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Abstract
Learning causal structures from real-world high-dimensional data remains challenging due to algorith-
mic complexity and resulting long runtimes. We propose two multi-GPU approaches to discover causal
relationships in multivariate normal distributed data, often assumed in genetic datasets, to address the
long runtimes. In fact, on a high-dimensional dataset from The Cancer Genome Atlas (TCGA), we
achieved a reduction in runtimes from over 100 hours on a multi-core CPU system to around 5 minutes
on a system with multiple Graphics Processing Units (GPUs). Our two proposed multi-GPU approaches
differ in their memory management. One version relies on the concept of Unified Memory (UM), while
the other uses explicit memory management. Experiments on synthetic data show that explicit memory
management is better suited for causal structure learning. On the one hand, it is faster than the version
relying on UM by factors of up to 75. On the other hand, the explicit memory-managed version is less
prone to the system’s GPU interconnect topology effects.
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1. Introduction

Causal Structure Learning (CSL) is an omnipresent challenge in many domains and an active
field of research in statistics and data mining [1, 2, 3, 4]. In genetic research, for example, deriving
the causal structures of gene regulatory networks from gene expression data enables drug design
or diagnostics [3]. In these settings, data is high-dimensional [5, 6, 7, 8] as the systems under
observation, e.g., gene expressions, are very complex. To address high computational demands
resulting from high-dimensional data, efficient methods for CSL have been proposed using a
GPU as an accelerator [9, 8, 10, 11]. Execution of CSL on a GPU introduces hardware specific
challenges, and new requirements arise when multi-GPU systems are considered. Therefore, we
propose a GPU-accelerated CSL method for a multi-GPU setting, which extends previous work.

GPU-Accelerated Causal Structure Learning Based on the theoretical framework for
causal reasoning [12], causal relationships between observed variables are modeled in a Di-
rected Acyclic Graph (DAG) [4, 12, 13]. Hence, methods for CSL aim to estimate the DAG
from observational data and are commonly based upon score-based or constraint-based ap-
proaches [14]. GPU-acceleration for CSL focuses on constraint-based methods, in particular the
well-known PC algorithm proposed by Spirtes et al. [4], and its order-independent version PC-
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stable [15]. As typical for constraint-based approaches, the algorithm determines an undirected
skeleton of the DAG by conducting conditional independence (CI) tests in a first step. Note that
the distribution of the observed variables directly determines the appropriate CI test [16]. In a
second step, the undirected edges are oriented through the repeated application of deterministic
orientation rules. The first and most time-consuming step, also known as adjacency search, is
executed in parallel on the GPU [9, 8, 10, 11]. The adjacency search constitutes the majority to
the complexity of the PC-stable, which is exponential to the number of variables in the worst
case [4]. The existing GPU-accelerated approaches target execution on a single GPU and focus
on multivariate normal distributed data [8, 10, 11], or on discrete data [9].

Challenges in GPU-Accelerated CSL andRequirements onMulti-GPUCSL In the con-
text of GPU-accelerated CSL, the existing CPU-based algorithms for CSL have to be adapted for
the Single Instruction Multiple Threads (SIMT) execution model of a GPU [9, 10, 11]. Kernel
execution on a GPU requires that data has to be transferred between the device and the system’s
DRAM through interconnects such as PCI-E or NVLink. Depending on the available bandwidth,
data transfer becomes a limiting factor if it outweighs computation. Yet, in modern systems with
fast interconnect, data transfer between DRAM and GPU memory no longer remains a bottle-
neck [17]. Further, the on-chip memory of a GPU is limited in size, requiring the implementation
of out-of-core approaches, e.g., through block processing [8]. While these three challenges
have partly been addressed for GPU-accelerated CSL [8, 10, 11], additional requirements arise
in multi-GPU systems. In multi-GPU systems, the GPUs are connected through interconnects,
and the memory bandwidth may vary depending on hardware and topology. Thus, different
access costs have to be considered when designing efficient implementations (Requirement I).
Further, execution in a multi-GPU system requires careful task distribution between the GPUs
to avoid performance throttling due to load imbalance (Requirement II).

Contribution We propose two GPU-accelerated versions of the adjacency search within
PC-stable, which allow execution in multi-GPU systems. Specifically, we propose a naive
version relying on the concept of UM with a page migration engine on modern GPUs, which
is tuned according to common best practices [18]. This version is fast to implement and, thus,
serves as a baseline for further optimization. Further, we propose a second version, which
incorporates knowledge on the execution order with explicit memory management. We compare
the performance of both versions in a set of experiments synthetic data, as well as real-world
genetic data [7], from The Cancer Genome Atlas (TCGA) [5]. In the experiments, we focus on
scalability with the problem size and the number of GPUs. Further, our experimental setup
allows us to investigate the performance impact of the interconnect topology.

The remainder of the paper is structured as follows. In Section 2, we provide background
information on CSL. We discuss existing work on GPU-accelerated CSL and related work on
execution in multi-GPU systems in Section 3. In Section 4, we explain our proposed multi-
GPU adjacency searches for PC-stable and discuss their implementation. We evaluate the
implemented algorithms experimentally and share our results in Section 5. Finally, we summarize
our work, discuss the results, mention the current limitations of our approach and provide an
outlook into future research directions in Section 6.



2. Preliminaries on Constraint-Based CSL

In the context of causal reasoning, let us define a Causal Graphical Model (CGM) 𝒢 = (V,E)
with a finite set of 𝑁 vertices V = (𝑉1, . . . , 𝑉𝑁 ), where each vertex represents an observed
variable, and a set of edges E ⊆ V × V. An edge (𝑉𝑖, 𝑉𝑗) ∈ E, with 𝑖, 𝑗 = 1, . . . , 𝑁 and
𝑗 ̸= 𝑖, can either be directed 𝑉𝑖 → 𝑉𝑗 if (𝑉𝑖, 𝑉𝑗) ∈ E and (𝑉𝑗 , 𝑉𝑖) /∈ E, or undirected 𝑉𝑖 − 𝑉𝑗 if
(𝑉𝑖, 𝑉𝑗) ∈ E and (𝑉𝑗 , 𝑉𝑖) ∈ E [12]. Further, we assume that the CGM is acyclic, i.e., we do not
allow for feedback loops, and that causal sufficiency, faithfulness and the global Markov Property
hold [12]. Together with the graphical d-separation criterion, the global Markov Property
allows determining the conditional independence relationships [12]. Two vertices 𝑉𝑖, 𝑉𝑗 ∈ V
are d-separated by a so-called separation set S with S ⊂ V ∖ {𝑉𝑖, 𝑉𝑗}, if S blocks every path
between 𝑉𝑖 and 𝑉𝑗 in 𝒢. Thus, 𝑉𝑖, 𝑉𝑗 are conditionally independent by S, i.e., 𝑉𝑖 ⊥⊥ 𝑉𝑗 | S.
Consequently, if two vertices 𝑉𝑖 and 𝑉𝑗 are conditionally dependent given all possible subsets S,
the two vertices are connected through an edge in 𝒢. In this work, we focus on constraint-based
methods, particularly the PC-stable [15], and its GPU-accelerated extensions. The algorithm
first learns an undirected skeleton 𝒞 of the CGM by application of CI tests. Second, deterministic
rules are applied to orient as many edges as possible [4, 15]. Note, given that several CGMs can
describe exactly the same CI information and form a Markov equivalence class [19, 20] the focus
on constraint-based algorithms lies on the estimation of the equivalence class of the CGM 𝒢.

Within the first phase of the PC-stable, the adjacency search, the algorithm iteratively
conducts CI tests with increasing size of the separation set S, referred to as level 𝑙. In level 𝑙 = 0,
the algorithm starts with a fully connected CGM. Within each level, all remaining adjacent
pairs of variables (𝑉𝑖, 𝑉𝑗) are iterated and tested for CI given all remaining adjacent separation
sets. In case of independence, the corresponding edge is removed in 𝒞, the separation set S
is stored, and no more CI tests are conducted for this pair of variables. A level 𝑙 is completed
once all adjacent pairs of variables have been considered. The adjacency search terminates
once a level 𝑙 is reached, in which no more separation sets S of size 𝑙 can be constructed from
adjacent vertices 𝑉 . In this case, the estimated skeleton 𝒞 and the determined separation sets are
returned. For more detail and pseudocode, we refer to the work of Colombo and Maathuis [15].

In our work, we assume that the variables V = (𝑉1, . . . , 𝑉𝑁 ) are multivariate normal
distributed. Thus, we utilize an appropriate CI test for that particular distribution based upon
the partial correlation coefficient [16]. A common choice for multivariate normal distributed
data is Fisher’s z-test [21], also used in GPU-accelerated CSL implementations [10, 8, 11]. The
test builds upon the partial correlation coefficient 𝜌(𝑉𝑖, 𝑉𝑗 |S) for a pair variables (𝑉𝑖, 𝑉𝑗) given
a separation set S [22, 23]. Using the partial correlation coefficient 𝜌(𝑉𝑖, 𝑉𝑗 |S), the p-value is
calculated and compared to a provided threshold 𝛼 to determine independence for a pair of
variables [10]. We denote 𝐶𝑜𝑟 as the set of correlation coefficients 𝜌(𝑉𝑖, 𝑉𝑗 |S) with S = ∅ for
all pairs of variables that is pre-calculated once for all pairs of variables.

3. Related Work

In the context of CSL, GPU-acceleration focuses on constraint-based methods, in particular PC-
stable [9, 8, 10, 11]. Most of the work focuses on multivariate normal distributed data [8, 10, 11],



and only one work considers discrete data [9]. All current work addresses the challenge to
map PC-stable to the GPU specific execution model. In particular, Schmidt et al. [10] map
the pairs of variables (𝑉𝑖, 𝑉𝑗) within a level to thread blocks and threads within a thread
block to conduct multiple CI tests based on different separation sets S. The mapping enables
synchronization within a thread block for early termination and provides ample opportunity for
parallel execution. The implementation focuses on separation sets of size 0 or 1, as the authors
argue that the majority of CI tests for gene expression data occur in these levels. In subsequent
work [8], the authors extend their algorithm to scale beyond the memory limit of a single
GPU. Therefore, they propose a block-based version of PC-stable that splits data into blocks
fitting into memory. They overlap data transfer between DRAM and GPU and CPU operations
with kernel execution on the GPU to reduce transfer overhead. Comparing to a simple version
based on UM and the integrated page migration engine of a GPU, they show that their explicit
memory-managed version is faster once the memory limit on a GPU is reached. Zarebavani et
al. [11] implement cupc, a generalized implementation for multivariate normal distributed data,
which allows processing separation sets of arbitrary size. Further, cupc shares intermediate
results within CI tests, i.e., computation of pseudo-inverse matrices, to reduce computational
overhead in higher levels. Lastly, cupc includes a compacting step to reduce memory footprint
by removing deleted edges from the adjacency structure. While this compacting reduces the
memory footprint, cupc does not scale beyond the available memory on a single GPU.

To the best of our knowledge, no work exists on multi-GPU CSL. Yet, generally, the efficient
execution of applications designed for single GPUs in multi-GPU environments is of high
interest [24]. Kernel execution is distributed to multiple GPUs based on memory access patterns
to support development in multi-GPU systems [25]. Cabezas et al. [26] distribute work in a
multi-GPU system exploiting remote memory access capabilities, which they can hide if they
remain below 5%. Ganguly et al. [27] describe a framework that automatically switches between
remote zero-copy access to host-pinned memory and page migration for efficiency.

In our work, we extend existing work on single GPU-accelerated CSL to a multi-GPU system.
In particular, we consider an optimized block-based version with explicit memory management.
We reduce work for splitting and merging results on the CPU and scale to multiple GPUs
providing a separate CPU thread per GPU. Also, we extend a version relying on UM to target
multiple GPUs. In detail, we include optimization hints to reduce overhead due to paging.

4. Multi-GPU Adjacency Search of PC-Stable

In this section, we describe two GPU-accelerated versions of PC-stable for execution in multi-
GPU systems. First, we propose a naive version relying on the concept of UM provided with
explicit page migration support in modern GPUs. Second, we propose a multi-GPU ready
version, which relies on explicit memory management to leverage knowledge on the access
pattern and execution order.

UnifiedMemory-Based (UM)Multi-GPUAdjacency Search of PC-Stable Modern GPUs
include a dedicated page migration engine, e.g., see NVIDIA GPUs [28], to support the concept
of UM. Based on the page migration engine, memory can be allocated on either CPU or GPU



and is accessible from any device. If the memory is unavailable on the requesting device, a page
fault occurs, and the page migration engine transfers the requested page.
Approach: The UM multi-GPU adjacency search of PC stable follows the general idea of previous
work [10]. Separate kernels are launched for each level 𝑙, and CI tests are conducted in parallel
on the GPU. To enable execution on multiple GPUs, we make the following adaptions. First,
the data structures are allocated using the concept of UM making all data available for each
GPU. Next, the pairs of variables of the CGM 𝒢 are split equally by the number of GPUs, and
each GPU becomes responsible for processing an equal share (cf. Requirement II). Thus, within
each level, 𝑙 one kernel is launched on each GPU that processes the GPU’s dedicated share of
pairs of variables. Once each kernel in a level 𝑙 is finished, the next level is executed with the
same mapping for the pairs of variables to the GPUs. This approach does not explicitly address
Requirement I but relies on internal page migration mechanisms to avoid performance dips.
Implementation: We utilize the CUDA framework [29] for the implementation of the UM ap-
proach and build upon an existing single GPU implementation of constraint-based CSL [10].
In contrast to the existing implementation, we make the following adaptions for execution
in a multi GPU system. First, all data structures are allocated using cudaMallocManaged(),
which enables access from CPU and GPUs using the page migration engine. The primary data
structures are matrices of size 𝑁 ×𝑁 that store 𝐶𝑜𝑟, 𝒞 and the determined separation sets 𝒮 for
independent pairs of variables. Further, auxiliary data structures, e.g., to store the calculated p-
values or for locking, are also allocated with cudaMallocManaged(). Next, a separate CPU thread
is spawned per GPU to launch the kernels on the corresponding GPU. The CPU threads are
synchronized after each level 𝑙 to ensure order-independence [15]. The GPU kernels are adapted
so that each GPU thread can process multiple consecutively stored elements, i.e., all elements
within a page. The size is determined through an additional parameter to allow for optimal
settings in different systems. In our experiments, we set this parameter to correspond to the
system’s page size of 4𝐾𝐵, which yields the best results. Furthermore, the implementation uses
common best practices [18] to guide memory management based upon calls to cudaMemAdvise().
In detail we set data structures that are mostly read, e.g., 𝐶𝑜𝑟 to cudaMemAdviseSetReadMostly
for each GPU. Note, the set of correlation coefficients is pre-calculated and provided as input
to the algorithm. This calculation can be executed on the GPU [30], and for selected datasets
makes up a tenth of the runtime of GPU-accelerated CSL, (cf. runtimes in [11] and [30]). Ad-
ditional data structures for the pairs of variables read from and written to exclusively by one
GPU, are guided with the hint cudaMemAdviseSetPreferredLocation and prefetched to the GPU
using cudaMemPrefetchAsync(). Lastly, cudaMemAdviseSetAccessedBy is used for any other data
structure, which is occasionally read from another GPU’s memory to avoid page faults. For
detail on each advice, we refer to the CUDA Toolkit Documentation [31].

ExplicitMemory-Managed (EM)Multi-GPUAdjacency Search of PC-Stable Explicitly
managing data transfer requires designing the implementation to ensure that all data required
within a kernel is available on the GPU before its launch. Techniques such as overlapping data
transfer and kernel execution mitigate upfront transfer costs. Further, explicitly managing the
memory avoids any overhead introduced by UM [32] and allows for execution on GPUs without
page migration support.



Algorithm 1 Explicit memory-managed multi-GPU adjacency search of PC-stable
Input: Vertex set V, set of correlation coefficients 𝐶𝑜𝑟, tuning parameter 𝛼, block size 𝑏𝑠,
GPU count 𝑔
Output: Estimated skeleton 𝒞 , separation sets S

1: Start with fully connected skeleton 𝒞 and 𝑙 = −1
2: 𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠 = 𝑆𝑝𝑙𝑖𝑡(𝑉,𝐶𝑜𝑟, 𝒞,S, 𝑏𝑠)
3: 𝑡ℎ𝑟𝑒𝑎𝑑𝐿𝑖𝑠𝑡 = 𝑐𝑟𝑒𝑎𝑡𝑒𝑇ℎ𝑟𝑒𝑎𝑑𝑠(𝑔)
4: repeat
5: 𝑙 = 𝑙 + 1
6: for all 𝑏 in 𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠 do
7: for all Vertices 𝑉𝑖 in 𝒞𝑏 do
8: Let 𝑎(𝑉𝑖)𝑏 = 𝑎𝑑𝑗(𝒞𝑏, 𝑉𝑖);
9: end for

10: end for
11: 𝑞𝑢𝑒𝑢𝑒 = 𝑓𝑖𝑙𝑙𝑄𝑢𝑒𝑢𝑒(𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠)
12: for all 𝑡 in 𝑡ℎ𝑟𝑒𝑎𝑑𝐿𝑖𝑠𝑡 do
13: repeat
14: 𝑏 = 𝑞𝑢𝑒𝑢𝑒.𝑝𝑜𝑝()
15: Transfer data of 𝑏 to 𝐺𝑃𝑈𝑡

16: if 𝑙 == 0 then
17: 𝐵𝑙𝑜𝑐𝑘𝐶𝐼𝑇𝑒𝑠𝑡(𝑏, 𝛼) on 𝐺𝑃𝑈𝑡

18: else
19: 𝑠𝑒𝑝𝐵𝑙𝑜𝑐𝑘𝐿𝑖𝑠𝑡 = 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝐶𝑜𝑚𝑏(𝑏, 𝑙, 𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠)
20: for all 𝑠 in 𝑠𝑒𝑝𝐵𝑙𝑜𝑐𝑘𝐿𝑖𝑠𝑡 do
21: Transfer data of 𝑠 to 𝐺𝑃𝑈𝑡

22: 𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝐶𝐼𝑇𝑒𝑠𝑡(𝑏, 𝑠, 𝛼) on 𝐺𝑃𝑈𝑡

23: end for
24: end if
25: Transfer data of 𝑏 from 𝐺𝑃𝑈𝑡

26: until 𝑞𝑢𝑒𝑢𝑒 is empty
27: end for
28: until each adjacent pair 𝑉𝑖, 𝑉𝑗 in 𝒞 satisfy |𝑎(𝑉𝑖) ∖ {𝑉𝑗}| ≤ 𝑙
29: 𝑀𝑒𝑟𝑔𝑒(𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠)
30: return 𝒞, S

Approach: Algorithm 1 outlines the EM multi-GPU adjacency search of PC-stable in which
data structures are split into equal blocks, which are distributed to the GPUs (cf. Requirement
II). Our approach builds upon existing work [8], which we further optimize and extend to a
multi-GPU setting. The algorithm receives the vertex set V, the set of pre-calculated correlation
coefficients 𝐶𝑜𝑟, the tuning parameter 𝛼, the block size 𝑏𝑠, and the number of GPUs 𝑔 to use
during execution. The block size 𝑏𝑠 is chosen to avoid memory over-allocation on a single GPU
on the one hand, yet it is large enough to achieve high occupancy on each GPU. Note that 𝑔
is limited to the number of available GPUs in the system. The algorithm starts with a fully



connected skeleton 𝒞. As a first step, the primary data structures, i.e., matrices for 𝐶𝑜𝑟, 𝒞 and
S, are split into smaller blocks according to the block size 𝑏𝑠 (cf. line 2 in Algorithm 1). These
data blocks are stored in a list 𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠. Note that a single split operation optimizes the
existing block-based approach [8] which could extract the same block multiple times. Next, for
each GPU used, a separate CPU thread is created. After this preparation, the adjacency search
is executed until for all adjacent pairs of variables there exist no more possible separation sets
in the respective skeleton 𝒞 with increasing level 𝑙 (cf. lines 4 - 28 in Algorithm 1). Within this
search part, the order-independence [15] is ensured retrieving the adjacent vertices within the
current level across all blocks (cf. lines 6 - 10 in Algorithm 1). Next, a central queue 𝑞𝑢𝑒𝑢𝑒 is
filled with all blocks from 𝑑𝑎𝑡𝑎𝐵𝑙𝑜𝑐𝑘𝑠, and the threads start processing the elements within
𝑞𝑢𝑒𝑢𝑒 until it is empty. We aim to fulfill Requirement II and provide a load balancing mechanism
by utilizing a central queue for task processing. In detail, each thread 𝑡 pops a single block 𝑏
from the 𝑞𝑢𝑒𝑢𝑒 and transfers the data of 𝑏 to the corresponding GPU 𝐺𝑃𝑈𝑡. If level 𝑙 = 0,
the kernel conducting all CI tests for block 𝑏 is launched on GPU 𝐺𝑃𝑈𝑡. For level 𝑙 > 0, all
possible candidate blocks to be considered for the separation sets are calculated and stored in
𝑠𝑒𝑝𝐵𝑙𝑜𝑐𝑘𝐿𝑖𝑠𝑡 first (cf. line 19 in Algorithm 1). The elements 𝑠 in 𝑠𝑒𝑝𝐵𝑙𝑜𝑐𝑘𝐿𝑖𝑠𝑡 are iterated
and data for the current element 𝑠 is transferred to GPU 𝐺𝑃𝑈𝑡. Next, the kernel conducting
the CI tests for the combination of block 𝑏 and separation set blocks 𝑠 within the current level 𝑙
is launched. The resulting updated parts of the estimated skeleton 𝒞𝑏 and the separation sets S𝑏

of 𝑏 are transferred back from the GPU 𝐺𝑃𝑈𝑡 (cf. line 25 in Algorithm 1). Finally, the blocks
are merged into single data structures again, and the estimated skeleton 𝒞 and the separation
sets S are returned. Note that during the algorithm, all data transfer occurs only between the
system DRAM and each GPU memory separately. Thus, we avoid costs caused by the particular
topology and interconnects between GPUs during execution (cf. Requirement I).
Implementation: For the implementation of Algorithm 1, we use the CUDA framework [29] and
extend the block-based implementation of constraint-based CSL targeting a single GPU [8].
All data structures are allocated using cudaHostRegister() and data transfer is overlapped with
kernel execution using cudaMemcpyAsync() using multiple CUDA streams per GPU. For the
multi-GPU extension, we implement a centralized queue and consumer threads following
existing concepts for load-balancing CSL on a multi-core CPU system [33].

5. Experiments

In this section, we experimentally evaluate our two multi-GPU adjacency searches of PC-stable
(cf. Section 4) on an Intel-based multi-GPU system (cf. Figure 1). The system has two Intel ®

Xeon ® Gold 6148 CPUs that are connected via Intel Ultra Path Interconnect (UPI). Each CPU
is connected via a PCI-E Switch to two NVIDIA V100 GPUs. The system has four NVIDIA
V100 GPUs in total. The GPUs are connected in a ring topology via NVLink 2.0, either using
two lanes between GPUs 0− 1, 0− 2, 2− 3 or using a single lane between GPUs 1− 3. This
leaves no direct connection between GPUs 0 − 3, 1 − 2. We refer to these three groups of
GPUs in our study as, direct two lanes, direct one lane, and indirect respectively. The theoretical
one-directional bandwidth is 25 GB/s for one NVLink 2.0 lane and 16 GB/s for PCI-E version 3.
The system runs CUDA version 11.3 with driver version 465.19. Note that we set the tuning
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Figure 1: Interconnect topology of the Intel-based multi-GPU system considered in this work. Blue
connections refer to UPI, black connections refer to PCI-E and green connections refer to NVLink 2.0
either single or double lanes.

parameter 𝛼 = 0.01 for all experiments and report median runtimes of multiple runs to avoid
any hardware or operating system side effects.

In the experiments, we examine the performance of the kernels for different levels 𝑙, respec-
tively the implication of the underlying memory accesses, sequential (𝑙 = 0) vs. random (𝑙 ≥ 1).
We focus on levels 𝑙 = 0 and 𝑙 = 1 according to existing work [10, 8]. The results for 𝑙 = 1 are
transferable to higher level [11]. We also compare the behavior of the two approaches with a
varying number of GPUs and increasing size of variables, respectively, memory footprint. At
last, we compare the runtimes on real-world gene expression data [7] extracted from TCGA [5].

Level Measurements The kernel for level 𝑙 = 0 and 𝑙 ≥ 1 have a distinct difference. Due to
an empty separation set S in level 𝑙 = 0, the calculation of the p-value requires only a single
access to 𝐶𝑜𝑟. Therefore, conducting multiple CI tests in parallel results in sequential and thus
predictable access into the data structures. In contrast, in levels 𝑙 ≥ 1, exemplary 𝑙 = 1, the
calculation of the p-value requires access to multiple random locations within 𝐶𝑜𝑟, according
to the pair of variables (𝑉𝑖, 𝑉𝑗) and respective separation set S. Thus, processing multiple
pairs of variables and respectively CI tests in parallel results in partially random accesses. To
understand the resulting implications for the UM and EM multi-GPU adjacency searches of
PC-stable, we measure the runtimes on different data sizes, i.e., number of vertices 𝑁 , using a
varying number of GPUs 𝑔. Accordingly, in Table 1, we report the speed-up factor of the EM
over the UM approach for the level 𝑙 = 0 and 𝑙 = 1 separately. For level 𝑙 = 0, the UM approach
is faster than the EM approach in almost all cases. The following two effects explain this result.
On the one hand, in combination with prefetching mechanisms, the page migration engine
can handle the sequential memory access pattern well in the UM approach. However, on the
other hand, splitting the data into blocks and introducing a central queue in the EM approach
introduce a non-negligible overhead. For level 𝑙 = 1, the UM approach is faster when using
a single or two GPUs for datasets with up to 40, 000 vertices. The EM approach is faster by
factors of up to 2.6 for datasets with up to 40, 000 vertices and three or four GPUs, and faster
by factors of up to 75.7 for larger datasets. The results for level 𝑙 = 1 are explained through two
effects. First, for small datasets and only two GPUs the GPU topology does not impact runtimes,



Table 1
Speed-up factor of explicit memory-managed (EM) over unified memory-based (UM) multi-GPU adja-
cency search for level 𝑙 = 0 (top) and level 𝑙 = 1 (bottom).

GPUs 𝑔
Vertices 𝑁

5k 10k 20k 30k 40k 50k 60k 70k 80k

Level 𝑙 = 0

1 0.3 0.3 0.2 0.3 0.4 0.4 0.4 0.4 0.5
2 0.6 0.4 0.3 0.3 0.3 0.2 0.3 0.4 0.4
3 1.0 0.9 0.7 0.6 0.6 0.6 0.4 0.7 0.8
4 1.0 1.1 0.8 0.7 0.7 0.6 0.6 0.6 0.9

Level 𝑙 = 1

1 0.6 0.6 0.6 0.7 0.7 20.2 43.8 60.0 73.8
2 0.8 0.6 0.9 0.7 0.7 1.4 25.0 53.2 75.7
3 2.6 1.9 1.8 2.3 2.6 3.0 15.4 45.7 70.8
4 1.8 2.0 1.6 1.4 1.6 2.3 9.9 40.0 66.7

which becomes an issue for three and four GPUs, e.g., causing many remote data accesses and
data migrations. For larger dataset sizes, i.e., above 40, 000 vertices, the memory of a single
GPU is exceeded, and the number of page faults increases drastically, e.g., when running on a
single GPU. Yet, the same effect is also visible when running on multiple GPUs, but occurs at a
larger dataset size. In contrast, the EM approach does not suffer from these performance drops,
as it is independent of GPU topology introduced costs, fulfilling Requirement I.

Scalability Measurements In Figure 2, we report the runtime in seconds for the UM and
the EM GPU-accelerated adjacency search with a varying number of GPUs and an increasing
number of variables. In contrast to the previous measurements, the presented absolute runtimes
include both levels 𝑙 = 0, 1. The vertical lines mark the limits of the GPU memory concerning
the memory footprint of the data structures for a certain number of variables. Note that the first
line from the left marks the limit of a single GPU, the second of two GPUs and so forth. Our
results show that for specific numbers of variables, the UM approaches drop in performance.
This behavior is a result of page faults occurring once the GPU memory is exceeded by several
GB; compare measures for the UM approach on a single GPU. For the UM approach on multiple
GPUs, the performance drop occurs for a larger number of variables and is not as severe. Note
that exceeding the size of a single GPU does not cause the performance drop when executing
on more than one GPU. Still, once the memory of a second GPU is exceeded, the drop in
performance is visible even when running on three or four GPUs. We assume that this behavior
results from inter- GPU communication, page faults, and page migrations between GPUs. For
the EM approach running on multiple GPUs we cannot see any similar performance degradation,
but the runtime scales quadratic to the number of variables, as expected. For a smaller number
of variables, both approaches can result in better performances, e.g., if only two GPUs are
considered, the UM approach is superior. In comparison, for three and four GPUs the EM
approach is faster. We assume that the inter- GPU communication reduces performance.

Note, for the measures with 2 and 3 GPUs, we utilize the first GPUs 0, 1 or 0, 1, 2, as these
combinations have the most direct two lane connections (cf. Figure 1. In a separate experiment,
we compare the impact of the three connection groups (cf. Section 2) on the performance of
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Figure 2: Comparing the unified memory-based (UM) to the explicit memory-managed (EM) GPU-
accelerated adjacency search with a varying number of GPUs and increasing dataset size. Reporting
total runtime for both levels 𝑙 = 0, 1. The red dotted vertical lines mark the memory limit of one, two,
three, and four GPUs (from left to right). Note, operations partially use triangular matrices.

the UM version to investigate shortcomings concerning Requirement I. We limit the execution
to two GPUs and vary their combination. If the GPUs belong to the group direct two lanes, the
highest bandwidth is available. Accordingly, the fastest runtime is achieved. The runtime is in
average 12% faster than execution on GPUs from the direct one lane group, and 345% faster
than execution on GPUs from the indirect group.

Measurements on Real-World Gene Expression Data In Table 2, we compare the run-
times of the UM and EM multi-GPU adjacency search on a real-world gene expression dataset
from TCGA [5]. The dataset contains 55,572 variables with 3,189 observations [7]. For reference,
we also report the runtime measurements from existing work [8] of the R-package pcalg [34]
for the same dataset executed on a multi-core CPU. Execution of the adjacency search for the
TCGA dataset on a multi-GPU system with four GPUs can result in speed-up of up to a factor
of 1, 253 compared to execution on a multi-core CPU system. Furthermore, the EM version is
the fastest, with a runtime of 5.15 minutes and a factor of 2.17 faster than the UM version.

Table 2
Runtimes of the unified memory-based (UM) and the explicit memory-managed (EM) GPU-accelerated
adjacency search executed on four GPUs, and a parallel CPU implementation (measurement taken
from [8]) for both levels 𝑙 = 0, 1 on the TCGA dataset consisting of 55, 572 variables.

CPU pcalg GPU UM GPU EM
(on 32 cores) (GPU count 𝑔 = 4) (GPU count 𝑔 = 4, block size 𝑏𝑠 = 2048)

107.6 hours 11.17 minutes 5.15 minutes



6. Discussion and Future Work

In this work, we propose two multi-GPU approaches for the adjacency search of PC-stable
to learn causal structures from high-dimensional data. The two approaches differ in their
memory management, with one approach relying on the concept of UM and the other approach
using explicit memory management. Through an experimental evaluation, we find that the
explicit memory management version is better suited for the case of constraint-based CSL for
larger datasets and a larger number of GPUs. The unified memory-based approach’s runtime is
negatively affected by the GPU interconnect topology and page faults due to irregular access
patterns in the adjacency search of PC-stable.

Currently, our experiments are limited to separation sets of a maximum size of 1. We assume
that more random accesses occur for larger separation sets and note that the explicitly memory-
managed (EM) version should incorporate a pruning mechanism for blocks that are no longer
required, i.e., lack enough adjacent vertices. Furthermore, we do not consider the impact of
different adjacency structures, e.g., through reordering variables, in the context of load balancing
between multiple GPUs in both multi-GPU strategies. Our study focuses on multivariate normal
distributed data only and does not consider multi-GPU systems with hardware-supported cache
coherence [18], e.g., IBM Power 9.

In future work, we plan to incorporate and evaluate our multi-GPU approaches for CI tests
suited for other data, such as discrete case [9]. In this case, the execution strategy differs, i.e.,
mapping threads and threads blocks to processing tasks. Further, the CI tests require more
global memory for auxiliary data structures and require significantly more accesses to global
memory, as all observations are accessed. Hence, it remains to investigate if similar scaling
behavior is achieved.
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