
Structure Search for Normalizing Flows
Felix Gonsior1, Sascha Mücke1 and Katharina Morik1

1Technische Universität Dortmund, August-Schmidt-Straße 1, 44227 Dortmund

Abstract
Normalizing Flows are deep generative models that allow for feasible exact inference by means of an
invertible mapping between a simple prior and an unknown data distribution. Coupling Flows inject
the expressive power of neural networks into this framework by allowing conditional transformations,
where the conditioner can be any nonlinear function. Under the assumption of feature locality, e.g. in
images, the conditional structure has been limited to locality preserving structures. We are interested
in cases where the locality assumption does not hold and propose a novel structure search approach
based on an evolutionary optimization scheme to find conditional structures. Our method can improve
convergence on non-image datasets and lead to smaller models.

Keywords
Normalizing Flow, Generative Model, Affine Coupling, Deep Learning, Evolutionary Algorithms

1. Introduction

Probabilistic inference is a central tool for many applications, like outlier detection [1], image
processing [2, 3], gap filling [4] and natural language processing [5], to name a few.

Normalizing flows are a family of probabilistic models that can be used for both inference as
well as data generation on continuous data. Their basic idea is to construct an invertible trans-
formation between a tractable (e.g., Gaussian) prior probability distribution and the unknown
data distribution. The result is a model that can transform (“flow”) data between the spaces
of prior and data distribution. Deep normalizing flows may be composed of a series of simple
transformations. A valid probability distribution is maintained by tracking the cumulative
volume differentials throughout the flow. Data generation is performed by transforming samples
from the prior into the data space. The likelihood of points in data space can be inferred by
transforming them into the prior space. In an effort to exploit the high flexibility of deep neural
architectures in normalizing flows, coupling flows were introduced by Dinh et al. [6, 7]. A
coupling flow encapsulates an arbitrarily complex transformation in such a way that the result
is invertible.

Across literature, normalizing flows are most commonly used on image data, where features
exhibit strong locality properties: Pixels of an image correlate most strongly with neighboring
pixels. For this reason, coupling flows that are designed for e.g. image data often use locality
preserving masks to determine the conditioning structure. To the best of our knowledge,

LWDA’21: Lernen, Wissen, Daten, Analysen September 01–03, 2021, Munich, Germany
Envelope-Open felix.gonsior@tu-dortmund.de (F. Gonsior); sascha.muecke@tu-dortmund.de (S. Mücke);
katharina.morik@tu-dortmund.de (K. Morik)
GLOBE www.tu-dortmund.de (F. Gonsior); www.tu-dortmund.de (S. Mücke); www.tu-dortmund.de (K. Morik)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:felix.gonsior@tu-dortmund.de
mailto:sascha.muecke@tu-dortmund.de
mailto:katharina.morik@tu-dortmund.de
www.tu-dortmund.de
www.tu-dortmund.de
www.tu-dortmund.de
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

𝑥

𝑥𝐴

𝑥𝐵

× +

exp

Φ

conditioner

𝑧𝐴

𝑧𝐵

𝑧

𝑡(𝑥𝐵)

𝑠(𝑥𝐵)

affine coupling

𝑓1 𝑐1 𝑓2 𝑐2 𝑓3 𝑐3𝑥 𝑧

ℱ1 ℱ2 ℱ3

Figure 1: Structure of an affine coupling (left) and layer structure of our flow model (right).

there have been no substantial previous efforts to understand the effect that the structure of a
normalizing flow has on convergence and quality of a coupling flow model. Searching the space
of connectivity structures in complex, networked models can yield sparse models with few
parameters, that still perform nearly as well as dense, hand-crafted models [8, 9, 10]. We devise
an evolutionary search procedure that improves a given initial network structure iteratively. It
works by generating offspring structures based on the current best guess and accepting only
improving structures.

2. Background: Normalizing Flows

Given a dataset 𝒟 ⊆ 𝒳 with 𝒟 = {𝑥1, … , 𝑥𝑁}, the goal of unsupervised probabilistic modelling
is to estimate the probability density 𝑝𝑋(𝑥) for any 𝑥 ∈ 𝒳, such that 𝒟 is a plausible sample of
the random variable 𝑋. We use uppercase letters for random variables and lowercase letters for
their respective realizations. Naturally, for 𝑝𝑋 to be a valid probability measure ∫𝒳 𝑝𝑋(𝑥) d𝑥 = 1
must hold. From now on, we assume 𝒳 = ℝ𝑑. Let 𝑓 ∶ ℝ𝑑 ↦ ℝ𝑑 be a bijective function with
continuous first derivative. We use this function to transform a random variable 𝑋 into another
variable 𝑍 ∶= 𝑓 (𝑋). To obtain the density of 𝑍, we have to re-normalize the original density
𝑝𝑋(𝑧) using the change-of-variable formula, as 𝑓 generally does not preserve volume:

𝑝𝑋(𝑥) = 𝑝𝑍(𝑓𝜃(𝑥)) |det
𝜕𝑓𝜃(𝑥)
𝜕𝑥⊤

| (1)

Here, 𝜕𝑓 /𝜕𝑥 =∶ 𝐽 is the 𝑑 × 𝑑 Jacobian matrix with entries 𝐽𝑖𝑗 = 𝜕𝑓 (𝑥)𝑖/𝜕𝑥𝑗. If 𝑓 is a composition
of transformations, 𝑓 = 𝑓𝐿 ∘ … ∘ 𝑓2 ∘ 𝑓1, the absolute Jacobian determinants are multiplied,
where 𝑧𝑙 is the intermediate result after applying 𝑓𝑙 ∘ 𝑓𝑙−1 ∘ … ∘ 𝑓2 ∘ 𝑓1, and 𝑧0 = 𝑥 and 𝑧𝐿 = 𝑧
accordingly. If we assume that 𝑝𝑍 is a tractable prior density, e.g. of an isotropic Gaussian, it
is easy to see that calculating the density for 𝑋 reduces to calculating the prior density and
Jacobian determinant, which acts as a data-dependent scaling factor. If 𝑓𝜃 is a parametric flow,
then a normalizing flow model can be fit to data by minimizing the negative log likelihood:

− ln 𝐿(𝜃;𝒟) = − ln∏
𝑥∈𝒟

𝑝𝑍(𝑓𝜃(𝑥)) |det
𝜕𝑓𝜃(𝑥)
𝜕𝑥⊤

| (2)

In current literature, the unit of bits per dimension (bpd) is often used for comparing results.
In the case of batch processing for stochastic optimization it is calculated for a minibatch ̃𝒟 by

expresing the negative log likelihood in base 2 and normalizing over data dimensions 𝑑 and batch
size | ̃𝒟 | as follows: bpd = −(ln(2) ⋅ 𝑑 ⋅ | ̃𝒟 |)−1 ln 𝐿(𝜃; ̃𝒟). The choice of 𝑓𝜃 is the determining
factor of both a normalizing flow model’s expressivity and its computational efficiency. For a
comprehensive overview see [11].
We use two types of affine flow transformations in our model. Affine constant flows consist

of an affine transformation 𝑓 (𝑥) = 𝑠 ⊙ 𝑥 + 𝑡 where ⊙ is element-wise multiplication and 𝑠
and 𝑡 are learnable constant vectors in ℝ𝑑. These flows transform each incoming data point
by the same linear transformation. Affine couplings provide an easy way to design invertible
flows from non-linear and non-invertible functions. Couplings are affine transformations that
are dependent based on part of the incoming data. They can be built from neural network
components, enabling nonlinear behavior of the overall transformation while being invertible
wrt. each single data point. Let 𝑥 be an input vector to the coupling flow. It is partitioned
into into sub-vectors 𝑥𝐴 and 𝑥𝐵. An affine coupling 𝑓 is an affine transformation in 𝑥𝐴 and the
identity in 𝑥𝐵. Its scale and translational components are determined based on conditioners 𝑠
and 𝑡 which are computed only from 𝑥𝐵 (see Figure 1).

𝑓 (𝑥𝐴) = exp(𝑠(𝑥𝐵)) ⊙ 𝑥𝐴 + 𝑡(𝑥𝐵)
𝑓 (𝑥𝐵) = 𝑥𝐵

(3) ln|𝐽| =
𝑑
∑
𝑖=1

𝑠𝑖(𝑥𝐵) (4)

As both parts of 𝑓 are invertible wrt. their parameters, the whole function is invertible. The
exponential function is applied to the scaling factor 𝑠, keeping it greater than zero.

3. Conditional Structure Search

The best way the partition the input 𝑥 to a coupling into 𝑥𝐴 and 𝑥𝐵 is generally unknown. It
poses a similar problem as feature selection, which in itself is NP-hard. The search space is of
size 2𝑑 for one coupling and of size 2𝐿×𝑑 for a flow with 𝐿 coupling layers.

A naive approach is to use a purely random partitioning, i.e. setting masking bits in a random
fashion and thereby using random elements of the input as conditioning variables on each layer
of the coupling flow. For data with feature locality, such as image data, coupling flows typically
employ a checkerboard structure to ensure that the pixel transformations are conditioned on
all neighboring pixels. Between layers the mask is alternated in an odd-even fashion, so that
alternating regions of the image are used as conditioning features. This heuristic was developed
for the RealNVP flow [7] and has also been used in GLOW [12].

Analogously, one-dimensional data can be partitioned according to index parity, such that in
one layer the transformation of features with odd index are conditioned on those with even
index, and the other way around in the next layer. We call this type of masking a parity masking
and it will serve as one of the baselines for our experiments.
Instead of employing another heuristic, our goal is to find a conditional structure that

naturally fits the data at hand: We expect that for each specific data distribution there exists a
set of conditional structures that lead to better convergence in training as well as to improved
performance in inference. The task of uncovering such structures is an optimization problem.
Let NLL(𝑥; 𝜃, 𝜉) be the negative log likelihood from Equation 2, but parameterized also by 𝜉 for
the conditional structure. Let 𝐿 be the number of coupling layers in the flow. For each layer

Algorithm 1: Evolutionary Conditional Structure Search
Input :Coupling flow model with 𝐿 layers, budget 𝑇
Output : Improved coupling structure 𝜉

Initialize 𝜉 0 and 𝜃0 randomly
𝜉 ∗,0 ← 𝜉 0
𝑐∗ ← evaluate(𝜉 0, 𝜃0)
𝑡 ← 1

while 𝑡 ≤ 𝑇 do
𝜉 𝑡 ← modify(𝜉 ∗,𝑡−1)
𝜃 𝑡 ← train(𝜉 𝑡)
𝑐 ← evaluate(𝜉 𝑡, 𝜃 𝑡)
if 𝑐 ≤ 𝑐∗ then

𝜉 ∗,𝑡 ← 𝜉 𝑡
𝑐∗ ← 𝑐

end
else

𝜉 ∗,𝑡 ← 𝜉 ∗,𝑡−1
end
𝑡 ← 𝑡 + 1

end
return 𝜉 ∗,𝑇

𝑙 ∈ {1, … , 𝐿} there is a bit mask 𝜉𝑙 ∈ {0, 1}𝑑 that indicates the partitioning through 𝑥𝑖 ∈ 𝐴 ↔ 𝜉𝑙 𝑖 = 1
and 𝑥𝑖 ∈ 𝐵 ↔ 𝜉𝑙 𝑖 = 0. The size of the partitions 𝐴 and 𝐵 is fixed. In the following, let |𝐵| = 𝑚 be
the number of input dimensions that are used for conditioning. The optimization problem we
need to solve can be formulated as

argmin
𝜃,𝜉

NLL(𝑥; 𝜃, 𝜉) s.t. 𝜃 ∈ ℝ𝑝, 𝜉 ∈ {0, 1}𝑑×𝐿, ∀𝑙 ∈ {1, … , 𝐿} ∶
𝑑
∑
𝑖=1

𝜉𝑙 𝑖 = 𝑚. (5)

We obtain approximately optimal solutions to this mixed integer optimization problem by
implementing an evolutionary optimization scheme with local search that optimizes 𝜉 and 𝜃 in
an alternating fashion. The procedure is outlined in algorithm 1.

Structure search begins with a randomly initialized structure 𝜉 0. The corresponding 𝜃0 is then
approximated by stochastic gradient descent on the negative log likelihood (train). Depending
on the computational resources available, the gradient descent can be terminated early, e.g.,
after a small fixed number of iterations, to produce a coarse approximation. To evaluate the
masking structures we use the negative log likelihood value obtained in the calculation of 𝜃 𝑡 on
the last evaluated batch of training data (evaluate). In each iteration 𝑡 ∈ {1, … , 𝑇 } we generate a
new offspring structure 𝜉 𝑡 by applying a modification on 𝜉 ∗,𝑡−1, the best known structure so far.
The modification consists of a random shuffle of layer masks 𝜉 𝑡𝑙 for a random selection layers 𝑙
(modify). The number of layers to shuffle is sampled from a geometric distribution with 𝑝 = 0.5.
We output the best structure obtained in this way over all iterations, 𝜉 ∗,𝑇.

Table 1
Overview of datasets that were used in the experiments, with number of features 𝑑 and number of
samples 𝑛 as well as the batch size 𝑏.

dataset 𝑑 𝑛 𝑏 description

magic 10 19020 380 MAGIC Gamma Telescope
turbine 10 22191 443 Gas Turbine CO and NOx Emission Data Set
sonar 60 208 16 Connectionist Bench (Sonar, Mines vs. Rocks)
yeast 8 1484 29 Yeast Data Set

At this point a more exhaustive optimization of the flow parameters 𝜃 given 𝜉 ∗,𝑇 can be
performed. This is necessary if during the structure optimization run only coarse approximations
of 𝜃∗,𝑡 were obtained. We assume that the procedure has converged, if for given number of
consecutive structure optimization iterations no improving structure has been found.

4. Experimental Evaluation

We evaluated ourmethod empirically in a series of experiments. In order to verify if our proposed
structure search yields improvements over common heuristics, we compare the performance of
models with different conditional structures. We also vary the number of transformation layers,
as the depth of a flow model also influences its expressivity.
To implement normalizing flows and structure search, we used the Python programming

language1 and the PyTorch[13] framework. We used four non-image datasets available on the
UCI Machine Learning Repository [14]. The datasets are magic, turbine, sonar and yeast (see
Table 1). All of them are real-valued, non-image datasets with numbers of features ranging
from 8 to 60. Experiments were performed on coupling flow models with depths 𝐿 ∈ {2, 4, 6, 8}.
All flows are constructed with a repeating layer structure where a layer ℱℓ consists of an affine
transform with constants, followed by an affine coupling flow 𝑓ℓ (see section 2), i.e. ℱℓ = 𝑐ℓ ∘ 𝑓ℓ
(see Figure 1). The entire flow model can then be written as ℱ = ℱ𝐿 ∘ ℱ𝐿−1 ∘ … ∘ ℱ2 ∘ ℱ1
For all flows, the prior is an isotropic Gaussian distribution, 𝑍 ∼ 𝒩 (0, 𝐼). As conditioners,
we used single-layer neural networks rectified with element-wise tanh in all experiments:
(𝑠(𝑥𝐵), 𝑡(𝑥𝐵)) = tanh(𝑊𝑥𝐵 + 𝑏). Its parameters are 𝑊 ∈ ℝ2𝑚×(𝑑−𝑚) and 𝑏 ∈ ℝ2𝑚 accordingly. As
we cannot assume feature-locality for the datasets at hand, convolutional architectures are not
a sensible choice. In all instances, we set 𝑚 = ⌊𝑑/2⌋ to use half of the dimensions to condition
the other half, in order for our results to be comparable to a parity structure.

We performed experiments on three different model layouts, which we will describe briefly.
Parity: coupling flows have a fixed alternating masking structure, as described in section 3.
Random: Coupling layers have fixed structure where the masking bits are randomized. Opt:
Coupling layers have optimized structure, learned through our optimization algorithm. For the
structure optimization runs we allowed 200 iterations of structure search, where the loss value
of each offspring is taken from the 50th iterate of parameter search with Stochastic Gradient

1www.python.org

Table 2
Results for the turbine dataset. Training losses are given in bpd for differing flow depths. Lower values
are better. Best results per row in train and test sets are bold.

depth train test
random parity opt random parity opt

2 694.76 ± 521.66 798.37 ± 536.23 27.16 ± 4.81 692.24 ± 519.61 796.22 ± 534.84 26.71 ± 4.72
4 432.67 ± 791.98 522.31 ± 440.66 10.81 ± 3.31 431.74 ± 791.77 520.53 ± 438.98 10.70 ± 3.30
6 514.11 ± 831.73 457.47 ± 980.17 9.20 ± 4.90 512.50 ± 831.39 458.50 ± 985.15 9.25 ± 4.81
8 153.42 ± 139.00 236.30 ± 318.12 7.12 ± 1.88 153.32 ± 139.21 239.35 ± 324.99 7.27 ± 1.89

Table 3
Results for the magic dataset. Training losses are given in bpd for differing flow depths. Lower values
are better. Best results per row in train and test sets are bold.

depth train test
random parity opt random parity opt

2 12.73 ± 4.24 15.87 ± 6.92 6.06 ± 0.74 13.39 ± 4.53 16.75 ± 7.40 6.24 ± 0.80
4 8.94 ± 4.07 11.98 ± 6.52 4.99 ± 0.41 9.35 ± 4.30 12.63 ± 6.97 5.05 ± 0.42
6 8.98 ± 5.07 8.61 ± 8.61 4.75 ± 0.30 9.46 ± 5.44 9.21 ± 10.15 4.79 ± 0.30
8 6.31 ± 1.61 6.07 ± 1.07 4.86 ± 0.34 6.52 ± 1.71 6.26 ± 1.15 4.93 ± 0.36

Descent. Parameter optimization is performed on all models by applying Stochastic Gradient
Descent with a cyclic learning rate schedule[15] that enables fast descent into a local optimum.
We allowed 1250 iterations for SGD while sampling random batches from the data. By choice of
the batch size, the whole dataset is presented to the algorithm within 50 iterations on average.
This approximates a training duration of 25 epochs. For each combination of dataset, model
and flow depth, 20 model instances were trained. Validation is performed on training and test
datasets. For the turbine dataset, test data is given. For the other datasets we kept a holdout
of 10% of the data points as test set. We report the mean over 20 trained model instances
of the mean loss for a given model configuration and dataset. The training performance is
measured in bits per dimension (see section 2), as it is in common use in related publications.
The experiments have been run on 8 cores of an AMD EPYC 7742 CPU at 2.4 Ghz. The structure
search phase at depth 8 took about 1.5 minutes at maximal depthwhile the postoptimization
step using SGD took about 10 seconds.

In Table 2 and Table 3 results for the datasets turbine and magic are shown. On both of these
datasets, the models which use an optimized structure outperform parity and random, often
by more than an order of magnitude. The large means and deviations reported for the turbine
dataset hint at slower convergence for the random and parity models. For the sonar and yeast
datasets (see Table 4 and Table 5), the results are much more similar across all tested methods,
with the parity layout actually having an edge over the other methods. For sonar, this can be
explained by the fact that the features are taken from sensors that are arranged in a circle, which
leads to some degree of locality. This gives parity an advantage, which serves to illustrate that
this layout performs best on data with local features.

Table 4
Results for the sonar dataset. Training losses are given in bpd for differing flow depths. Lower values
are better. Best results per row in train and test sets are bold.

depth train test
random parity opt random parity opt

2 −2.10 ± 0.03 −2.25 ± 0.00 −2.11 ± 0.03 −2.05 ± 0.03 −2.20 ± 0.01 −2.07 ± 0.04
4 −2.56 ± 0.02 −2.63 ± 0.02 −2.57 ± 0.01 −2.50 ± 0.03 −2.57 ± 0.02 −2.50 ± 0.01
6 −2.76 ± 0.02 −2.79 ± 0.02 −2.76 ± 0.01 −2.70 ± 0.02 −2.73 ± 0.03 −2.70 ± 0.02
8 −2.85 ± 0.02 −2.77 ± 0.26 −2.85 ± 0.02 −2.79 ± 0.03 −2.71 ± 0.25 −2.80 ± 0.02

Table 5
Results for the yeast dataset. Training losses are given in bpd for differing flow depths. Lower values
are better. Best results per row are bold.

depth train test
random parity opt random parity opt

2 −1.86 ± 0.26 −2.41 ± 0.08 −1.82 ± 0.35 −1.98 ± 0.26 −2.54 ± 0.08 −1.95 ± 0.35
4 −2.53 ± 0.38 −2.98 ± 0.07 −2.66 ± 0.21 −2.64 ± 0.39 −3.10 ± 0.07 −2.78 ± 0.21
6 −2.91 ± 0.19 −3.13 ± 0.06 −2.99 ± 0.19 −3.02 ± 0.18 −3.24 ± 0.06 −3.11 ± 0.19
8 −3.02 ± 0.26 −3.15 ± 0.18 −3.08 ± 0.19 −3.12 ± 0.26 −3.25 ± 0.19 −3.19 ± 0.19

5. Conclusion

In this paper, we have taken a first step in the direction of exploring the effect that the conditional
structure has on the quality of coupling flowmodels. We devised a local search heuristic inspired
by structure learning that treats the conditional structure of coupling flows as a learnable
parameter. It finds improving structures that can lead to better performance on datasets which
exhibit no feature locality, compared to heuristically hand-picked structures. We could show
that on the turbine and magic datasets, the resulting models performed significantly better.
This leads to models that can be trained faster and that have fewer trainable parameters. On
the remaining datasets, the results are not as convincing, as the bpd values are very close to
each other and their uncertainty intervals are partly overlapping. Still, they illustrate that (1)
conditional structure has a measurable influence on the performance of coupling flow models
and (2) the best conditional structure strongly depends on the data at hand. Also, parity is
evidently a strong heuristic for exploiting feature locality. These results open further avenues of
research. Producing results on higher dimensional datasets and with sparser coupling structures
opens up the possibility for even greater reduction in the number of parameters. The fact that
parity structures work well on data with feature locality suggests that one may be able to derive
an optimal structure directly from the data, rendering optimization altogether obsolete. This is
something that should be further investigated, as well.

Acknowledgments

This research has been funded by the Federal Ministry of Education and Research of Germany
as part of the competence center for machine learning ML2R (01IS18038A).

References

[1] D. Peña, I. Guttman, Comparing probabilistic methods for outlier detection in linear
models, Biometrika 80 (1993) 603–610.

[2] S. Z. Li, Markov random field models in computer vision, in: European conference on
computer vision, Springer, 1994, pp. 361–370.

[3] G. R. Cross, A. K. Jain, Markov random field texture models, IEEE Transactions on Pattern
Analysis and Machine Intelligence (1983) 25–39.

[4] R. Fischer, N. Piatkowski, C. Pelletier, G. I. Webb, F. Petitjean, K. Morik, No cloud on the
horizon: Probabilistic gap filling in satellite image series, in: 2020 IEEE 7th International
Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2020, pp. 546–555.

[5] J. M. Conroy, D. P. O’leary, Text summarization via hidden markov models, in: Proceedings
of the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, 2001, pp. 406–407.

[6] L. Dinh, D. Krueger, Y. Bengio, NICE: non-linear independent components estimation,
in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, 2015.

[7] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real NVP, CoRR
abs/1605.08803 (2016). arXiv:1605.08803 .

[8] K. O. Stanley, R. Miikkulainen, Evolving Neural Networks through Augmenting Topologies,
Evolutionary Computation 10 (2002) 99–127.

[9] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning, in: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[10] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image classifier
architecture search, in: The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI, AAAI Press, 2019, pp. 4780–4789.

[11] I. Kobyzev, S. Prince, M. A. Brubaker, Normalizing flows: Introduction and ideas, CoRR
abs/1908.09257 (2019). arXiv:1908.09257 .

[12] D. P. Kingma, P. Dhariwal, Glow: Generative Flow with Invertible 1x1 Convolutions,
arXiv:1807.03039 [cs, stat] (2018). ArXiv: 1807.03039.

[13] P. et al, PyTorch, 2019. URL: www.pytorch.org.
[14] D. Dua, C. Graff, UCI machine learning repository, 2017. URL: http://archive.ics.uci.edu/ml.
[15] L. N. Smith, Cyclical learning rates for training neural networks, in: 2017 IEEE Winter

Conference on Applications of Computer Vision, WACV 2017, Santa Rosa, CA, USA, March
24-31, 2017, IEEE Computer Society, 2017, pp. 464–472.

http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1908.09257
www.pytorch.org
http://archive.ics.uci.edu/ml

	1 Introduction
	2 Background: Normalizing Flows
	3 Conditional Structure Search
	4 Experimental Evaluation
	5 Conclusion

