
CANDLE: Classification And Noise Detection With
Local Embedding Approximations
Erik Thordsen1, Erich Schubert1

1TU Dortmund University, Dortmund, Germany

Abstract
The machine learning tasks of supervised classification and unsupervised noise detection are commonly
performed separately. In this paper, we propose a combination of both tasks that is based on a score
of how close a sample is to the manifold spun by the training data. This implicitly learns the manifold
structure of each class. The resulting classifier achieves good accuracy on clear decisions but struggles
with overlapping regions that can be excluded from the classification. The performance of this approach
is discussed on artificial and natural data sets, and the relationship to intrinsic dimensionality is discussed.
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1. Introduction

The goal of classification is to distinguish between two or more groups of objects created
by different mechanisms based on the observed features. When the features are numeric,
it is commonly assumed that the observations span a vector space in which the underlying
mechanism of each class creates points within a confined subspace that can be interpreted
as a parametrically bounded manifold. Consequentially, classification approaches like Neural
Networks, Gaussian Mixture Modelling, Naïve Bayes variants, and Support Vector Machines
exploit this concept to some extent by mimicking these manifolds or their pairwise boundaries.
Similarly, approaches from the field of manifold learning attempt to approximate the generative
function of the manifold to reduce the dimensionality of the data, ideally to the intrinsic
dimensionality (ID) of the manifold, i.e., the number of parameters required to describe the
manifold, or even lower. The reduced data can then be used in machine learning algorithms
with reduced complexity and a better analogy of distance metrics and semantics. Estimating the
required number of parameters of the manifold, the ID, is a research field in itself with primarily
two main branches: Estimators either analyze the geometry of the dataset or the expansion
rate of distances between points. The geometry-based approaches approximate properties of
the implicitly assumed function mapping the parameter space to the observed feature space
whereas expansion-based approaches assume some (typically uniform) distribution and analyze
the increase in distances to the neighbors of a point.
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In this paper, we propose a combination of manifold learning and classification that skips
the explicit modeling of the manifold and rather computes distances to the observed manifold
structure. We use the k-nearest-neighbor distance with a twist: Each training sample uses
its own Mahalanobis distance. Thereby, we additionally obtain a measure of certainty of a
query point belonging to some class by interpreting the distance as a multivariate deviation. By
rescaling these deviations we can account for different sampling densities between different
classes, making the certainty measures comparable. In the same manner, this approach could
be extended to an outlier-score-based classification scheme.

We first give an overview of related work in Section 2. In Section 3 we argue why the classifier
properly describes the manifold structure of the training data, why we expect the classifier to
both distinguish between clear and close classification decisions, and how to obtain noise labels.
An experimental evaluation is provided in Section 4 followed by a conclusion in Section 5.

2. Related Work

At the heart of our approach are three concepts: Classification, outlier or noise detection, and
manifold learning. Each of these concepts by itself has numerous implementations on which
we will not elaborate here. To our knowledge, this is the first approach to actively include all
three concepts in one method. In the remainder of this section, we will, hence, discuss methods
with pairwise combinations of these concepts, which are related and of interest for this paper.

The combination of classification and outlier detection has been examined by, e.g., Guan and
Tibshirani in their BCOPS algorithm [1] and related work like the Density Level Sets by Chen,
Genovese and Wassermann [2]. Similar to our goals, these approaches distinguish between
clear classifications, instances that could be contained in multiple classes, and instances that
likely belong to neither class. However, these approaches solely focus on the case of binary
classification. The BCOPS algorithm further builds on another classifier to enhance it with
noise detection capabilities instead of being a classifier in itself. In contrast, our approach starts
with a manifold-based noise detection and expands it to a classification model.

The concepts of classification and manifold learning are a classical combination in machine
learning. Manifold learning can be used for feature reduction prior to classification with any
classifier by applying, e.g., Locally Linear Embedding [3], or t-SNE [4]. Secondly, classifiers can
actively use the manifold assumption for classes to fit a function to their structure. To some
extent, one can argue, that neural networks with one-hot encoding employ this combination.
The decision boundary drawn by Kernel-SVMs could – dependent on the kernel – also be
accounted to the manifold structure of classes. There, however, exist extensions of SVMs to
actively include the manifold assumption [5]. The most similar work to our classifier that
we could find is by Li and Dunson [6] who use a different approach to approximate the local
manifold structure. Yet, they do not use the quality of fitness to the manifolds to also decide
upon close decisions and noise.

The combination of outlier detection and manifold learning has been studied in works on
outlier detection like, e.g., the Correlation Outlier Probability (COP) by Kriegel et al. [7] or the
Angle-Based Outlier Detection by Kriegel et al. [8]. The concept to use the geometric shape of
the data to tell signal from noise is a nearby idea when thinking about outlier detection. Most



closely related to our approach is COP as it also explains deviation from the manifold in terms of
local distribution observations. To our knowledge, no manifold-based outlier detection method
has actively been used as a classification model. Our approach could, however, also be adapted
to these methods. Manifolds and local correlations have also been considered in cluster analysis,
e.g., by the methods 4C [9], COPAC [10], LMCLUS [11], ERiC [12], and CASH [13]. Some only
consider clusters that have a linear shape, others measure the deviation in an arbitrarily oriented
subspace by selecting principal components.

The complexity and shape of manifolds in data sets have also been studied in the field of
intrinsic dimensionality estimation which focuses on estimating the number of parameters of
the generative mechanism producing the manifold. While global approaches like PCA can be
used, more recent methods rely on local estimates (i.e., per-point) to account for non-linear
embeddings and varying complexity throughout the data set. Methods in the ID estimation field
generally fall into two major categories: Distance-based approaches like the MLE [14], GED [15],
ALID [16], or TLE [17] estimators base their estimates on the speed at which distances to larger
neighborhoods increase. Geometry-based approaches like the local PCA, FCI [18], or ABID [19]
estimator base their estimates on the geometric shape of neighborhoods. Distance-based ID
estimates have successfully been used, e.g., in applications for spatial search [20], clustering [21],
and outlier detection [22]. Although the noise definition in this paper is not directly derived
from ID estimates, we use the manifold approximation techniques employed in the geometrical
ID estimation motivated MESS framework [23] for supersampling data sets.

3. From Geometric Noise To Classification

Our approach aims to answer the following question: Does a query point lie on the manifold
describing a class and if not, how far away from the manifold is the point? We use the approxi-
mation of the Jacobian of the implicitly posited embedding function introduced in MESS [23].
The idea of this approach is, that we can approximate the embedding function describing the
class manifold by using local covariance matrices. We can then interpret the Mahalanobis
distance as an approximation of the Euclidean distance in parameter space, i.e., the preimage of
the embedding function, with an exaggerated additive term for components orthogonal to the
embedding function. Ideally, the local covariance matrices should be singular when the data
truly lies on a lower-dimensional manifold. Practically (and by adding a very small constant
to the diagonal of the covariance matrices) this is rarely the case, giving a set of close-to-zero
eigenvalues. Points in the direction of the corresponding eigenvectors suffer a large penalty in
scale reciprocal to these eigenvalues. The smaller the approximation errors due to curvature of
the manifold and measuring noise, the larger the penalty for points lying outside the manifold in
the Mahalanobis distance. This contrasts earlier approaches in cluster analysis (e.g., 4C [9] and
COPAC [10]) as well as in outlier detection (e.g., COP [7]) as we do not select directions based
on a threshold on the eigenvalues, nor actively put a penalty on small eigenvalue directions.
We instead use the regular Mahalanobis distance. Following the MESS framework and the ID
estimation literature, we use point distributions around our points of interest rather than the
mean of their neighborhoods. For that, we use a non-standard modification of the covariance
matrix, discussed below.



Given a point of interest 𝑥 and a set of vectors 𝑥1, . . . , 𝑥𝑛 (which does not need to contain 𝑥),
the non-centered covariance matrix regarding the point of interest 𝑥 is defined as

Cov(𝑋,𝑥) = 1
𝑛(𝑋 − 𝑥)𝑇 (𝑋 − 𝑥) (1)

where 𝑋∈R𝑛×𝑑 is a matrix with the vectors 𝑥𝑖 as row vectors and 𝑋−𝑥 describes the row-wise
subtraction. The resulting matrix is similar to the classical sample covariance matrix (if 𝑥 were
the arithmetic mean) but more closely describes the geometry around the point of interest 𝑥.

By generating a non-centered covariance matrix for each point in the training data, using the
𝑛-nearest neighbors as per Euclidean distance of 𝑥 from its class 𝐶 (written as 𝒩𝑛(𝐶, 𝑥)), we
can define an individual Mahalanobis distance for each point 𝑥 as (to avoid singular matrices,
we add a small 𝜀 to the diagonal prior to matrix inversion)

𝑑𝑥(𝑞) =

√︁
(𝑞 − 𝑥)𝑇 (Cov(𝒩𝑛(𝐶, 𝑥), 𝑥) + 𝜀𝐼)−1 (𝑞 − 𝑥). (2)

As the distances are large for points outside the manifold and small on the manifold of each
class, we can use the 𝑘-nearest-neighbor-distance (𝑘-distance) to decide if a query point is
similar to some class. Combined with the individual Mahalanobis distances 𝑑𝑥 we obtain a score
giving low values to query points close to the locally linear continuation of the class manifold
of at least 𝑘 points from the class. We proceed to compute the mean and standard deviation of
the 𝑘-distances of all training samples of each class to compute a score of how likely a query
point lies on the class manifold. We define the plausibility score 𝐿(𝑞, 𝐶, 𝑘) that describes how
likely a query point 𝑞 is inside a class of training samples 𝐶 considering the 𝑘-distances as

𝐿(𝑞, 𝐶, 𝑘) = max

(︂
0,min

(︂
1,

𝑑𝑘(𝑞, 𝐶)− 𝜇𝑥∈𝐶 (𝑑𝑘(𝑥,𝐶))

𝑐 · 𝜎𝑥∈𝐶 (𝑑𝑘(𝑥,𝐶))

)︂)︂
(3)

where 𝑑𝑘(𝑞, 𝐶) is the 𝑘-smallest 𝑑𝑥(𝑞) of all 𝑥 ∈ 𝐶 and 𝜇𝑥∈𝐶 (𝑑𝑘(𝑥,𝐶)) and 𝜎𝑥∈𝐶 (𝑑𝑘(𝑥,𝐶))
are the mean and standard deviation of 𝑘-distances of all 𝑥 ∈ 𝐶 , respectively. The cut-off
value 𝑐 is a user-defined parameter to control how “conservative” the model should be, as the
plausibility score drops to 0 beyond 𝑐 standard deviations above the mean 𝑘-distance. This way,
all points orthogonal to the shape of each class as well as points that lie alongside some class
yet outside the observed subspace described by the training data can be discriminated.

Given training samples 𝐶1, . . . , 𝐶𝑚 from a set of 𝑚 classes, we can then classify a query
point 𝑞 based on the function

𝑓(𝑞, 𝑘) =

⎧⎪⎪⎨⎪⎪⎩
noise if ∀ 𝑖 : 𝐿(𝑞, 𝐶𝑖, 𝑘) = 0
undecided if ∄ 𝑖 ∀ 𝑗 ̸=𝑖 : 𝐿(𝑞, 𝐶𝑖, 𝑘) ≥ 𝑏+ 𝐿(𝑞, 𝐶𝑗 , 𝑘)

and ∃ 𝑖, 𝑗 ̸=𝑖 : 𝐿(𝑞, 𝐶𝑖, 𝑘), 𝐿(𝑞, 𝐶𝑗 , 𝑘) > 0
argmax𝐶𝑖

𝐿(𝑞, 𝐶𝑖, 𝑘) otherwise

(4)

where 𝑏 is a user-defined parameter that defines how confident the classifier needs to be to
distinguish between two classes. This allows us to not label points that lie at the intersection of
two classes. If 𝑏 = 0 then no point will be labeled undecided.
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Figure 1: Classification of a training data set consisting of two sine waves with 600 and 1000 points,
respectively, using CANDLE parameters 𝑛 = 20, 𝑘 = 15, 𝑐 = 1, 𝑏 = 0.1, and 𝜀 = 10−8. A demo
implementation to test the CANDLE classifier and create a similar plot can be found at https://github.
com/eth42/candle-demo.

The resulting method is named CANDLE (Classification And Noise Detection With Local
Embedding Approximations), and the user has to choose these parameters:
𝑛 The number of neighbors used for covariance matrix computation. Similarly to neigh-

borhood sizes in ID estimation [14, 19], we propose values at least proportional to the
square of the ID, e.g., three times the squared ID. Larger values oftentimes give better
results as long as the neighborhoods can still be considered locally linear.

𝑘 The number of neighbors used in the plausibility score computation. This value behaves
similar to the 𝑘 in the classical 𝑘-nearest neighbor classifier, except decisions between,
e.g., two classes use twice the number of reference points in CANDLE compared to the
kNN classifier.

𝑐 Multiple of standard deviations necessary to label a query point as noise.
𝑏 The minimum difference in plausibility score for how distinct classification labels need

to be to not be undecided.
𝜀 To ensure non-singular covariance matrices. This value needs to be orders of magnitude

smaller than distances between training samples but can be chosen mostly arbitrarily.
Figure 1 shows an example of how the classifier labels two noisy sine waves. Most noise

samples that do not lie on the curve are labeled as noise and the classifier marks the intersections
of the manifolds as undecided. In practice, this approach, hence, allows to classify most query
points automatically while actively assigning noise- and undecided-labels to query points
that would likely be mislabeled. This makes the approach resilient to adversarial attacks and
reduces the number of labeling errors on non-noise and non-undecided query points. In case
no noise- or undecided-labels are desired, the function 𝑓(𝑞, 𝑘) can be replaced by an argmax
on the 𝐿(𝑞, 𝐶, 𝑘) scores, possibly even discarding the min and max in its definition. The scores
𝐿(𝑞, 𝐶, 𝑘) can also be used immediately as a type of soft classification.

Naively implemented, the computational cost during classification is quite high, as the 𝑘-
distance using a different distance function for each training sample can not trivially be sped
up with common index structures. As the covariance matrices of nearby training samples
should differ only to a small extent, creating a search tree may be possible, but we do not have
an implementation, yet. A simple approach to reduce the computation time with very large

https://github.com/eth42/candle-demo
https://github.com/eth42/candle-demo


Table 1: Statistics of the data sets used. The mean ABID estimates were computed for the same
neighborhood sizes as the covariance matrices in CANDLE.

Data set Instances Features Classes Smallest class Biggest class mean ABID
Strips 3307 2 5 485 799 1.86
NBA 8536 38 5 970 3030 4.73

MNIST-PCA 70000 50 10 6824 7877 6.19

training sets is to use only a subset of the training data during classification. The covariance
matrices are still computed on the 𝑛-nearest neighbors in the full training set, but only a subset
is used for classification, which makes the brute force search for the 𝑘-distances faster.

The CANDLE approach shifts the goal of classification from finding the best fitting class to
computing a fitting score for each class and assigning labels based on the confidence of fit –
much like probabilistic algorithms such as Gaussian Mixture Modelling. Instead of finding a
good representation of the decision boundary between classes like decision trees or support
vector machines, the CANDLE approach attempts to find a good representation of the decision
region of each class, if anything similar to neural networks with one-hot encoding. This can
naturally be applied to any fitting score like outlier scores. The Mahalanobis distance-based
approach assigns values approximately proportional to deviations of the training data and,
thereby, gives comparable values across different classes.

4. Experiments

In our experiments, we use both artificial and natural data sets. Table 1 gives some statistics
on the data set properties. Additionally to common metrics such as size, we give the mean
ABID [19] estimates of intrinsic dimensionality for each of the data sets to give an overview of
the intrinsic complexity of the data sets. The ID estimates are averaged over the entire data set,
not computed per class. While they could vary between classes (and for overlapping regions),
they nevertheless indicate some kind of data set complexity.

For the reference classifiers, we used the scikit-learn implementations. Unless stated other-
wise, we evaluated all recall and accuracy values on a 20% holdout test set and optimized model
parameters using grid search and 5-fold cross-validation on the remaining 80% using accuracy
as the target score. We always use 𝜀 = 10−8 to avoid singularities, as this scale was appropriate
for all data sets. All recall and accuracy values are presented in percentages.

4.1. Strips Data

The strips data set consists of 5 noisy lines with varying sample counts parallel to each other.
Figure 2 displays the decision regions for both a CANDLE model and a 𝑘-nearest neighbors
model. The 𝑘 for the 𝑘-nearest neighbors model was chosen twice the 𝑘 of the CANDLE model
to have the same number of samples involved in labeling decisions between two classes. As
the CANDLE approach is covariance-based and uses the distance distribution of the training
samples, it treats all classes with equal weight, whereas the 𝑘-nearest neighbor model prefers the
more frequent classes. This can be seen by the dark green (second from below) strip, which is the



0 5 10 15

0

2

4

(a) CANDLE

0 5 10 15

0

2

4

(b) kNN

Figure 2: Decision regions of a CANDLE model with 𝑛 = 64, 𝑘 = 16, 𝑐 = 3, and 𝑏 = 0.15 and a
𝑘-neighbors model with 𝑘 = 32. The regions labeled with class labels are colored according to the
overlaid training samples. Regions labeled noise are dark grey and the light regions in between classes
correspond to undecided labels.

same width as the strips above and below in the CANDLE plot even though the corresponding
class has about 25% fewer points than the other two classes. In the 𝑘-nearest neighbor plot,
the dark green strip is partially taken over by the other two strips. Especially the undecided
regions are preferably assigned to the more frequent class by the 𝑘-nearest neighbor approach.

Figure 2 also shows how the decision regions expand with the covariance. While the decision
regions end close to the training samples vertically, they are slightly elongated horizontally. This
corresponds to the intuition that points in the direction of the strip are more likely to belong
to the class than points above or below a strip. Larger values of 𝑐 naturally increase the tails
left and right while larger 𝑏 values increase the regions between classes deemed undecided.
Increasing 𝑛 smoothes the decision boundary as the covariance matrices are less dependent
on local sampling densities. For curved manifolds, increasing 𝑛 too much might, however,
introduce unwanted orthogonal components and compromise the quality. Increasing 𝑘 has a
similar result by evening out discrepancies due to larger neighborhoods.

4.2. NBA

The NBA data set provided at kaggle1 contains information about both players and games from
the NBA dating back to 1950. From this, we created a data set with one entry per player and
season for the seasons from 2000 to 2015. We ignored all player-season combinations where the
player did not play in at least 5 games or played less than a total of 15 minutes in that season
to reduce the amount of noise in the data set. For each player and season, we used the player
statistics like height, weight, age in that season, goals, efficiency scores, free throws, and so on.
All values that naturally correlate with playing time, like goals, were divided by the minutes
played in that season. All features not directly indicative of player performance like the number
of games and minutes played as well as all non-numeric features were dropped. The resulting
features were then standardized. The possible player positions “C” (center), “F” (forward),
“G” (guard), “C-F”, “F-C”, “F-G”, and “G-F” were used as class labels, although we combine “C-F”
and “F-C” respectively “F-G” and “G-F” to one label. We fixed the CANDLE parameters to
𝑐 = 2 and 𝑏 = 0.05 to control how conservative the classifier should act. The selected model

1https://www.kaggle.com/drgilermo/nba-players-stats

https://www.kaggle.com/drgilermo/nba-players-stats


Table 2: Accuracy (A) on either all, non-noise/undecided-labeled, noise-labeled, and undecided-
labeled samples of the NBA test set. Additionally, “relaxed” accuracy (RA) values are given that also
accept overlapping labels like “C-F” for “C” and vice versa as correct. The best mean accuracy and
“relaxed” accuracy values for each row are highlighted.

Class
CANDLE kNN Random Forest

Noise Undec. A RA A RA A RA
All 1.82 23.14 (53.71) (72.99) 68.54 88.93 80.32 94.79

Non-Noise/Undec. - - 71.58 97.27 71.66 91.33 82.44 96.17
Noise 100.00 - - - 51.61 93.55 93.55 100.00

Undec. - 100.00 - - 59.75 80.76 72.41 89.87

parameters then were CANDLE 𝑛=16, 𝑘=16, 𝑐=2, and 𝑏=0.05 for CANDLE, 𝑘=64 for the
𝑘-nearest neighbor classifier and 100 trees for the random forest classifier. The results of the
experiment are displayed in Table 2 and Table 3. Aside from giving accuracy and recall values,
we added “relaxed” accuracy and recall values, that accepted all “similar” class labels as correctly
classified. For the unary classes (C, F, G), the relaxed values also accept any combinations
containing these values as correct classification. For the binary classes (C-F, F-G), the relaxed
values also accept the two parts as correct classification. By allowing these semantically very
similar classes to be accepted as correct labelings, we intended to reduce the error due to these
classes overlapping. As can be seen from the results, the classes are highly overlapping with
up to 34.96% of each class being labeled undecided by the CANDLE model even though the
parameter 𝑏 is relatively small. This can easily be explained by, e.g., the player roles “C” and
“C-F” not being cleanly separable, as the latter is commonly defined as players playing both
center and forward roles frequently. A player that is solely a center player and a player that
sometimes also acts as a forward will have a similar play style and scoring statistics. When also
accepting overlapping classifications as correct, we can see the “relaxed” recall values being
much better than the pure recall values. In comparison to other classifiers like the highly related
𝑘-nearest neighbor classifier, the CANDLE approach gives comparable if not better results
when reducing the amount of overlap. In practice, this means, that by increasing the parameter
𝑏 which controls how much undecided labels are assigned, the accuracy of non-noise and
non-undecided labels can be increased in the case of highly overlapping classes.

The accuracy values of CANDLE on the entire data set are decreased due to the noise and
undecided labels, as these are considered mislabeled. We, hence, put these values into brackets
and provide an additional row considering only instances that are neither labeled noise nor
undecided to give an accuracy score for the classified instances only in Table 2. As it would
otherwise be unfair for CANDLE to “cherry-pick” which instances to classify, we added accuracy
values for the same filtered instances for the reference classifiers as well. As adding a separate
row for each class in Table 3 would be cumbersome to read, we combined the unfiltered and
filtered recall values for each class into one row, signaling the filtering with a *-symbol. The
unfiltered values for CANDLE are omitted due to redundancy (product of recall values and
percentage of classified instances).

Yet, the improvement due to ignoring the noise and undecided labeled instances does not
only apply to CANDLE. Removing the test samples that were labeled either noise or undecided,



Table 3: Recall (R) of individual classes on the NBA test set. Columns marked with * are computed on
all instances that are labeled neither noise nor undecided by CANDLE. Additionally, “relaxed” recall
(RR) values are given that also accept overlapping labels like “C-F” for “C” and vice versa as correct. The
best scores for each category and line are highlighted.

Class Size
CANDLE kNN Random Forest

Noise Undec. R* RR* R RR R* RR* R RR R* RR*

C 226 3.10 34.96 62.86 96.43 50.00 60.62 57.86 67.86 77.88 87.61 77.86 91.43
F 517 2.13 29.79 49.72 94.60 81.62 86.27 80.68 85.80 86.07 91.10 86.08 92.05
G 598 1.84 14.05 80.32 98.21 94.15 95.32 96.02 96.82 96.15 97.83 96.42 98.41

C-F 183 0.55 23.50 87.77 99.28 24.59 99.45 32.37 100.00 52.46 98.91 60.43 99.28
F-G 183 0.55 19.13 87.07 99.32 14.75 100.00 17.01 100.00 43.17 100.00 51.02 100.00

the recall and relaxed recall values of both the 𝑘-nearest neighbor and random forest classifier
improve on average, albeit only slightly for the random forest classifier. The undecided labels
are, hence, assigned to points that are ambiguous to some extent. The ambiguity is further
expressed by the low scores of the other classifiers on the undecided labeled instances. Aside
from merely improving scores, this also gives an insight into the nature of the data set.

Intuitively, we would expect the selected noise samples to describe extraordinarily good or
bad seasons of some players or just players in general that have a very extraordinary play style.
As the other classifiers have a higher accuracy on the noise instances than on the rest, these
samples should be fairly representative of their position but outstanding in their execution. On
inspection of the list of noise labeled samples from the entire data set, we found our intuition
supported by, e.g., the following entries: Amongst the players with most noise seasons are
players like Jason Kidd, Chris Paul, Dwyane Wade, and Antoine Walker. All these players are
considered exceptionally good players with outstanding performances. Jason Kidd for example
is known for his Triple-Doubles (achieving double-digit values in at least three game statistics)
records, clearly distinguishing him from the rest of the league. Among the players with only
one noise labeled season are players like Boris Diaw (’06) and Eddy Curry (’07) both having the
season of their career with outstanding point and rebound counts, or less fortunate players like
Hasheem Thabeet (’12) that performed subpar. The list even shares many entries with the MVP
awards, though not perfectly. Derrick Rose’s season ’11 appears amongst the noise samples
as does Dirk Nowitzki’s season ’07 but Steve Nash’s seasons ’11 and ’12 were seemingly more
outstanding than his awarded seasons ’05 and ’06. LeBron James does not appear in the list of
noise samples, although his awarded seasons ’09 and ’12 are very close to being considered
noise (plausibility score below 0.1). The “unexpected” performances of outstanding players
are, hence, semantically captured by the noise labels.

4.3. MNIST-PCA

The MNIST data set is a popular collection of 28× 28 pixel grayscale images of handwritten
digits. Instead of using these 784 dimensions, however, we applied a PCA dimension reduction to
50 features so we can work with much smaller covariance matrices (this is a common approach,
also used, e.g., for t-SNE [4]). This does not discard too much information from the data set as the
images have, e.g., large areas that are almost always 0 and in general many correlated pixels. The
total explained variance of this reduction came up to be 82.55%. As this data set is much larger



Table 4: Accuracy (A) for all, non-noise/undecided-labeled, noise-labeled, and undecided-labeled
samples of the MNIST-PCA test set. The best accuracy for each row is highlighted.

Class
CANDLE kNN Random Forest RBF-SVM Log. Regression

Noise Undec. A A A A A
All 8.40 1.05 (89.90) 97.56 95.46 98.52 90.84

Non-Noise/Undec. - - 99.28 98.81 97.46 99.47 93.47
Noise 100.00 - - 85.62 75.40 88.94 63.57

Undec. - 100.00 - 85.03 83.67 93.20 82.31

Table 5: Recall (R) values for individual classes on the MNIST-PCA test set. Columns marked with * are
computed on all instances that are neither labeled noise nor undecided by CANDLE. The best scores
for each category and line are highlighted.

Class Size
CANDLE kNN Random Forest RBF-SVM Log. Regression

Noise Undec. R* R R* R R* R R* R R*

0 1380 10.22 0.00 100.00 99.42 99.84 97.97 99.19 99.49 99.92 96.81 98.39
1 1575 2.41 4.76 97.26 99.24 99.66 98.67 99.45 99.43 99.59 97.08 98.15
2 1397 11.02 0.07 99.68 97.21 98.47 94.63 96.78 98.71 99.44 87.83 90.18
3 1428 10.50 0.63 99.45 96.29 98.27 93.98 97.08 97.90 99.45 87.25 91.41
4 1364 7.99 0.37 99.76 97.07 98.00 95.45 96.56 98.39 99.04 92.23 94.08
5 1262 10.30 1.03 99.55 97.07 99.11 94.53 97.68 98.26 99.55 84.79 89.01
6 1375 10.55 0.44 99.51 98.33 99.59 97.24 98.86 98.69 99.75 93.60 96.57
7 1458 5.28 1.17 99.05 98.29 98.97 96.57 97.87 98.77 99.63 92.66 94.87
8 1364 8.21 0.15 99.84 95.67 97.44 92.52 95.12 97.73 99.12 85.56 87.92
9 1391 8.55 1.37 99.12 96.69 98.64 92.52 95.69 97.70 99.20 89.22 92.82

than the others, we did not perform a grid search on the CANDLE model parameters but rather
chose them by hand. For 𝑛 we used a neighborhood size that gave stable ABID estimates [19],
as the approach is related in concept. The value for 𝑘 was chosen equal to the tuned parameter
of the 𝑘-nearest neighbor classifier. Both 𝑐 and 𝑏 were chosen intuitively to not exclude too
many instances, yet, constraint the model enough to be sure about classifications. Table 4 and
Table 5 display our results on this dimensionally reduced MNIST data set, where filtered results
are displayed analog to the NBA results. The CANDLE model (𝑛 = 150, 𝑘 = 8, 𝑐 = 3, 𝑏 = 0.15)
labeled a total of 8.4% of test instances as noise and achieved a very good test accuracy only
matched by an RBF-SVM model. Without filtering out the noise and undecided instances,
however, the RBF-SVM only achieves an accuracy below the CANDLE model. Again, filtering
with noise and undecided labels also improved the results of the reference classifiers as all
classifiers are less accurate on both categories. Hence, if not deciding a class for a certain portion
of instances is acceptable, the CANDLE model outperforms the reference models. In use cases,
where, e.g., end-user interaction can be requested to rewrite problematic digits, or an expert
can be requested to label problematic instances, being more accurate in “clear cases” might be
more important than being more accurate in all cases.

The CANDLE model can also be used to find “weaknesses” of the training and test data.
Figure 3 displays some of the test instances labeled as noise by CANDLE. These instances are
only some of the more eccentric examples of digits in the MNIST data set and do not represent
the essence of their specific digits. Without the additional information of these symbols all
being digits, a human observer might not even successfully interpret these examples. While it



Figure 3: Some of the MNIST instances that were labeled noise by CANDLE.
The digits should be 8, 4, 6, 7, and 2 from left to right but are very untypical for these digits.

is generally attempted to have classifiers generalize so well as to even accept these instances, it
comes at the cost of unpredicted behavior when an out-of-domain instance is presented. This
problem can be avoided by integrating noise detection into classification. Similar problems
can be deduced from the percentages of undecided instances per class. For example, many
1-instances in the MNIST data set have high similarity to 2-, 7-, 8- and 9-instances. Using overlap
information can potentially also be used to weigh training instances to better shape the decision
boundaries or to clean the training data for the benefit of accuracy on more typical instances.

5. Conclusion

In this paper, we introduced a new classification approach based on the assumption that each
class approximately describes a manifold. We use this common assumption to obtain a local
Mahalanobis distance-based score for how likely a given point lies on the same manifold as
given training data. Using these scores we can assign labels to query points as being either
noise, undecided, or part of one of the classes. Our experimental results suggest that our
approach gives good classification results for all non-noise and non-undecided query points.
Yet, it achieves only inferior results whenever noise- and undecided-labels are not used. The
approach is, thus, most appropriately used in contexts, where the most difficult decisions can
be decided by experts (or alternative models) but automation tools are required to sieve out the
easy decisions. As for future work on this subject, an index structure for similar covariance
matrices, making the plausibility score 𝐿 locally sensitive rather than using global mean and
standard deviations, and adding a better selection scheme to reduce the training set would be
useful additions. Also, the approach is readily adaptable to other measures like outlier scores
which opens up a whole branch of classification models.
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