics:hasValue>38.87258672915797</numerics:hasValue> 
          </space:Latitude> 
        </rdf:_2> 
      </space:GeographicalCoordinates> 
    </numerics:hasCoordinates> 
  </numerics:Point> 
</numerics:hasVertices> 

      <!-- ... --> 
    </numerics:Polygon> 
  </space:hasBoundary> 
</material_thing:Building> 
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INTRODUCTION 
 
Many defense, homeland security, and commercial security objectives require continuous 
tracking of mobile entities. The systems that perform these functions produce information 
products called tracks. A track associates observations with the mobile entity and typically 
includes position, velocity, and other similar attributes. Military systems have sophisticated 
tracking and track fusion processes, but lack uniformity in syntactic and semantic content 
preventing effective sharing of the information.  In other domains of interest, such as seagoing 
surface ships, dangerous cargo and persons of interest, tracking systems are less mature and 
have marginal performance.  It is now essential that we be able to share information across 
different tracking systems working in related domains.  
 
In this paper, we describe the Rich Semantic Track model [Hayes-Roth 2005] as a foundation 
for sharing world state information across multiple systems. The model exhibits a belief and 
evidentiary structure that has not been emphasized in previous track models for broad 
application. The approach is having a significant impact on design of emerging models, 
particularly the Maritime Information Exchange Model.  
 
THE PRAGMATICS OF TRACK 
 
Tracks are an important element of situation assessment in most command and control 
systems. Commanders want to track platforms and forces, anticipate their likely motions and 
potential threats, determine how best to counter threats, and then implement chosen 
countermeasures efficiently. From these general concerns, we identify the following common 
pragmatic objectives for a mobile entity M with possible intentions and capabilities to do 
harm to our interests: 
 

(1) Observe, detect, identify, classify and continuously monitor M. 
(2) Locate M. 
(3) Infer M’s intent. 
(4) Determine M’s threats TM,D against domain D. 
(5) Predict M’s future location and behavior. 
(6) Alert agent A about M and threats TM,D. 
(7) Determine countermeasures CM(TM,D) to threats TM,D. 
(8) Inform agent A about countermeasures CM(TM,D). 

 
These eight pragmatic objectives define the general and common concerns of military and 
security agencies with potentially dangerous mobile entities. The whole purpose of sharing 
information among different sources is to support these common objectives.  
 
Any system of concepts will have its own nuances and best practices for modeling the world 
effectively. No system is perfect; instead, we wish to initiate use of evolvable semantics to 
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support important pragmatics. Thus, the key capability we need is to do some things well 
while being able to improve continually. For that reason, almost any reasonable semantic 
system will be good enough for significant information sharing. The essential quality required 
is that the system distinguishes states that warrant different inferences and actions.  
 
All assertions in the information space about the state of the world (such as about vessels, 
cargo, people) are beliefs. So, every aspect of the information model of tracks should be 
considered a “belief” with whatever supporting data any belief can have.  Here are the most 
common structures:  
 

(1) A belief is held to be a fact. 
(2) A belief is a widely accepted assumption that’s recognized to be less certain than a 

fact. 
(3) A belief is based on direct credible eye witness report, so it’s like ground truth. 
(4) A belief is based on summarizing and aggregating other beliefs so it’s a logical 

inference or implication. 
(5) A belief is based on the association and fusion of K observations that support a 

simplifying inductive inference, interpretation or abduction. 
(6) A belief is a composition (AND) of other beliefs. 
(7) A belief is a probable inference or confirming prediction from another belief. 
(8) A belief is an improbable inference from another belief or a disconfirming 

expectation.   
(9) A belief is an analyst judgment, intuition, opinion, or concern, based on some other 

beliefs as well as some inference.  
(10) A belief is a pattern-based or rule-based assessment, where a set of beliefs about an 

entity instantiates a pattern template above some threshold level indicating that the 
pattern’s interpretation applies. 

   
Therefore, our approach is to identify a rich semantic model of tracks that can express these 
fundamental belief structures in order to: represent a wide variety of meanings and support a 
broad array of pragmatic goals; reduce implementation time and cost required to reason about 
a new type of track; simplify the understanding and importation of external sources of track 
information; help operators describe track attributes they value in performing their tasks; 
improve our ability to combine multiple sources of track information; provide a stable and 
evolvable base for best practices supporting information sharing; and improve bandwidth 
utilization by delivering nothing but valued information at the right time (VIRT) [Hayes-Roth, 
2004, 2006]. 
 
THE SEMANTICS OF TRACK 
 
The choice of engineered semantics rests on pragmatics – describing what differences in 
behavior must be supported.  Given a set of pragmatic objectives, the inference process 
considered earlier relies upon conceptual categories. A semantic hub or “core” should make 
all of the conceptual distinctions required to support those categories and related pragmatics. 
The rich semantic Track model, therefore, should reflect aspects of state that most users of 
track information require for addressing expected pragmatic concerns. As we employ such a 
model to mediate sharing among systems, we will inevitably discover additional concerns not 
yet adequately addressed in the current model. This will drive an iterative, evolutionary series 
of improvements to the community’s evolving model of Track.  
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We have created a mostly-hierarchical conceptual scheme (Figure 2) working backwards from 
pragmatic objectives to required concepts to supporting distinguished data values. The ability 
to adapt this standard hierarchy rapidly to exploit a new source would be the operational test 
of value. This suggests both what types of products we need and also what types of methods 
will enable us to adapt these products to new situations. The Track model allows us to 
describe our beliefs about a mobile entity and its past, present and predicted future states. In 
addition, we are able to justify inferences that we make as part of the tracking process.  
 

 
Figure 2. The top-level conceptual hierarchy for Track1. 

 
This fragment of a conceptual hierarchy describes the most general, or topmost, element 
called Track. The concept Track contains two principal component concepts, called Beliefs 
and Meta-Information, respectively. Components of Meta-Information may apply to each 
element of Beliefs. That is, when we use the conceptual hierarchy to create actual beliefs that 
are instances of Track Beliefs, we may find it useful to qualify every belief by using the sub-
concepts of Meta-Information. In this sense, Meta-Information plays dual roles of meta-data 
(data about data) or reification (statements about statements). Moreover, Meta-Information 
can apply to combined Beliefs, as in providing rationale for bringing the Beliefs together.  
 
RESEARCH AND DEVELOPMENT AGENDA TO ACHIEVE POTENTIAL 
BENEFITS OF THE SEMANTIC MODEL OF TRACK 
 
To advance the agenda on track-related systems, we need to accomplish several intermediate 
objectives: 
• Select a community of interest that recognizes the importance of this task. 
• Enumerate and prioritize information sharing scenarios. 
• Determine a high-value near-term subset of the hub semantics. 
• Identify viewer/editors that operators will employ in these sharing scenarios. 
• Determine translator requirements to support the scenario. 
• Implement an initial semantic hub and related translators to/from interoperating systems.. 
• Test the environment, and identify high priority requirements for improvements to the hub 

and translators. 
• Identify operators for whom VIRT capabilities have highest value. 
• Determine best methods to gain knowledge of operator’s context and identify valuable 

information. 

                                                 
1 Successively indented topics represent specializations or subcategories under the topic they descend from. 

Track 
Beliefs 

  Identity 
  Characteristics 
  Dynamic State at Time T 
  History of States (past “track”) 
  Predicted States (future “track”) 
 Meta-Information 
  Evidence  
  Inferences 
  Error and uncertainty estimates 
  Temporal qualifications 
  Spatial qualifications
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• Implement query methods and notification methods to operationalize valued information 
at the right time. 

• Iterate, through earlier steps, to implement continuous improvement. 
• Place responsibility for this continuous improvement process in the hands of an 

appropriate agent or team. 
 
This R&D agenda provides an incremental approach that can provide immediate benefits and 
can quickly exploit learning to gain additional benefits. These concepts are already 
influencing new track model designs. The approach has informed development of the Joint 
Track Management data model and is strongly integrated into the Comprehensive Maritime 
Awareness (CMA JCTD) Maritime Information Exchange Model (MIEM). In the MIEM, all 
objects and their constituent elements support a rich metadata structure (information sources, 
pedigree, time-varying nature, threat/vulnerability, confidence, annotation, etc.) to enable 
clear expression of value added information. 
 
CONCLUSIONS 
 
Many defense, homeland security, and commercial security objectives require continuous 
tracking of mobile entities. We wish to share information among different tracking systems 
working in similar domains. To combine information from different sources, we will need a 
flexible framework that can tolerate and exploit data products from different systems, 
although these systems employ different representations and embody different assumptions. 
Our approach is to create a rich semantic model of tracks that can support a wide variety of 
objectives related to information sharing. The semantic model is developed to play the role of 
a hub amidst a variety of translators. This approach enables achievement of significant 
positive benefits through incremental improvement driven by pragmatic concerns.  
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1 Introduction
The need for interoperability is dire: Knowledge representation systems employ ontologies that

use disparate formalisms to describe related domains; to be truly useful to the intelligence commu-

nity, they must meaningfully share information. Ongoing research [3, 4, 7, 15] strives toward the

holy grail of complete interoperability, but has been hindered by techniques that are specialized

for particular ontologies, and that lack the expressivity needed to describe complex ontological

relationships. In the sequel, we describe provability-based semantic interoperability (PBSI) [16], a

means to surmount these hindrances; translation graphs, one of our key formalism for describing

the complex relationships among arbitrary ontologies; and ways in which these techniques might

be automated.

2 PBSI and PBSI+

We clarify our uses of syntactic and semantic. The syntax of a knowledgebase regiments the struc-

ture of expressions in it (e.g., that (mother-of Amy) is a well-formed KIF term owes to KIF’s

syntax); semantics attribute meaning to otherwise abstract constructs ((mother-of Amy) desig-

nates Amy’s mother according to the semantics of an ontology). A syntactic translation occurs
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when knowledge from one ontology is moved into another using the same semantics. In other

words, when ontologies describe the same kind of things, and differ only in the way object-level

information is structured, interoperability is achieved by mere syntactic translation. When ontolo-

gies differ not only in syntax, but also in semantics (yet relate meaningfully), a stronger form of

translation is needed: semantic translation enables the transfer of information across such ontolo-

gies. Systems capable of semantic translation (e.g., [4, 6]) provide some language in which to

formalize the semantic connections between ontologies. Unfortunately, the relationships associat-

ing ontologies may be so complex that translation of knowledge from one ontology into another is

not feasible. Moreover, when interoperability is achieved between complex ontologies, justifica-

tion is needed to support trust that the meaning of the data has been preserved.

PBSI provides a language for formalizing the relationships between ontologies via bridging
axioms, and our extension, PBSI+, associates each information exchange with a proof certifying

the conservation of semantic meaning. The basic construct of PBSI+ is the signature, a collection

of statements in the meta-theory which, coupled with a set of axioms, captures a given ontology.

A signature Σ consists of a set σ of sorts, and a set φ of functors. A sort s ∈ σ is a domain — a

collection whose elements are considered the same kind of thing,1 (e.g., the months in the year,

boolean values, natural numbers, US citizens). A functor f ∈ φ maps between objects of the sorts

in σ. In the case that f maps onto the boolean values, f is a relation; if it also takes no arguments, it

is a proposition. Having defined signatures, the specifications of ontologies, we present translation
graphs, a framework for bridging signatures (and so, ontologies) while preserving semantics.

3 Translation Graphs
A translation graph, like the one in figure 1, is a directed graph G = (V,E) where the vertices v ∈V
are each unique signatures, and each edge e = (u,v) ∈ E describes the application of a primitive

operation to u yielding v, viz., adding or removing either a sort or functor. The addition of a new

functor also has associated information potentially relating the new functor to existing functors of

the modified signature.

As a toy example, let signature Σ1 consist of the domains σ1 = {People,Firearms} and just

one functor φ1 = {OwnerOf : Firearms → People}, which is understood to map a firearm to its

owner. Furthermore, signature Σ2 consists of the domain σ2 = {People} and the functor φ2 =
{IsArmed : People → Boolean} so that IsArmed holds for those people who own guns (in this ex-

ample, all signatures implicitly have the boolean domain). A translation graph enabling interop-

erability between these signatures might apply the following primitive operations bridging Σ1 to

Σ2:

1. AddFunctor(IsArmed) with the bridging axiom

∀p [∃gOwnerOf(g) = p] → IsArmed(p)

so that the the relation IsArmed holds for any person, p where there is a firearm that p owns.

1Our current formalization draws on many-sorted logic, and so domains are disjoint. While this is a limitation

on the expressitivity of the language (many ontologies require a subsort hierarchy), it is not a technical restriction.

Specifically, we are investigating the use of other ontology representation languages [11, 8].
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C

Sorts: Number Functions: Phoned

Sorts: Number, Person Functions: Phoned

(add-sort Person)

Sorts: Number, Person Functions: Owner, Phoned

(add-function Owner)

Sorts: Person, Number Functions: Owner, Phoned, Called

(add-function Called
  (iff (Phoned x y)
       (Called (Owner x) (Owner y))))

D

Sorts: Number, Person Functions: Owns

Sorts: Number, Person Functions: Owns, Owner

(add-function Owner
  (iff (= x (Owner y))

    (Owns x y))))

Sorts: Number, Person Functions: Owner

(remove-function Owns)

(add-function Phoned)

Sorts: Person, Number Functions: Owner, Called

(remove-function Phoned)

Sorts: Person, Number Functions: Called

(remove-function Owner)

A

Sorts: Person Functions: Called

(remove-function Owner)

Sorts: Person Functions: CalledBy, Called

(remove-functor CalledBy)

B

Sorts: Person Functions: CalledBy

(add-functor Called
  (iff (Called   x y)
       (CalledBy y x)

Figure 1: A sample translation graph enabling interoperability between four related ontologies.

2. RemoveFunctor(OwnerOf)

3. RemoveSort(Firearms)

PBSI between the two described ontologies is made possible: Suppose that the first ontology

has among the declarative information in its knowledgebase that Mohammed Al Harbi is the owner

of an AKS-74U assault riffle, and that the knowledgebase of the second ontology contains no

information about Mohammed Al Harbi except that he is a person. A query of whether or not

Mohammed is armed, issued in the second ontology and making use of σ1’s knowledgebase along

with bridging axioms generated by traversing the path from σ1 to σ2, would yield the correct

answer and the associated, certifying proof.

It is important to note that PBSI provides a formal framework and corresponding implemen-

tation to break through the n2 barrier. In the case where translation between several ontologies is

desired, translation graphs provide a means to surmount this n2 problem. This is achieved by use of

an intertheory through which ontologies are interconnected thereby requiring only 2n translation

functions (see figure 2). Of course, an even bigger breakthrough would be secured if PBSI could

be fully automated, and we turn no to that possibility.
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Intertheory

Figure 2: Interoperability between n ontologies (left) typically requires
(n

2

)
connections but with

an intertheory (right), interoperability is achieved using only 2n.

4 Automation
In this section, we discuss ways to automate the process of creating and applying translations

graphs. The procedure to extract appropriate bridging axioms from a translation graph has been

accomplished, and systems whose ontologies are present as nodes in a translation graph can in-

teroperate with other nodes in the graph. PBSI does not always yield translation; in some cases,

bridging axioms can be converted to techniques for syntactic translation, but typically interoper-

ability is achieved by a system issuing a query expressed in its own syntax and semantics and the

search for an answer incorporates knowledge from related ontologies.

A detailed example of the above is presented in the interoperability experiment [2] between our

own advanced reasoning system, Slate, and Oculus’ geospatial and temporal visualization system,

GeoTime. In the experiment, Slate and GeoTime collaborate to solve a portion of a case study used

at the Joint Military Intelligence College. Additionally, the IKRIS Workshop [12] culminated in

a demonstration of interoperability between three systems, Slate [1], Cycorp’s Nöscape [14], and

IBM and Stanford’s KANI [5].2

This automation gets us half way there, but the holy grail of PBSI is to automate not only

the intoperation between systems, but the generation of translation graphs as well. Translation

graphs are of course implemented in code, so the challenge of fully automating PBSI+ becomes

the challenge of so-called automatic programming [13]. Because of the capability of the system

we have designed for intelligence analysts (Slate), we are optimistic about being able to devise

programs that generate the programs that implement translation graphs. Slate integrates deductive,

inductive, and abductive reasoning. To the best of our knowledge, there has not been a single

effort in automatic programming that synthesizes these three elements. The tradition of deductive

program automation [10] is based exclusively on deduction; the tradition of machine learning (e.g.,

genetic programming [9]) is based exclusively on induction; while abduction has not even been

2Demonstrations of these experiments and other Slate-related content is made available online at

http://www.cogsci.rpi.edu/slate/Demos/
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explored in this field. And yet, typically, when humans approach a programming problem they

employ all three of these. They use induction (in tandem with testing and checking) to formulate

conjectures about the problem and their tentative solutions; they use deduction in order to reason

about the consequences of their design decisions and about the correctness of their solutions; and

they use abduction to explain the behavior of their algorithms. We look forward to reporting on

our progress toward full automaticity at OIC 2007.

5 A Robust Example
In the presentation corresponding to this extended abstract at OIC 2007 itself, we will also describe

a PBSI+-enabled interoperabilty example too robust to present within present space constraints.

The example will be based on ongoing DTO-sponsored R&D, in which the aforementioned Oculus

and Slate systems interoperate to enable analysts, working on a challenging case study, to issue

hypotheses and recommendations that would not otherwise be attainable.
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