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Abstract
Within One-vs-Rest (OVR) classification, a classifier differentiates a single class of interest (COI) from
the rest, i.e. any other class. By extending the scope of the rest class to corruptions (dataset shift), aspects
of outlier detection gain relevancy. In this work, we show that adversarially trained autoencoders (ATA)
representative of autoencoder-based outlier detection methods, yield tremendous robustness improve-
ments over traditional neural network methods such as multi-layer perceptrons (MLP) and common
ensemble methods, while maintaining a competitive classification performance. In contrast, our results
also reveal that deep learning methods solely optimized for classification, tend to fail completely when
exposed to dataset shift.
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1. Introduction

In recent years, deep neural networks (DNNs) have constantly achieved new SOTA results [1].
Despite these tremendous breakthroughs, they often fall behind expectations in reality[2].

Firstly, previous research exposed major blunders of DNNs providing wrong predictions
with high confidence when exposed to dataset shift and adversarial examples[3, 4, 5, 6]. These
robustness deficiencies can be visualized through the conceptual example in Fig. 1, in which
the MLP has successfully learned to distinguish the XOR squares. However, when exposed
to the uniform noise samples, the model wrongly classifies the noise with high confidence to
belong to one of the two classes. Partially, this can be attributed to the softmax function as
a fast-growing exponential function approximating a smooth indicator function, rendering
predictions instable[3], and to the training process which is only separation oriented and focused
on empirical risk minimization[7].

Secondly, models are often trained and evaluated in artificial environments, raising concerns
on the transferability of the reported performances when applied in practice[2].

In this research paper, we investigate the issue of dataset shift robustness deficiencies for
DNNs within the one vs rest (OVR) classification setting and empirically show that significant
improvements can be achieved when incorporating reliable outlier detection techniques. By
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(a) MLP (b) MIMO (c) ATA (d) OCA

Figure 1: Class probabilities of MLP / MIMO and reconstruction errors of ATA / OCA visualized as
contours on the noisy non-linear XOR squares dataset.

definition[8], outliers are samples that are generated from a completely different distribution
than the inliers. Analogously, OVR classification aims to filter a single class of interest (COI)
from the rest, i.e. all the remaining classes (RC). By incorporating out-of-distribution data within
RC, i.e. classes unrelated to the training domain, methods from outlier detection gain relevancy.
To evaluate the approaches w.r.t. classification and robustness performance, we depict a specific
task for each concern: 1) For the classification task 𝑇𝑐, we evaluate the model on the classes
it was trained on. 2) For the dataset shift task 𝑇𝑑, the model is evaluated on the inlier class of
𝑇𝑐 and rest samples, i.e. outliers, derived from an unrelated dataset, similar to the evaluation
approach in [3].

As previously shown by [9, 10, 11, 12, 13], autoencoder-based representation learning has
been proven successful in detecting outliers. In this work, we utilize the two outlier detection
methods adversarially trained autoencoders (ATA) [10] and one class autoencoders (OCA) to
compare their classification and robustness performance to MLPs and the recently published
ensemble method MIMO[14]. In contrast to the semi-supervised OCA, ATA not only minimizes
the reconstruction error of COI samples but also actively maximizes the reconstruction error of
RC samples, thereby making the reconstruction error a richer outlierness feature, especially
when COI samples are correlated with RC samples.

Our contributions are summarized as follows: We show that traditional DNNs such as MLP
and ensemble methods are highly unreliable when exposed to dataset shift. As a viable solution,
we propose autoencoder-based outlier detection methods to OVR classification resulting in
accurate classifiers that are highly robust to dataset shift. Furthermore, our results indicate that
robustness can slightly harm classification performance, which is in line with previous research
results [15, 16].

2. Adversarially Trained Autoencoders

Adversarially trained autoencoders (ATA) have been proven to be highly effective for out-
lier detection by incorporating a priori outlier information into the training process[10, 11].
While semi-supervised methods such as OCA, minimize the reconstruction loss 𝐿MSE(x, x̂) =
1
𝑛

∑︀𝑛
𝑖 (𝑥𝑖 − �̂�𝑖)

2 for samples x ∈ inliers only, ATA additionally maximizes the 𝐿MSE for out-
liers. Given sample x, its reconstruction x̂ and target 𝑡, the so called adversarial loss function



computes to

𝐿𝑎𝑑𝑣(x, x̂, 𝑡) =

⎧⎪⎨⎪⎩
0, 𝐿MSE ∈[l, u] ∧ 𝑡 ∈ outliers

𝐿MSE(x, x̂), 𝐿MSE(x, x̂) ≥ 𝑢 ∨ 𝑡 ∈ inliers

−𝛼𝐿MSE(x, x̂), otherwise,

(1)

where outlier weighting factor 𝛼 determines the outlier maximization intensity. This loss
function captures the reconstruction error of outliers within the bounds 𝑙, 𝑢, by maximizing
/ minimizing the reconstruction loss accordingly, as unlimited maximization could lead to
exploding gradients. Inlier samples are generally minimized. The network architecture is given
by

𝑓(x) = 𝑒MSE(x, 𝑑(𝑒(x))), (2)

where 𝑒MSE(x, x̂) =
1
𝑛

∑︀𝑛
𝑖 (𝑥𝑖 − �̂�𝑖)

2 is the reconstruction error, which takes a sample x and
its reconstruction x̂ as input. The reconstruction is provided by the autoencoder defined by the
nesting of the decoder 𝑑 and encoder 𝑒.

Since ATA does not build upon unstable output functions like softmax[3] and learns a concrete
representation of the COI, it is by design more robust to corruptions compared to other deep
learning models like MLPs or ensemble methods like MIMO[14]. This makes ATA not only a
compelling method for outlier detection but also a robust method for OVR.

3. Experiments and Results

To compare ATA to the three baselines MLP, MIMO and OCA on an algorithmic rather than
model level, we perform nested cross validation (CV) [17]. For each algorithm, we select the
best models by the area under the precision recall curve (AUPR) and report the score aside with
area under the receiver operating characteristics (AUROC) and F1 score. AUPR and F1 score are
calculated w.r.t. COI. Since AUROC and AUPR are threshold-independent, they yield a more
comprehensive evaluation compared to e.g., F1 score. Unlike AUROC, AUPR takes the base
rate of the positive class into account and thus is more applicable to settings with high class
imbalance[3]. AUROC can be interpreted as the probability of ranking a random positive sample
higher than a random negative sample[18].

For a fair comparison, ATA and the baselines are defined to have a comparable parameter
complexity. MIMO, MLP, as well as decoder and encoder (but in reverse) each possess three
hidden layers of size 50, 25 and 12 with sigmoid activations. Due to its five parallel input layers,
MIMO has the highest number of trainable parameters. All approaches have a binary output,
which alleviates aforementioned softmax stability. As part of the nested CV, all algorithms were
hyperparameter-tuned w.r.t. learning rate and weight decay. Additionally, ATA was optimized
for outlier weighting factor and bin range.



ATIS Reuters Newsgroups

Rest COI Rest COI Rest COI

Train/ 𝑆𝑐 𝑎𝑐 flight 𝑟𝑐 acq, earn 𝑛𝑐 sci.space
𝑆𝑑1 𝑡𝑑 flight 𝑡𝑑 acq, earn 𝑡𝑑 sci.space
𝑆𝑑2 𝑟𝑑 flight 𝑎𝑑 acq, earn 𝑎𝑑 sci.space
𝑆𝑑3 𝑛𝑑 flight 𝑛𝑑 acq, earn 𝑟𝑑 sci.space

Table 1
Class assignment within splits𝑆𝑐, 𝑆𝑑1, 𝑆𝑑2 and𝑆𝑑3 for each dataset: Splits𝑆𝑐 and𝑆𝑑 are representative
of tasks 𝑇𝑐 and 𝑇𝑑, respectively. Mapping of rest classes specified in Tabl. 2

Dataset Abbr. Rest labels

Reuters 𝑟𝑐 crude, interest, money-fx, money-supply, ship, retail, wpi, cpi, jobs, cotton, ipi, reserves, gnp,
tin, carcass, housing, nat-gas, pet-chem, oilseed, rubber, orange, lumber, livestock, heat, wpi

𝑟𝑑 trade, grain, ship, gold, interest, money-fx, money-supply, jobs, sugar, tin, ipi, cpi, cocoa, cof-
fee, cotton, coppper, alum, rubber, yen, nat-gas,reserves

ATIS 𝑎𝑐 airfare, ground_service, airline
𝑎𝑑 abbreviation, restriction, airport, quantity, meal, city, flight_no, ground_fare, flight_time,

flight, distance, aircraft, capacity

News
groups

𝑛𝑐 sci.crypt, sci.med, talk.politics.guns, misc.forsale, rec.sport.baseball, talk.politics.misc,
comp.os.ms-windows.misc, soc.religion.christian

𝑛𝑑 rec.sport.hockey, sci.crypt, sci.med, comp.sys.ibm.pc.hardware, talk.politics.mideast,
comp.sys.mac.hardware, rec.autos, sci.electronics, talk.religion.misc, alt.atheism,
rec.motorcycles, comp.windows.x, comp.graphics, sci.space, talk.politics.guns, misc.forsale,
rec.sport.baseball, talk.politics.misc, comp.os.ms-windows.misc, soc.religion.christian

TREC4 𝑡𝑑 HUM, NUM, LOC, ABBR

Table 2
Indicated by the matching indices, rest labels of each dataset for each of the splits 𝑆𝑐, 𝑆𝑑1, 𝑆𝑑2 and 𝑆𝑑3,
as specified in Tabl. 1.

3.1. Datasets

To evaluate dataset shift robustness, we consider the three textual datasets Reuters1, ATIS2

and Newsgroups3. As shown in Tabl. 1 and Tabl. 2, the COI always deals with a very narrow
topic and rest samples originate from a diverse set of classes, as characteristic for OVR. Split 𝑆𝑐

resembles the classification task 𝑇𝑐 since it contains all training classes. Splits 𝑆𝑑1, 𝑆𝑑2 and 𝑆𝑑3,
representative of dataset shift task 𝑇𝑑, contain rest samples from a novel dataset, similar to [3].

3.2. Results

As summarized in Tabl.3, MIMO and MLP yield strong classification results on 𝑇𝑐, which
however is tainted by significant performance degradation when exposed to dataset shift within
𝑇𝑑. Conversely, OCA provides strong robustness during dataset shift exposure, whereas fails
completely on task 𝑇𝑐.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://www.ai.sri.com/natural-language/projects/arpa-sls/atis.html
3http://qwone.com/ jason/20Newsgroups/



ATIS REUTERS Newsgroups

AUROC AUPR F1 Score AUROC AUPR F1 Score AUROC AUPR F1 Score

𝑆𝑐

ATA 95.0 ± 0.6 98.9 ± 0.2 92.0 ± 0.7 99.4 ± 0.1 99.8 ± 0.0 97.8 ± 0.6 94.8 ± 1.6 86.7 ± 2.1 74.7 ± 1.6
OCA 71.9 ± 2.2 91.3 ± 1.2 64.3 ± 1.7 82.3 ± 4.7 94.3 ± 2.0 76.1 ± 3.5 67.7 ± 2.1 29.2 ± 2.8 30.0 ± 2.9
MLP 99.3 ± 0.1 99.8 ± 0.0 98.0 ± 0.4 99.7 ± 0.1 99.9 ± 0.1 99.0 ± 0.3 97.5 ± 0.4 90.9 ± 0.6 79.2 ± 4.3

MIMO 98.9 ± 0.2 99.8 ± 0.0 97.8 ± 0.1 99.6 ± 0.1 99.9 ± 0.0 98.7 ± 0.1 97.3 ± 0.5 89.6 ± 1.2 82.3 ± 1.7
BASE 50.0 81.9 31.0 50.0 77.3 30.4 50.0 11.4 9.3

𝑆𝑑1

ATA 98.7 ± 0.1 96.8 ± 0.5 90.5 ± 0.4 97.6 ± 1.3 96.4 ± 1.6 74.2 ± 12.4 97.2 ± 0.6 55.3 ± 1.8 70.3 ± 1.7
OCA 97.8 ± 0.2 96.5 ± 0.3 66.1 ± 1.6 98.6 ± 0.2 98.3 ± 0.4 77.5 ± 3.1 99.3 ± 0.5 98.9 ± 0.6 41.9 ± 3.8
MLP 73.1 ± 8.2 37.4 ± 7.7 46.3 ± 3.3 90.1 ± 1.8 68.0 ± 6.3 67.0 ± 1.8 91.3 ± 2.9 30.7 ± 5.7 40.9 ± 8.9

MIMO 81.4 ± 2.0 41.0 ± 3.4 44.8 ± 1.3 93.1 ± 2.2 83.2 ± 5.0 59.0 ± 2.9 84.6 ± 1.7 26.5 ± 4.5 28.1 ± 2.3
BASE 50.0 20.9 14.7 50.0 29.0 18.4 50.0 6.1 5.4

𝑆𝑑2

ATA 99.1 ± 0.2 98.8 ± 0.3 92.5 ± 0.6 98.5 ± 0.9 97.1 ± 1.5 75.6 ± 13.2 90.2 ± 2.0 38.8 ± 4.0 26.9 ± 3.2
OCA 94.2 ± 0.5 94.3 ± 0.5 66.1 ± 1.6 98.5 ± 0.3 97.9 ± 0.5 77.5 ± 3.1 99.4 ± 0.5 99.1 ± 0.6 41.9 ± 3.8
MLP 82.0 ± 10.0 68.1 ± 16.3 64.5 ± 5.5 84.2 ± 5.6 49.2 ± 16.0 47.5 ± 4.4 81.4 ± 11.1 20.3 ± 18.8 18.8 ± 5.7

MIMO 95.9 ± 1.1 92.6 ± 2.6 75.1 ± 3.1 83.8 ± 7.8 62.5 ± 16.8 39.8 ± 2.0 60.0 ± 3.5 9.7 ± 5.9 8.1 ± 0.2
BASE 50.0 34.6 20.5 50.0 21.6 15.1 50.0 4.2 3.9

𝑆𝑑3

ATA 93.7 ± 2.0 82.4 ± 4.8 50.6 ± 17.5 94.3 ± 2.6 84.1 ± 1.8 21.2 ± 10.5 96.2 ± 1.0 78.7 ± 2.8 71.8 ± 2.1
OCA 92.2 ± 0.6 83.1 ± 1.0 66.1 ± 1.6 87.2 ± 8.5 74.8 ± 18.9 67.7 ± 21.4 98.8 ± 0.7 98.1 ± 0.8 41.9 ± 3.8
MLP 69.9 ± 8.1 12.7 ± 12.9 9.2 ± 1.3 97.1 ± 1.1 67.6 ± 13.3 27.6 ± 4.4 95.8 ± 2.1 74.0 ± 8.8 69.8 ± 9.6

MIMO 92.7 ± 2.1 57.8 ± 8.2 11.9 ± 1.8 95.0 ± 4.1 85.9 ± 10.2 14.7 ± 2.1 88.8 ± 2.1 57.9 ± 11.8 56.5 ± 4.6
BASE 50.0 4.1 3.8 50.0 6.2 5.5 50.0 11.5 9.3

Table 3
Performance of ATA and baselines on splits 𝑆𝑐, 𝑆𝑑1, 𝑆𝑑2 and 𝑆𝑑3: Across the two subtasks of OVR,
ATA yields robust results, while MLP/ MIMO and OCA show a significant performance degradation
on the dataset shift and classification task, respectively. Metrics and confidence reported in %. Fail-
ures highlighted in red for AUROC < 90%. AUPR and F1 score failures due to base rate dependency
not considered. BASE resembles a random classifier predicting COI with probability 𝑝 ∼ 𝑈 [0, 1] for
reference.

In contrast, ATA represents an effective trade-off between classification performance and
robustness to dataset shift. The results are always at least close to the best performing model
on each task and never show complete model failures. On the contrary, MLP and MIMO each
fail in terms of AUROC on 𝑇𝑑 in 5/9 cases. Analogously, OCA fails in all cases on task 𝑇𝑐.

The results are well-aligned with the visualization in Fig. 1, in which MLP, MIMO and ATA are
capable of separating the inlier class from the rest class, however, in a fundamentally different
fashion. ATA learns a hull around the COI samples and therefore is able to reject the rest class
including any corruptions. This is also reflected in the experiments, in which ATA not only
provides a strong performance on the classification task but also higher robustness on the
dataset shift task. The contours of OCA in Fig. 1, reveal a major overlap of COI and rest class,
as rest samples get minimized implicitly when minimizing COI. This inherent problem is also
present in the experiments, where OCA is robust to corruptions, but consistently fails on 𝑇𝑐.

4. Conclusion

We investigated model robustness on one-vs-rest classification by extending the scope of the
rest class to strong corruptions (dataset shift). We find that conventional DNNs such as MLP
and deep ensembles (MIMO), provide highly unstable predictions when exposed to dataset shift.



With ATA, as an outlier detection method based on autoencoders, we showed that tremen-
dous robustness improvements can be achieved, while slightly compromising classification
performance. Especially in safety-related and volatile environments with model robustness as a
principal concern, ATA poses a worthwhile consideration.
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