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Abstract
Spectral clustering (SC) is one of the most popular algorithms for finding communities in a static
graph. The algorithm derives the communities through clustering the leading eigenvectors of the graph
Laplacian. Many practical problems involve networks that evolve over time (for instance, the Facebook
friendship network) and communities need to be updated dynamically. Since spectral clustering is an
offline algorithm, any change in the graph requires a new computation of the eigenvectors of the graph
Laplacian matrix, which is highly inefficient for real-time clustering of most large dynamic networks.
Incremental spectral clustering (ISC) extends the method to efficiently cluster dynamic graphs [1],
by incrementally updating the eigenvectors and eigenvalues, but can sometimes lead to sub-optimal
performance due to approximation errors. In this paper, a modified incremental spectral algorithm
(MISC) is introduced by considering higher-order approximations of the eigenvector update rule. We
compared the performance of ISC and MISC through experiments on random graphs generated from
dynamic stochastic block model, from Barabasi-Albert model with planted communities and real-word
network data.
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1. Introduction

Spectral clustering (SC) is an algorithm for finding communities and has been the center of
attention for a few years, due to its simplicity in implementation [2] and its application in
many areas such as image segmentation [3], bioinformatic [4], computer vision and VLSI design
[5]. The idea of spectral clustering relies on standard linear algebra methods and studies the
spectrum of the Adjacency and the Laplacian matrices to find communities. When the Laplacian
matrix is used to represent the static graph, one can see that the leading eigenvectors relate
well to the embedding of the nodes, and if we cluster these embeddings using algorithms such
as K-means we can find the communities.

Real-world networks often change over time [6]. For example, social networks like Facebook
or LinkedIn evolve every millisecond. In such cases, spectral clustering fails to efficiently cluster
these large dynamic networks in real-time, as the eigenvectors of the graph Laplacian matrix
have to be computed for every change on the network.

In dynamic networks [7], wherein the graphs change over time, incremental spectral clustering
(ISC) [8] develop upon the methods of standard spectral clustering by tracking the changes
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in the eigenvectors of the matrix and generating cluster labels, as the graph evolves. This is
more efficient than computing the eigenvectors and clusters from scratch after each iteration.
However, the incremental update provides only an approximation of the actual eigenvectors.
Since the error accumulates over time the loss of information in the approximation causes the
algorithm to perform more poorly than SC as the number of changes on the graph increases.

In this paper, we propose a modified version of the existing ISC algorithm (Section 2.2).
The proposed modified ISC (MISC) algorithm is initialized by the standard incremental update
of ISC and then the eigenvalue-eigenvector pair are iteratively improved. This improvement
aims to have an algorithm that still performs more efficiently than spectral clustering but is
also more accurate than incremental spectral clustering. The comparison between MISC and
ISC according to their accuracy has been shown in Section 3 through experiments on graphs
produced by the Barabasi-Albert model with planted communities, dynamic stochastic block
model and real-word network data.

2. Background and Methods

Consider a network represented as an unweighted undirected graph G = (FE, V') with node
set V, edge set E and adjacency matrix A € {0, 1}"*", where aj; = a;; = 1 means that the
vertices v; and v; are connected by an edge. The total number of edges connected to the vertex
i (v;) is the degree of the vertex i (degree(i)) and denoted by the degree matrix D € R"*",
which is a diagonal matrix with D;; = degree(i). The graph Laplacian matrices, such as the
unnormalized Laplacian, . = D — A, and the random walk Laplacian, L,,, = DL, capture
the intrinsic of geometry of a graph. For instance, the leading eigenvalues of the Laplacians are
closely related to the optimal ratio or normalised cuts [9].

2.1. Spectral Clustering (SC) and Incremental Spectral Clustering (ISC)

The goal of spectral clustering (SC) is to divide the nodes of a network into several communities
such that the nodes in the same community have many edges with each other and nodes in
different communities have few. More formally, SC solves a relaxation of cut minimisation
problems [2] by clustering the leading eigenvectors of the graph Laplacians. In this paper, we
focus on SC and its variants based on the random walk Laplacian L,,, (see [2]). The subsequent
mathematical derivations and methods can be generalised to other graph Laplacians. SC based
on the random walk Laplacian consider the solution (eigenvalue A and eigenvector ¢) of the
generalized eigenvalue system

Lg = \Dg. (1)

To extend SC to dynamic graphs, one considers the following equation, where AL and AD
denote the changes in Laplacian and degree matrices ' and (A), Aq) denote the increments in
eigenpair that one needs to compute,

(L +AL)(q+ Aq) = (A + AX)(D + AD)(q + Aqg). (2)

lin the case of a new vertex the old matrices L and D are extended by a row and column of zeros to calculate
AL and AD



By expanding the equation and using the fact that Lg = ADgq, (2) can be written as:

LAG+ALG+ALAq = ADAG+AADg+AADAG+ANDG+ANDAG+ANADg+ANADAq
3)
In ISC [8], the authors propose to approximate the increments of the eigenvalues and

eigenvectors (A), Aq) by removing the higher-order terms
ALAq, \ADAq, AADAq, ANADq, ANADAg:

LAq+ ALqg = ADAq+ AADq+ AXDq (4)

One can solve (4) for AN by multiplying both sides with ¢” and eliminating ¢'LAq =
A¢T DAg:
B q"ALg — \¢" ADq

AN
q"Dq

)

After calculating A\ with (5), one can reformulate (4) in order to obtain an update rule for
Aq as

Aq = (KTK)Y KT(AAD + A\ND — AL)q , (6)

where K = L — AD and (KT K)T denotes the pseudoinverse of K7 K since the matrix is

singular.? In [8], the rule in (6) is used to update the leading eigenvectors and the updated

eigenvectors are subsequently clustered using K-means to obtain the new clusters in the graph.

2.2. Proposed Modified Incremental Spectral Clustering (MISC) Method

The increments of the eigenvectors in (6) are approximations of the true increments of eigenvectors
in (2). The accuracy of the calculated eigenvectors degrade as the number of changes on the
graph increases due to the accumulated error resulting from the removal of the higher-order
terms. We propose a new method based on the ISC that aims to minimize the number of
approximations needed. With some manipulations, one can write (2) as

(L + AL — AD — MAD — AAD — AMAD)Aq = (—AL + MAD + AXD + AMAD)q.  (7)
Note that the higher-order terms are still part of (7). From (7), we can solve for A as

A\ — ¢ ALq + q"ALAq — \qTADq — A\¢" ADAq
¢"Dq+ q"DAq+ qTADq + ¢"ADAq

(8)

(8) cannot be solved independently from Aq unlike (5). Therefore, we need an additional
initialization step for A and Aq. The main intuition for the proposed modified ISC (MISC)
algorithm is to start with the initialisation of A from (5), similar to ISC, and update (A)\, Aq)
through repeated iterations of (7) and (8). The steps of MISC algorithm is listed below in
Algorithm 1.

Note that the proposed method aims to increase the quality of the approximation by using
the previous values of A and Aq in each iteration to keep the equation (2) intact, whereas in
ISC all the higher order terms are ignored.

’In this paper numpy.linalg.pinv function with the condition number 0.001 is used to calculate the
pseudoinverse (https://numpy.org/doc/stable/reference/generated/numpy.linalg pinv.html)



Algorithm 1 Modified Incremental Spectral Clustering (MISC)

1: Given the initial graph, run SC with L,, [2] to obtain initial
clusters. This also provides initial eigenvalues and eigenvectors

(\,q) of the generalized eigenvalue system (1)
2: for every change in the graph do
Use (5) to calculate A) and compute Aq without higher-order

w

approximation using (7)
fork=1,2,...,T do
Recompute A)\,Aq using (7) and (8)
end for
Update the solution of eigensystem from (), q) to (A—FAA,q—FAq)
Cluster the nodes according to the updated eigenvectors using

® XTIk

the K-means cluster centers from the previous iteration
9: Update the K-means cluster centers according to the new labels
10: end for

3. Experimental Evaluation

In this section, we compare the performance of the proposed MISC algorithm with ISC [8].
Recall that the main objective of the incremental algorithms is to obtain efficient approximation
of SC [2]. Hence, the basis for our empirical evaluation is to compare the alignment of the
clusters from MISC and ISC with those obtained from SC. For small graphs, one may visually
compare the obtained clusters (see Table 1), but for large graphs, it is more useful to use the
adjusted Rand index (ARI) metric [10] to compute the alignment of MISC (or ISC) with SC.
The ARI between any two clustering is a value between [—1, 1] with 1 indicating that the two
clustering are identical, and smaller values indicating less alignment.

The experiments are carried on random graph models with planted communities. Planted
communities refer to the communities that are formed intentionally while generating a random
graph, in order to analyse the performance of graph partitioning algorithms. A natural model
for generating random undirected graphs with community structure is the stochastic block
model (SBM) which is for static graphs. In order to construct SBM, one adds an edge (i, j) with
probability p for every pair v; , v; in same community and an edge (¢, j) with probability ¢ < p
for every pair v; , v; from different communities. Since we need a dynamic graph model, we
assign the new coming nodes randomly to one of the communities and then add edges according
to the described rule.

Another random graph model we consider is the Barabasi-Albert model with planted communities
(BA-planted) [11]. BA is the most popular model for preferential attachment, which means
that the new nodes in a network connect more with high degree nodes. The principle of rich
get richer, models natural networks more realistic. This behaviour is ensured by choosing the
probability of having an edge between the new node (added at time ) and a node v, € V;_,
proportional to d,,. Using this probability one adds edges between the new arriving node and
m random nodes. BA-planted combines the community structure of SBM and preferential
attachment process of BA model by initializing the graph with static SBM and adding nodes



according to the principle of BA model.

In SBM, we chose p = 0.7 and ¢ = 0.3. In BA-planted we chose p = 0.9, ¢ = 0.1 and m = 5.
In every time step a new node is added to the graph by adding edges between this new node
and the existing nodes. For every added edge the spectral clustering algorithms determined the
clusters without re-initialization.

Table 1 demonstrates how well each spectral clustering algorithm performs over time on
BA-planted. We can clearly see that the MISC finds the same meaningful clusters as SC, while
ISC delivers a poor result.

Figure 1a shows the ARI scores of ISC and MISC for graphs produced by BA-planted which
starts with 100 nodes. The average of 100 runs is plotted with the %95 confidence interval.
The x-axis represents the percentage of added nodes with respect to ng. We can see a slight
decrease in the ARI score as the graph evolves. It should also be noted that the MICS achieves
better performance compared to ISC, as expected. Figure 1b demonstrates the respective time
taken per similarity change over the number of nodes and implicates that the both incremental
methods are faster than the SC.

Figure 1g shows the average of the results on the SBM for 100 runs. Unsurprisingly, the
earlier performances of both ISC and MISC are better than the latter, and the ARI score of the
ISC stays below the score of the MISC. The corresponding runtime of the spectral clustering
algorithms can be seen in Figure 1h.

If one examines the graphs Figure 1a and Figure 1g, one can see that the gap between the
ARI values of MISC and ISC increases as the graph gets larger. Hence it is expected that MISC
to outperform ISC on a larger dataset.

The experiments carried out on real networks [12, 13], emphasizes the validity of previously
presented results. Both in Figure 1le and Figure 1f the ARI scores of the ISC is under the ARI
scores of the MISC.
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Table 1: SC, ISC and MISC over time



1
S g
B gy |
2 oof |
0.85 7
—— ISC&SC
— MISC & SC
T L i ‘
08 20 10 o v

%

(a) ARI scores of ISC and MISC
over percentage of added

nodes for np = 100 on
BA-planted
1 T T
R e
0.99 |- B
0.98 |- B
3
<
0.97 |- B
096 T scasc )
—— MISC & SC
0-95 Zb -'1‘0 U‘U Sb 100

%

(c) ARI scores of ISC and MISC
over percentage of added nodes
for ng = 100 on SBM

1 T —————
\ | [~ 1sc&sc
| |——miscasc
0.8} \ 1
\/ “\
0.6 \ | =
= \
z RN
\
04 \/ \\
Y “\\
02}

(e) ARI scores of ISC and MISC
over number of nodes on Word
adjacencies network

1

0.8

0.6

ARI

0.4

02 scasc
—— MISC & SC
; ;

I I I
qZO 130 140 150 160 170 180
n

(g) ARI scores of ISC and MISC
over number of nodes on
Neural network

0.1 :
sc

|| 1sc

8-1072 1 __ misc

61072 |

qOO 12‘0 14‘10 lf‘iﬂ 18‘0 200

(b) time taken per similarity
change (sc) for SC, ISC and
MISC over number of nodes
on BA-planted

0.1 .
sC
L l|e1sc
8107 F . misc
26-1072
=
P
E402)

qOU léU 14‘10 ]f‘iU ]t‘iU 200

(d) time taken per similarity
change (sc) for SC, ISC and
MISC over number of nodes
on SBM

time [s]/sc

(f) time taken per similarity
change (sc) for SC, ISC and
MISC over number of nodes
on Word adjacencies network

0.1 T

sC
|| 1sc
8107 Mmisc
261072
A
P
Es02)

q?ﬂ 12‘30 14‘10 1\"50 1(‘30 1‘70 180

(h) time taken per similarity
change (sc) for SC, ISC and
MISC over number of nodes
on Neural network

Figure 1: Performance analysis of the incremental spectral clustering methods on evolving graphs. Left
column shows the ARI scores of ISC and MISC, right column shows time taken per similarity change
(sc) for SC, ISC and MISC. Rows correspond respectively BA-planted, SBM, Word adjacencies network
and Neural network.



4. Conclusion

In this short paper a Modified Incremental Spectral Clustering (MISC) method is proposed, which
can be used for clustering the networks that evolve over time. MISC improves over existing
Incremental Spectral Clustering [8] by adopting an iterative approach that takes into account
higher-order approximations of the generalised eigenvalue problem corresponding to spectral
clustering. Experimental results over dynamic stochastic block model, planted Barabasi-Albert
model and real-word networks illustrate the improved performance of the proposed method.
Further studies on the advantages and generality of the MISC approach will be considered in
future. In particular, we plan to derive and compare MISC based on different graph Laplacians
[2] and consider not just vertex and edge additions but also deletions. We also aim to replicate
the discussed results on larger graphs. Furthermore, note that the iterative approach in MISC
makes the method slightly slower than ISC, and the tradeoff of accuracy against efficiency needs
to be extensively evaluated. Alternatives methods for solving linear equations instead of the
computation of the pseudoinverse may be taken into consideration to increase the efficiency.
Moreover, a theoretical analysis of the incremental update rules is envisioned for random graph
models, particularly identifying the causes for the poor performance of ISC and how this is
overcome by the proposed MISC updates.
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