
On Database Inconsistency Measures
(Discussion Paper)

Francesco Parisi1, John Grant2

1DIMES Department, University of Calabria, Italy
2University of Maryland at College Park, USA

Abstract
Although there has been an extensive body of work on handling inconsistency in databases, little work
has been done on measuring inconsistency. In this paper, we present inconsistency measures (IMs) for
databases with denial constraints. Our database IMs are inspired by well-established methods to quantify
inconsistency in propositional knowledge bases, but are tailored to the relational database context where
data are generally the reason for inconsistency, not the integrity constraints. We investigate the complexity
of some problems related to measuring inconsistency and briefly discuss other ideas concerning IMs.

Keywords
Relational database, Inconsistency measure, Denial constraints

1. Introduction

There is a growing number of applications where inconsistent information arises, often because
data are obtained from multiple sources. This has led to an extensive body of work on handling
inconsistent data, and in particular inconsistent databases. Approaches for dealing with inconsis-
tent databases include consistent query answering frameworks [1, 2], inconsistency management
policies [3, 4, 5], interactive data repairing and cleaning systems [6, 7, 8, 9], as well as interactive
data exploration tools [10, 11]. However, little work has been done on measuring inconsis-
tency in databases, a problem that in contrast has been extensively investigated for propositional
knowledge bases [12, 13, 14, 15, 16].

Measuring the amount of inconsistency in a database can help in understanding the primary
sources of conflicts as well as devising ways to deal with them. For instance, inconsistency
measurement has recently been explored in [17] to quantify and understand inconsistency in bank
holding company data w.r.t. four consistency rules (i.e., integrity constraints) specifically asserted
for the considered domain. In general, quantifying and monitoring the amount of inconsistency
helps to get information on the health status of data, whose quality is more and more important
nowadays. Furthermore, measuring inconsistency makes it possible to compare the amount of
inconsistency between various chunks of information. Indeed, inconsistency measures (IMs for

SEBD 2021: The 29th Italian Symposium on Advanced Database Systems, September 5-9, 2021, Pizzo Calabro (VV),
Italy
" fparisi@dimes.unical.it (F. Parisi); grant@cs.umd.edu (J. Grant)
� 0000-0001-9977-1355 (F. Parisi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:fparisi@dimes.unical.it
mailto:grant@cs.umd.edu
https://orcid.org/0000-0001-9977-1355
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

short) are important for inconsistency-tolerant integrity checking [18], where one wants to accept
an update only if the measure of inconsistency of the old state does not increase in the new state.

Although the idea of measuring inconsistency was introduced more than 40 years ago, in [19],
at that time it did not seem to be an important issue. The problem became more noticeable in the
1990s when it became possible to store large amounts of information. It was only in the early
2000s when several AI researchers started to investigate this issue systematically [16]. The bulk
of this work since then has been for propositional knowledge bases, that is, where the information
is presented as a set of formulas in propositional logic. In the last couple of years the work has
been extended to other frameworks. [14] surveys what has been done so far and gives some
extensions.

There are few works addressing the problem of measuring inconsistency in relational databases.
[20] first developed single-dependency axioms for dirtiness functions quantifying inconsistency
w.r.t. one functional dependency (FD)—a simple type of denial constraint—considered in
isolation, and proposed an IM that satisfies these axioms. Then a single axiom for dirtiness
functions that can handle multiple FDs was proposed, although such functions are supposed
to be built on top of dirtiness functions for single FDs. The approach in [21, 22, 23] shows
how database IMs can be applied to integrity checking [24, 18], relaxing repairs, and repair
checking, which are applications that perfectly fit within our framework. However, the degrees
of inconsistency defined in [23] form a partially ordered set; hence it is not always possible
to compare the inconsistency of different databases. Finally, [25] proposes an IM based on an
abstract repair semantics, where the degree of inconsistency depends on the distance between the
database instance and the set of repairs, and an instantiation for cardinality-repairs that can be
computed via answer-set programs [26].

Previous work has not investigated the problem of tailoring propositional IMs to relational data,
as well as analysing postulates compliance and the complexity of the resulting IMs, which is the
focus of our work [27]. We introduce new IMs for relational databases with denial constraints.
These measures are inspired by IMs for propositional logic. However, we do not apply well-
known methods for propositional logic directly, as done for instance in [28, 29]; rather, we
use these methods as inspiration to define (by analogy) new IMs for databases. In particular,
we introduce the database counterpart, namely Ix with x ∈ {B,M,#,P,A,H,C,η}, of several
propositional IMs Ix. Every database IM Ix measures the inconsistency by blaming database
tuples only. This is different from measuring the inconsistency of a set of formulas, all of which
have the same status, as is the case for propositional knowledge bases. This leads to some
substantial differences between the two cases: for instance, some measures that are distinct
for propositional knowledge bases become identical in our setting (namely IC and IH). We
investigate the complexity of the problems of deciding whether a given value is lower than (LV),
greater than (UV), or equal to (EV) the inconsistency measured using a given IM Ix. A summary
of the complexity results obtained for these problems, as well as for the problem of computing
the actual value of an inconsistency measure (IM problem), is reported in Table 1 (Section 2.4).
We conclude the paper by discussing rationality postulates for IMs and outlining some directions
for future work.

We assume the reader is familiar with the standard concepts of relational database and integrity
constraint, and with the complexity classes used in the paper (see e.g. [30] for a comprehensive
overview).

2. Database Inconsistency Measures

We use D to denote the set of all database instances over a fixed but arbitrary database scheme
DS . We say that a database instance D is consistent, meaning that D is consistent w.r.t. a fixed
but arbitrary set C of denial constraints. A denial constraint is a first-order sentence of the
form: ∀ x⃗1, . . . , x⃗k [¬R1(x⃗1)∨·· ·∨¬Rk(x⃗k)∨ϕ(x⃗1, . . . , x⃗k)] where: (i) ∀ i ∈ [1..k], x⃗i are tuples of
variables and Ri(x⃗i) are atoms over DS ; and (ii) ϕ is a disjunction of built-in predicates of the
form τi ◦ τ j where τi and τ j are variables in x⃗1, . . . , x⃗k or constants, and ◦ ∈ {=, ̸=,>,<,≥,≤}.
We will write [¬R1(x⃗1)∨·· ·∨¬Rk(x⃗k)∨ϕ(x⃗1, . . . , x⃗k)] for a constraint (of arity k). For the sake of
presentation, we will often omit the database scheme and the set of constraints in the terminology.

The idea of an inconsistency measure is to assign a nonnegative number to a knowledge base
that measures its inconsistency[12, 13, 14, 15, 16]. We now define it for a database.

Definition 1 (Inconsistency Measure). A function I : D → R≥0
∞ is an inconsistency measure

if the following two conditions hold for all D,D′ ∈ D:
1) Consistency: I (D) = 0 iff D is consistent;
2) Monotony: If D ⊆ D′, then I (D)≤ I (D′).

Consistency and Monotony are called (rationality) postulates. Postulates are desirable proper-
ties for IMs and we will mention additional ones in Section 3. However, we require that a function
on databases must at least satisfy these two postulates in order to be called an IM. Consistency
means that all and only consistent databases get measure 0. Monotony means that the enlargement
of a database cannot decrease its measure.

A minimal inconsistent subset of D is a set of tuples X ⊆ D such that X is inconsistent
(with respect to C) and no proper subset of X is inconsistent. We denote by MI(D) the set of
minimal inconsistent subsets of D. Similarly, a maximal consistent subset is a set of tuples
Y that is consistent and no proper superset of Y is consistent. We write MC(D) for the set of
maximal consistent subsets (of D). Any tuple that occurs in a minimal inconsistent subset is
problematic; otherwise it is free. We use Problematic(D) and Free(D) to denote the sets of
problematic and free tuples of D. A tuple t is contradictory if {t} is inconsistent w.r.t. C . We
write Contradictory(D) for the set of contradictory tuples.

Example 1. Consider the database scheme DS ex consisting of the relation MealTicket(Number,
Value, Holder, Date) whose instance contains the number, the value, the holder, and the issue
date of meal tickets (one for each tuple) provided by a company to the employees. Cex consists of
the following denial constraints:

• c1 = [¬MealTicket(x1,x2,x3,x4)∨ x2 > 0], stating that the value (i.e., the amount of the
ticket) of every tuple of MealTicket must be a positive number.

• c2 = [¬MealTicket(x1,x2,x3,x4)∨¬MealTicket(x1,x5,x6,x7)∨ x2 = x5], i.e., the functional
dependency Number→Value, stating that there cannot be two distinct tickets with the same
number and different values.

• c3 = [¬MealTicket(x1,x2,x3,x4)∨¬MealTicket(x1,x5,x6,x7)∨ x3 = x6], i.e., the functional
dependency Number→Holder.

• c4 = [¬MealTicket(x1,x2,x3,x4)∨¬MealTicket(x5,x6,x3,x4)∨¬MealTicket(x7,x8, x3,x4)∨
x1 = x5 ∨ x1 = x7 ∨ x5 = x7], stating the numerical dependency (see [31]) Holder, Date
→2Number whose meaning is that for every holder and date there can be at most 2 meal
ticket numbers.

An instance Dex of DS ex consisting of 7 tuples t⃗1, . . . , t⃗7 is shown below.

Number Value Holder Date Tuple

1001 15 Matthew 2018-12-13 t⃗1
1001 15 Matthew 2018-12-18 t⃗2
1001 15 Sophia 2018-12-17 t⃗3
1004 20 Sophia 2018-12-17 t⃗4
1005 0 Alex 2018-12-18 t⃗5
1006 10 Alex 2018-12-18 t⃗6
1007 20 Alex 2018-12-18 t⃗7

Going through the integrity constraints we find that: 1) t⃗5 is inconsistent with c1: it is a contra-
dictory tuple; 2) no pair of tuples violates c2; 3) the two pairs of tuples, t⃗1, t⃗3, and t⃗2, t⃗3, are
inconsistent with c3; 4) the three tuples t⃗5, t⃗6, and t⃗7 together are inconsistent with c4. Hence,
MI(Dex) = {{t⃗5},{t⃗1, t⃗3},{t⃗2, t⃗3}}. Note that {t⃗5, t⃗6, t⃗7} is not included because it contains {t⃗5}
(and thus it is not minimal). Thus there are 4 problematic tuples in Dex, and 3 free-tuples. Also,
MC(D) = {{t⃗1, t⃗2, t⃗4, t⃗6, t⃗7},{t⃗3, t⃗4, t⃗6, t⃗7}}.

2.1. Measures using Minimal Inconsistent Subsets

We start with the measures that rely on minimal inconsistent subsets and the related concepts
defined above. We give the rationale for each measure below.

Definition 2 (Database Inconsistency Measures). For a database D, the IMs IB, IM , I#, IP,
IA, and IH are such that:

• IB(D) = 1 if D is inconsistent and IB(D) = 0 if D is consistent.
• IM(D) = |MI(D)|.

• I#(D) =

{︄
0 if D is consistent,

∑
X∈MI(D)

1
|X | otherwise.

• IP(D) = |Problematic(D)|.
• IA(D) = (|MC(D)|+ |Contradictory(D)|)−1.
• IH(D) = min{|X | s.t. X ⊆ D and ∀M ∈MI(D), X ∩M ̸= /0}.

IB is also called the drastic measure [15]: 0 means consistent; 1 means inconsistent. So this
measure simply distinguishes between consistent and inconsistent databases. IM counts the
number of minimal inconsistent subsets [15]. The rationale is that a minimal inconsistent subset
represents a minimal inconsistency for a set of database tuples; hence this measure counts the

number of such inconsistencies. I# also counts the number of minimal inconsistent subsets,
but it gives larger sets a smaller weight. The reason for I# in the propositional logic setting is
that when a minimal inconsistent set contains more formulas than another minimal inconsistent
set, the former is intuitively less inconsistent than the latter [15]. For instance, we can say that
intuitively {a,¬a} is more inconsistent than {a,a → b,b → c,c → d,¬d}. In the database setting,
this measure gives a higher value to the violations of constraints having smaller arity, that is, to
violations due to a smaller sets of tuples. It is a way to differentiate between constraints. For
instance, in Example 1 this measure gives a violation of c1 the highest value, a violation of c4
the lowest value, and a violation of c2 or c3 a middle value. IP counts the number of tuples that
are in one or more minimal inconsistencies [12]. IA uses the cardinality of the set of maximal
consistent subsets [12], i.e., of the set of database repairs [1]. Intuitively, the larger this set, the
larger is the space of different ways to get consistency, the higher the degree of inconsistency.
Contradictory tuples are added as they do not appear in any way in a maximal consistent set; then
1 must be subtracted to obtain IA(D) = 0 for a consistent D because every consistent database
has a maximal consistent subset, namely D itself. IH counts the minimal number of tuples whose
deletion makes the database consistent [13]. Hence IH can be written as IH =min{|X | s.t. D\X
is consistent }. In fact, both IA and IH link the inconsistency measurement to the ways of
restoring consistency, an idea recently explored in [25, 26] where the degree of inconsistency
depends on the distance between the database instance and the set of possible repairs under a
given repair semantics.

Example 2. The values of IMs for the database of our running example are as follows.

• IB(Dex) = 1 as the database is inconsistent.
• IM(Dex) = 3 as there are 3 minimal inconsistent subsets as given above.
• I#(Dex) = 1+ 1

2 +
1
2 = 2 as there is one minimal inconsistent subset of size 1 and two

minimal inconsistent subsets of size 2.
• IP(Dex) = 4 as there are 4 distinct tuples in MI(Dex).
• IA(Dex) = 2 because there are 2 maximal consistent subsets.
• IH(Dex) = 2 as the set {t⃗3, t⃗5} intersects with each minimal inconsistent subset.

2.2. A Measure using Three-valued Logic

The contension measure IC [12] uses a three-valued (3VL) logic. A 3VL-interpretation is a
function i that assigns to each atom R(t⃗) in D one of the three truth values: T (true), F (false),
or B (both). A 3VL-interpretation uses an ordering on the truth values where F < B < T and ∧
computes the minimum value while ∨ computes the maximum value; also ¬(B) = B. So, for
example, B∧F = F and B∨F = B. Then, an interpretation i satisfies a formula iff the truth-value
of the formula for i is T or B.

Given a database D with a set C of integrity constraints, a 3VL interpretation is a 3VL model
iff all the constraints are satisfied and no atom R(t⃗) ∈ D is assigned F. We use Models(D) to
denote the set of 3VL models for a database D (with the integrity constraints in the background).
Also, for a 3VL interpretation i we define Conflictbase(i) = {R(t⃗) | i(R(t⃗)) = B}, the tuples that
have truth value B.

Definition 3 (Contension measure IC). For database D, measure IC is such that IC(D) =
min{|Conflictbase(i)| | i ∈Models(D)}.

Thus IC counts the minimal number of tuples that if we could consider them both true
and false would resolve all inconsistencies. For the database of our running example, we
have that IC(Dex) = 2 as the minimal number of B values for an interpretation occurs when
i(t⃗1) = i(t⃗2) = i(t⃗4) = i(t⃗6) = i(t⃗7) = T and i(t⃗3) = i(t⃗5) = B.

In the propositional case, of the measures considered no 2 measures give the same result for all
knowledge bases. But because of the special structure of databases, for database IMs there is an
equality that does hold: IC(D) = IH(D). In fact, IC(D) counts the minimum number of tuples
that need to be assigned B in order to get a 3VL model in Models(D). This is the same as the
cardinality of the set X ⊆ D having a non-empty intersection with every minimal inconsistent
subset of D. It can be shown that no other pair of IMs considered in this paper is identical [27].

2.3. A Probabilistic Measure

Finally, we define the database counterpart of the probabilistic measure Iη that uses the PSAT
(probabilistic satisfiability) concept [16]. A PSAT instance is a set, Γ = {Pr(φi)≥ pi | 1 ≤ i ≤
m}, that assigns probability lower bounds to a set {φ1, . . . ,φm} of formulas; therefore 0 ≤ pi ≤ 1
for 1≤ i≤m. A probability function over a set X is a function π : X → [0,1] such that ∑x∈X π(x)=
1. Let Int be the set of all (classical) interpretations of the set of formulas and π a probability
function over Int. The probability of a formula φ according to π is the sum of the probabilities
assigned to the interpretations assigning T (rue) to φ , that is, Prπ(φ) = ∑i∈Int,i(φ)=T π(i) for every
formula φ ∈ K. A PSAT instance is satisfiable if there is a probability function π over Int such
that Prπ(φi)≥ pi for all 1 ≤ i ≤ m.

Given a database D, a set of integrity constraints C , and a probability threshold η ∈ [0,1],
we define the PSAT instance ΓC ,η(D) = {Pr(R(t⃗)) ≥ η | R(t⃗) ∈ D}∪{Pr(g(c)) = 1 | g(c) is a
ground constraint for c ∈ C }. Here, integrity constraints are assigned a probability equal to one,
analogously to the case of probabilistic databases with integrity constraints (see e.g. [32]).

Definition 4 (Probabilistic measure Iη). Given a database D and a set of constraints C , the
inconsistency measure Iη is such that Iη(D) = 1−max

{︁
η ∈ [0,1] | ΓC ,η(D) is satisfiable

}︁
.

Thus, Iη(D) is one minus the maximum probability lower bound η that one can consistently
assign to all tuples in D. For our running example, we have that Iη(Dex) = 1 because the
maximum probability that can be assigned to (contradictory) tuple t⃗5 is 0.

2.4. Complexity of the Database Inconsistency Measures

We investigate the data-complexity of the three decision problems, which intuitively ask if a given
rational value v is, respectively, lower than, greater than, or equal to the value returned by a given
IM when applied to a given database. Observe that every IM returns a rational number, including
Iη (as it can be shown by reasoning as in [16]).

Table 1
Complexity of LV, UV, EV, and IM problems.

Measure(s) LVI (D,v) UVI (D,v) EVI (D,v) IMI (D)

IB,IM,I#,IP P P P FP
IA PP PP PP #P-complete
IH , IC coNP-complete NP-complete Dp-complete FPNP[log n]-complete
Iη coNP-complete NP-complete Dp FPNP

Definition 5 (Lower (LV), Upper (UV), and Exact Value (EV) problems). Let I be an IM.
Given a database D over a fixed database scheme with a fixed set of denial constraints, and a
value v ∈Q>0, LVI (D,v) is the problem of deciding whether I (D)≥ v. Given D and v′ ∈Q≥0,
UVI (D,v′) is the problem of deciding whether I (D) ≤ v′, and EVI (D,v′) is the problem of
deciding whether I (D) = v′.

We also consider the problem of determining the IM value.

Definition 6 (Inconsistency Measurement (IM) problem). Let I be an IM. Given a database
D over a fixed database scheme with a fixed set of denial constraints, IMI (D) is the problem of
computing the value of I (D).

The complexity of LVI (D,v), UVI (D,v), EVI (D,v), and IMI (D) is as given in Ta-
ble 1 [27]. Interestingly, while the measures IB, IM, I#, IP become tractable in the database
setting and the complexity of IA decreases, the measures IH and Iη remain as hard as in the
propositional case [33] even under data complexity.

3. Discussion and Future Work

We have introduced a framework for measuring inconsistency in databases. We believe that the
definition and investigation of IMs for databases benefit from our approach to the problem, which
stems from what has been done in the past by the AI community.

In [27] we also introduced the database counterparts of six rationality postulates defined for
propositional knowledge bases (in addition to Consistency and Monotony, cf. Definition 1). For
instance, Free-Tuple Independence states that deleting/adding a free tuple does not change the
IM value, while Penalty states that deleting a problematic tuple decreases the measure. Thus,
IMs satisfying these postulates allow us to check if deleting a given tuple makes a database less
inconsistent or not. Super-Additivity deals with the union of two disjoint databases, and states
that the measure of the union is at least as great as the sum of the measures of the two databases.
Thus, an IM satisfying Super-Additivity is able to separately count the inconsistency arising from
different sources. Other postulates considered in [27] help in describing the behavior of IMs.

Some postulates violated in the propositional case become satisfied in the database case.
Specifically, IM satisfies all the postulates considered in [27]. One step down, we find I# which
satisfies all the postulates but one. Next, IP satisfies all the postulates but two. IH which as
said above coincides with IC in our setting also satisfies all the postulates but two, though it

turns out to be computationally hard. Notably IM, I#, and IP can be evaluated by standard
SQL, meaning that measuring inconsistency using these measures scales as far as the database
can answer queries in reasonable time.

Many interesting issues concerning IMs in databases remain unexplored. We have dealt with
denial constraints, a common type of integrity constraint which can express for instance equality
generating dependencies (e.g., functional dependencies). We plan to extend our work to other
types of integrity constraints, and in particular to inclusion dependencies. Also, we plan to
identify tractable cases for the hard measures, possibly exploiting connections with work done
on inconsistent databases (e.g., results in [34] help in characterizing the complexity of IA), and
devise efficient algorithms and index structures for evaluating IMs. The IMs we have considered
work at the tuple-level, without distinguishing inconsistency arising from different attributes,
which is another issue we want to address in the future. Moreover, we plan to investigate
methods for measuring the degree of inconsistency of query answers by leveraging on our IMs
(an recent proposal in this direction is [35]). Finally, another interesting direction for future work
is considering incomplete information (e.g., databases with null values).

References

[1] M. Arenas, L. E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases,
in: Proc. of Symposium on Principles of Database Systems (PODS), 1999, pp. 68–79.

[2] M. Calautti, L. Libkin, A. Pieris, An operational approach to consistent query answering,
in: Proc. of Symposium on Principles of Database Systems (PODS), 2018, pp. 239–251.

[3] M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, V. S. Subrahmanian, Inconsistency
management policies, in: Proc. of KR, 2008, pp. 367–377.

[4] M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, V. S. Subrahmanian, Efficient policy-
based inconsistency management in relational knowledge bases, in: Proc. of Int. Conference
on Scalable Uncertainty Management (SUM), 2010, pp. 264–277.

[5] M. V. Martinez, F. Parisi, A. Pugliese, G. I. Simari, V. S. Subrahmanian, Policy-based
inconsistency management in relational databases, Int. J. Approx. Reas. 55 (2014) 501–528.

[6] B. Fazzinga, S. Flesca, F. Furfaro, F. Parisi, DART: A data acquisition and repairing tool, in:
EDBT Workshop on Inconsistency and Incompleteness in Databases, 2006, pp. 297–317.

[7] S. Flesca, F. Furfaro, F. Parisi, Preferred database repairs under aggregate constraints, in:
Proc. of Int. Conference on Scalable Uncertainty Management (SUM), 2007, pp. 215–229.

[8] S. Hao, N. Tang, G. Li, J. He, N. Ta, J. Feng, A novel cost-based model for data repairing,
IEEE Trans. Knowl. Data Eng. 29 (2017) 727–742.

[9] J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, N. Tang, Interactive and determin-
istic data cleaning, in: Proc. of SIGMOD, 2016, pp. 893–907.

[10] T. Bleifuß, L. Bornemann, D. V. Kalashnikov, F. Naumann, D. Srivastava, DBChEx:
Interactive exploration of data and schema change, in: Proc. of CIDR, 2019.

[11] A. Giuzio, G. Mecca, E. Quintarelli, M. Roveri, D. Santoro, L. Tanca, INDIANA: an
interactive system for assisting database exploration, Inf. Syst. 83 (2019) 40–56.

[12] J. Grant, A. Hunter, Measuring consistency gain and information loss in stepwise inconsis-
tency resolution, in: Proc. of ECSQARU, 2011, pp. 362–373.

[13] J. Grant, A. Hunter, Distance-based measures of inconsistency, in: Proc. of ECSQARU,
2013, pp. 230–241.

[14] J. Grant, M. V. Martinez, Measuring Inconsistency in Information, College Pub., 2018.
[15] A. Hunter, S. Konieczny, Measuring inconsistency through minimal inconsistent sets, in:

Proc. of Principles of Knowledge Representation and Reasoning (KR), 2008, pp. 358–366.
[16] K. Knight, Measuring inconsistency, J. Philosophical Logic 31 (2002) 77–98.
[17] L. Fan, M. D. Flood, J. Grant, Measuring inconsistency in bank holding company data,

in: Proc. of SIGMOD Workshop on Data Science for Macro-modeling with Financial and
Economic Datasets (DSMM), 2019, pp. 5:1–5:5.

[18] H. Decker, D. Martinenghi, Inconsistency-tolerant integrity checking, IEEE Trans. Knowl.
Data Eng. 23 (2011) 218–234.

[19] J. Grant, Classifications for inconsistent theories, Notre Dame J. Formal Log. 19 (1978)
435–444.

[20] M. V. Martinez, A. Pugliese, G. I. Simari, V. S. Subrahmanian, H. Prade, How dirty is your
relational database? an axiomatic approach, in: Proc. of ECSQARU, 2007, pp. 103–114.

[21] H. Decker, Inconsistency-tolerant database repairs and simplified repair checking by
measure-based integrity checking, Trans. L. S. Data Knowl. Cent. Syst. 34 (2017) 153–183.

[22] H. Decker, S. Misra, Database inconsistency measures and their applications, in: Proc. of
Int. Conf. on Information and Software Technologies (ICIST), 2017, pp. 254–265.

[23] H. Decker, Measuring database inconsistency, in: J. Grant, M. V. Martinez (Eds.), Measuring
Inconsistency in Information, College Publications, 2018, pp. 271–311.

[24] H. Decker, D. Martinenghi, Classifying integrity checking methods with regard to inconsis-
tency tolerance, in: Proc. of Prin. and Pract. of Decl. Prog. (PPDP), 2008, pp. 195–204.

[25] L. E. Bertossi, Measuring and computing database inconsistency via repairs, in: Proc. of
International Conference on Scalable Uncertainty Management (SUM), 2018, pp. 368–372.

[26] L. E. Bertossi, Repair-based degrees of database inconsistency, in: Proc. of Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 2019, pp. 195–209.

[27] F. Parisi, J. Grant, On measuring inconsistency in relational databases with denial constraints,
in: Proc. of European Conf. on Artificial Intelligence (ECAI), 2020, pp. 857–864.

[28] J. Grant, F. Parisi, Measuring inconsistency in a general information space, in: Proc. of Int.
Symp. on Foundations of Information and Knowledge Systems (FoIKS), 2020, pp. 140–156.

[29] J. Grant, F. Parisi, General information spaces: measuring inconsistency, rationality postu-
lates, and complexity, Ann. Math. Artif. Intell. (2021).

[30] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
[31] J. Grant, J. Minker, Inferences for numerical dependencies, TCS 41 (1985) 271–287.
[32] S. Flesca, F. Furfaro, F. Parisi, Consistency checking and querying in probabilistic databases

under integrity constraints, J. Comput. Syst. Sci. 80 (2014) 1448–1489.
[33] M. Thimm, J. P. Wallner, Some complexity results on inconsistency measurement, in: Proc.

of Principles of Knowledge Representation and Reasoning (KR), 2016, pp. 114–124.
[34] E. Livshits, B. Kimelfeld, Counting and enumerating (preferred) database repairs, in: Proc.

of Symposium on Principles of Database Systems (PODS), 2017, pp. 289–301.
[35] O. Issa, A. Bonifati, F. Toumani, Evaluating top-k queries with inconsistency degrees, Proc.

VLDB Endow. 13 (2020) 2146–2158.

	1 Introduction
	2 Database Inconsistency Measures
	2.1 Measures using Minimal Inconsistent Subsets
	2.2 A Measure using Three-valued Logic
	2.3 A Probabilistic Measure
	2.4 Complexity of the Database Inconsistency Measures

	3 Discussion and Future Work

