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Abstract
The rise of cyber crime observed in recent years calls for more efficient and effective data exploration

and analysis tools. In this respect, the need to support advanced analytics on activity logs and real time

data is driving data scientist’ interest in designing and implementing scalable cyber security solutions.

However, when data science algorithms are leveraged for huge amounts of data, their fully scalable

deployment faces a number of technical challenges that grow with the complexity of the algorithms

involved and the task to be tackled. Thus algorithms, that were originally designed for classical scenar-

ios, need to be redesigned in order to be effectively used for cyber security purposes. In this paper, we

explore these problems and then propose a solution which has proven to be very effective in identifying

malicious activities.
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1. Introduction

Monitoring activities is a crucial and often underused method in the task of documenting,

assessing and preventing risk. Either if we talk about a large computer network or a single

machine or even a small IoT device, we face the problem of handling a high volume of data

that is generated continuously. This data could be related to network activity, software logs,

user interaction, hardware monitoring to cite a few. By carefully analyzing this endless stream

of information, it could be possible to thwart many kinds of cyberattacks, even before they

happen [1].

Cybercrime is on the rise, annual damage from cyberattacks is set to hit 6 trillion dollar in

2021 [2], this is twice the amount of annual damage from cybercrime recorded in 2016. Many

attacks follow well known patterns and many malicious software are just a variant of existing

menaces, however, even the simplest form of cyberattacks are still dangerous nowadays. It

is important to notice that many attacks could be detected in the very early stages, or even

prevented at all, if all the information available could be analyzed in a fast and reliable way [3].

In this respect, activity monitoring is a crucial component of comprehensive cybersecurity. The

technologies in the field of Big Data analysis and the advances of computing capabilities led to
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new possibilities in the difficult task of extracting sensitive information from huge amounts of

data [4]. Moreover, activity data has an inestimable value in cybersecurity as the information

extracted can easily be leveraged in order to better frame the legitimate actions performed thus

easily recognizing and blocking unwanted interactions.

Nowadays, especially in business scenarios, the attackers could be insiders, even employees

sometimes, who (consciously or not) could endanger the sensitivity of data, or damage the

software/hardware architecture by opening holes that can be exploited by attackers [5]. Mis-

configured services, unpatched binaries, unknown vulnerabilities are all issues who constantly

jeopardize the security of our computers, leaving big holes open which can be used by attackers

to easily infiltrate. By analyzing logs and monitoring activities in real time, many of these holes

could be detected before an unauthorized user could spread your valuable information [6].

How Is Activity Monitoring Useful In The Event Of An Attack? If a cyberattack occurs,

activity logs provide a roadmap to the origin of the attack and what agents were directly involved.

Each log can provide further details about where the cyberattackers may be going next, how to

prevent further attacks and what can be done to secure your system after the threat has been

eliminated. It is important to notice that, in the majority of the cases, the domain experts are

able to classify malicious actions and safe ones. This is usually a straightforward task that is

performed in several different types of security systems, from intrusion detection systems to

blacklist based access control. Unfortunately, the task of identifying and marking malicious

actions is not always easy. As a matter of fact, even if we could enumerate all malicious actions,

we may found that many malicious activities are the result of the execution of several actions

that, when analyzed individually, are usually considered safe. This allows to understand why

simple blacklists are usually not enough to keep a system safe. System administrators are

overwhelmed by a continuous stream of logs that is very difficult to tackle. It is worth noticing

that, in managing this huge amount of data, it is likely to miss small amounts of relevant actions,

that could be related to an attack. Indeed, the actions related to an attack represent an almost

invisible fraction, in terms of size, hidden in endless logs as a needle in a haystack. Thus, it is

straightforward to note that the analysis of the activity logs became an infeasible task to be

performed manually, on the contrary it is mandatory to use anomaly detection techniques in

order to early detect any possible threat.

In this paper, we leverage the prime numbers based encoding scheme described in [7] in

order to efficiently and effectively identify suspicious activities by means of a proper outlier

detection strategy. More in detail, our contribution can be summarized as follows:

• scout: a hierarchical approach for quick identification of outlying activities;

• A deep experimental evaluation of the proposed approach that confirmed the validity of

our proposal.

2. Computing Outliers on Activity Logs

In order to identify outlying activities after they are encoded as explained in [7], we leverage

a fast hierarchical approach, that combines the benefits of the divisive and agglomerative

approaches. Fig. 1 illustrates the operations performed by our algorithm scout. The input
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Figure 1: The four Steps of the SCOUT Algorithm

dataset 𝐷 is first partitioned into a set of rectangular blocks {𝐵1, . . . , 𝐵𝑡} by means of a top-

down divisive procedure. Those blocks are then refined in the next step, whose result is a

new partitioning of the points of 𝐷, {𝑅0, 𝑅1, . . . , 𝑅𝑢}, where 𝑅0 contains points that are

classified as outliers, and each of the remaining 𝑢 sets represents a cluster. These 𝑢 clusters

are processed in the third step, through a bottom-up agglomerative procedure, whose result

is a new partitioning of the points in 𝑅1 ∪ . . . ∪ 𝑅𝑢 into the sets 𝐴1, . . . , 𝐴𝑘, where 𝑘 ≤ 𝑢,

obtained by possibly merging groups of clusters in {𝑅1 ∪ . . . ∪ 𝑅𝑢} into one only cluster of

{𝐴1, . . . , 𝐴𝑘}. Finally, the new clusters in output from the agglomerative step and the outliers

𝑅0 in output from the previous, are refined, thus obtaining the final set of well-rounded clusters,

{𝐶1, . . . , 𝐶𝑘}, and the set of outliers 𝐶0. In our running example of Fig. 2, we show how the

successive steps of scout applied to the two-dimensional data distribution of Fig. 2(a), produce

the results shown in Fig. 2(b–e). Thus, Fig. 2(b), (c), (d), and (e) show the results produced,

respectively, by the steps of Fig. 1, which are described in detail in the following.
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Figure 2: A two-dimensional data set with 8 clusters (a), its partitioning after the divisive step (b), the
intermediate refinement (c), the agglomerative step (d), and the final refinement (e).

The divisive step of scout performs a top-down partitioning of the data set to isolate blocks

whose points are as much as possible close to each other: this is equivalent to minimizing the

𝑊𝐶𝑆𝑆 of the blocks, an objective also pursued by the vast majority of algorithms tailored for

outlier detection. As the clustering algorithm at the basis of the outlier detection strategy have

been described in details in [8, 9] we do not report here the complete description except a brief

overview of the approach focusing on the goal of this paper, i.e., the. outlier detection phase.

Indeed, the divisive phase described above partition the overall space into (A) several blocks

containing clusters, and (B) zero or more blocks that only contain outliers and noise points.

We also see that blocks of type A will only contain a single cluster since blocks containing

several clusters were split according to the “when in doubt split” philosophy used in the divisive



phase. To better understand this approach, we report the details of the refinement step in order

to better explain the details of the outlier detection strategy. More in detail, scout seeks to

realize the objectives of (I) identifying the blocks that contain only outliers, and (II) generating

well-rounded clusters for the remaining blocks. Task (I) is performed by using the observation

that (a) the density of blocks containing only outliers is low, and (b) the density of such blocks

is rather uniform because of the random nature of noise and outliers.

Algorithm 1: The algorithm for identifying outlier blocks

1 Procedure identifyOutlierBlocks(B)
Input: 𝐵 = {𝐵1, . . . , 𝐵𝑡}: a set of 𝑡 blocks

Output: 𝑜: an array of 𝑡 boolean values, where 𝑜𝑖 = 𝑡𝑟𝑢𝑒⇔ 𝐵𝑖 is classified as outlier block

2 begin
3 𝑜← an array [𝑜1, . . . , 𝑜𝑡] of t boolean;

4 𝑑𝑒𝑛← an array [𝑑1, . . . , 𝑑𝑡]containing the densities of blocks in B;

5 𝑣 ← an array [𝑣1, . . . , 𝑣𝑡−1]containing t-1 numbers;
6 sort(den);

7 for 𝑖← 1 to 𝑡− 1 do
8 𝑣[𝑖]← 𝑑𝑒𝑛[𝑖+ 1]/𝑑𝑒𝑛[𝑖];
9 end

10 𝑣𝑡← average(v)+ standardDeviation(v); 𝑣𝑖← 1;

11 while 𝑣𝑖 < 𝑡 ∧ 𝑣[𝑣𝑖] ≤ 𝑣𝑡 do
12 𝑣𝑖← 𝑣𝑖+ 1;

13 end
14 𝑑𝑡← 𝑑𝑒𝑛[𝑣𝑖]; // the maximum density an outlier block may have
15 for 𝑖← 1 to 𝑡 do
16 𝑜[𝑖]←density(𝐵𝑖)≤ 𝑑𝑡 ∧ aroundCentroidDensity(𝐵𝑖)< 2×density(𝐵𝑖);

17 end
18 return o;

19 end

The pseudo-code is reported in Algorithm 1. scout checks condition (a) first by sorting the

densities of blocks and detecting discontinuity in density between blocks that are contiguous in

that ordering. That is, if 𝑑𝑒𝑛 is an array containing the density values of the 𝑡 blocks yielded by

the divisive step, sorted in ascending order, we compute an array 𝑣 with 𝑡− 1 values, such that

𝑣[𝑖] = 𝑑𝑒𝑛[𝑖+ 1]/𝑑𝑒𝑛[𝑖]. Then, if 𝑣𝑖 outlier-blocks are present, the first 𝑣𝑖− 1 values of 𝑣 will

be approximately equal to 1, while 𝑣[𝑣𝑖] will be ‘quite large’. Through a number of experiments,

extensive empirical evaluation shows that a good threshold for value of 𝑣 to be considered

‘quite large’ is provided by average value of 𝑣 plus its standard deviation. Thus, with 𝑣𝑖 the

smallest value index for which the v-value exceeds this threshold, we classify all blocks with

density above 𝑑𝑡 = 𝑑𝑒𝑛[𝑣𝑖] as cluster blocks. Then, we test the other blocks using condition

(b), i.e., we test the blocks that are suspected to be outlier blocks because of their low density.

This additional verification step is needed because large density differences between cluster

blocks cannot be always excluded (e.g., because of large differences in the volume of those

blocks). Therefore, a small hypercube is taken around the centroid of each block being checked

for condition (b), as depicted in Figure 3, and if the density in the hypercube is less than twice

the density of the whole block, this is classified as an outlier block (Fig. 3(a)); otherwise it is

classified as a cluster block (Fig. 3(b)). The size of the hypercube used for this check is such that,

for each dimension, the edge of the hypercube is 1/10 of that of the whole block on the same

dimension. The rationale of this the criterion can be understood by considering that for an
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Figure 3: A block containing only outliers (a) and a block containing a cluster (b).

outlier-block, where data are randomly distributed, it is very unlikely that the density around

centroid is twice the global density while in a cluster-block, the density around centroid is very

likely to be twice the global density. For instance, these tests applied to our running example in

Fig. 2(b) have classified blocks “J”, “K”, “L” and “M” as outlier-blocks.

Having thus identified all the cluster blocks, we can now proceed with task (II) and materialize

the centroids of their clusters and assign each point to the cluster with the nearest centroid.

To this end, we use a weighted function of the distance between points on each dimension.

Specifically, we measure the distance of a point p = (𝑝1, . . . , 𝑝𝑑) from a cluster-blocks 𝐶 with

centroid (𝑐1, . . . , 𝑐𝑑) as

𝑑𝑖𝑠𝑡⋆(p, 𝐶) =

𝑑∑︁
𝑖=1

(︂
‖𝑝𝑖 − 𝑐𝑖‖

𝑟𝑖

)︂2

where 𝑟𝑖 is the radius of the cluster along the 𝑖-th dimension, which is estimated by the usual

3×𝜎 criterion [10] used to separate core points from outliers:

𝑟𝑖 = 3 ·
√︂

𝑊𝐶𝑆𝑆𝑖(𝐶)

𝑛

where 𝑛 is the number of points inside 𝐶 and 𝑊𝐶𝑆𝑆𝑖(𝐶) is the variance of the 𝑖-th coordinates

of the points in 𝐶 . Observe that 𝑑𝑖𝑠𝑡⋆(p, 𝐶) = 1 defines an ellipsoid whose center is the

centroid of 𝐶 and whose radius on the 𝑖-th dimension is 𝑟𝑖. Therefore, we can now classify each

point in the sample set as either belonging to a particular cluster or as an outlier by assigning

each point p to the cluster 𝐶 which minimizes 𝑑𝑖𝑠𝑡(p, 𝐶), provided that this minimum distance

is less than or equal to 1; otherwise p is classified as outlier. The final output is thus a quite

simple and explainable set of points that are marked as outliers.

3. Experimental Evaluation

In this section, we will describe the experimental assessment for our framework. First, we

introduce the pre-elaboration steps that are needed on the dataset before running our tests as

the activity logs usually contains a huge amount of information that could be not partitioned

in sessions or single user activities. More in detail, when dealing with transactional data, a

tuple is a collection of features, an activity record instead is an ordered set (i.e., a sequence) of



time-stamped actions. Moreover, log data are usually recorded in a variety of different formats,

and they can be built from several domains. As we deal with activity logs composed of different

types of actions we define a mapping function from the domains of actions to logs.

Definition 3.1. Let 𝐴𝐶𝑇 be a set of actions contained in an activity logs, a function 𝐿 : 𝑂 →
𝐴𝐶𝑇 mapping each action to its activity log (or set of activity logs) is called a labeling function.

We point out here, that due to privacy reasons, real datasets are usually anonymized, nev-

ertheless, in the experimental section we performed a proper labeling of activities in order to

obtain a meaningful experimental assessment for our approaches. More in detail, we ran our

experiments on several dataset whose naming convention are different for each action, thus,

we omit here to describe the labeling function we used as they are quite straightforward (by

using name permutation or punctuation) but we mention here their existence to clarify that a

proper mapping is always computed as pre-elaboration step especially when same action could

have different name in different sessions in order to have a fair comparison.

3.1. Results

For the experimental evaluation we used two different datasets.

The first dataset source is the widely used KDD Cup 1999 Data [11] which contains more

than seven million connection records. A connection is a sequence of TCP packets starting and

ending within a time interval during which, data flows to and from a source IP address to a

target IP address under some well defined protocol. Each connection is labeled as either normal,

or as an attack, with exactly one specific attack type. Each connection record consists of about

100 bytes. Attacks fall into four main categories: i) DOS: denial-of-service, e.g. syn flood; ii) R2L:

unauthorized access from a remote machine, e.g. guessing password; iii) U2R: unauthorized

access to local superuser (root) privileges, e.g., various “buffer overflow” attacks; iv) probing:

surveillance and other probing, e.g., port scanning. As regards the second dataset, referred from

now on as “synthetic”, in order to perform fine tuning tests, we developed a logging system

based on the strace Linux command that captures the system calls invoked by a malicious

software we created ad-hoc. The generated log contains the timestamp, the user performing the

call, the name of the call, and its parameters. We further enriched the information contained in

the logs by running our logging system on many different applications, using different users, so

that the results contains information related both to normal usage of the operating system and

to malicious activity. It is important to notice that each dataset described above contains labels

that are used to mark malicious actions. However, since we are dealing with activities which

we defined as a sequence of several atomic actions, we consider an activity as a malevolent

one if it is a sequence of actions containing at least one malicious action. The first task in our

experimental evaluation is, then, identifying activities in our datasets. This task can be done

using different metrics and considerations, and, in most of the cases, is strictly related to the

specific log we are working on. The actions included in a given activity are, in fact, determined

by means of multiple factors like the user performing the action, the timestamp, the relationship

with a software session, a network connection, the type of the action performed and so on.

More in detail, we built activities by specifying a fixed length and then (eventually) padding

them as explained in previous section. We compared the performances on well-established



Measure Derivations KDD Cup Synthetic
Sensitivity

𝑇𝑃
𝑇𝑃+𝐹𝑁 0.9700 0.9920

Specificity
𝑇𝑁

𝐹𝑃+𝑇𝑁 0.8829 0.9920

Precision
𝑇𝑃

𝑇𝑃+𝐹𝑃 0.9868 0.9920

Negative Predictive Value
𝑇𝑁

𝑇𝑁+𝐹𝑁 0.7656 0.9920

False Positive Rate
𝐹𝑃

𝐹𝑃+𝑇𝑁 0.1171 0.0080

False Discovery Rate
𝐹𝑃

𝐹𝑃+𝑇𝑃 0.0132 0.0080

False Negative Rate
𝐹𝑁

𝐹𝑁+𝑇𝑃 0.0300 0.0080

Accuracy
𝑇𝑃+𝑇𝑁
𝑃+𝑁 0.9613 0.9920

F1 Score
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁 0.9783 0.9920

Matthews Correlation

Coefficient

𝑇𝑃*𝑇𝑁−𝐹𝑃*𝐹𝑁√
(𝑇𝑃+𝐹𝑃 )*(𝑇𝑃+𝐹𝑁)*(𝑇𝑁+𝐹𝑃 )*(𝑇𝑁+𝐹𝑁)

0.8011 0.9840

Table 1: KDD Cup and Synthetic datasets

evaluation described in table 1 where TP, FP, TN, FN respectively mean True Positive, False

Positive, True Negative and False Negative.

In Figure 1, we report the results obtained for the KDD and Synthetic datasets.The perfor-

mances are quite interesting due to the peculiar features of our approach, especially when

observing that the percentage of threats that are not identified correctly (and the percentage of

normal activities marked as malicious as well) is negligible.

4. Conclusion and Future Work

In this paper we discussed SCOUT, an algorithm for clustering based outlier detection for

activity logs. Our goal is to overcome the limitation of classical approaches for outlier detection

that do not apply well to activity logs as each activity is a sequence of actions and the definition

of a proper metric for evaluating anomalous actions could be quite difficult. In this respect, we

leverage a simple yet effective encoding that allow us to easily represent complex activities as

real numbers. After the encoding phase, we perform an effective outlier detection based on

cluster analysis. We evaluated our algorithm on several datasets by performing an accurate

pre-elaboration step in order to make them more effective. The results obtained show a very

good effectiveness of our strategy on all the datasets being tested thus confirming the soundness

of our approach. As a future work, we plan to test other encoding strategies as well as more

refined outlier functions in order to further improve our (already satisfactory) performances.
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