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Abstract

The increasingly large availability of sensors in modern houses, due to the establishment of home as-
sistants, allow to think in terms of smart houses where behaviours can be automatized based on user
habits. Common tasks required to this aim include activity prediction, i.e., the task of forecasting what
is the next activity a human is going to perform in the smart space based on past sensor logs. In this
discussion paper', we outline a novel activity prediction method for smart houses based on the seminal
probabilistic method named Marked Temporal Point Process Prediction.
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1. Introduction

The establishment on the market, witnessed in the very last years, of home assistance devices
(e.g., Google Home, Amazon Alexa), provided new incentives to the development of sensors
and actuators based on wireless protocols (e.g., Zigbee) to be installed in private houses. These
devices have the advantage, with respect to previous “domotic” technologies, of not requiring
complex wiring and installation work, thus attracting the curiosity of end users who, with a
limited expense, can create their own smart houses.

If, on the one hand, data coming from these devices are currently mainly employed by
defining manual automation rules, on the other hand, there is now the concrete possibility of
applying automatic techniques from the intelligent environment research community outside
the controlled world of research laboratories.
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Research work focused in particular on the following automated tasks: activity recognition,
anomaly detection and activity prediction. As discussed in [1], prediction can be applied at
the sensor level or at the activity level. The two types of prediction have different purposes.
Activity level prediction is used to predict the next activity/ies the user is going to perform.
Activity level prediction is usually intended for prompting expected activities to users (e.g.,
elderly) if they did not started at the right time [2, 3]. A survey of sensor and activity prediction
is provided in [4]. Activity prediction is usually based on probabilistic models [2, 3], especially
based on Markov chains, or on rules learned through classical data mining method such as rule
mining [5] and clustering [6].

In this paper, we tackle the problem of Activity Daily Living (ADL) prediction in smart houses
given past ADLs and sensor measurements, as discussed in our papers [7, 8]. We outline a
prediction model for daily activities based on (Marked) Temporal Point Processes - MTPPs,
that is a probabilistic method modeling random processes. In recent years, there has been
an increasing number of applications to MTPPs [9, 10] in various areas including health-care
analysis, finance, modeling earthquakes and aftershocks, etc. In particular, we applied MTPPs
to a freely available dataset in the smart house community provided by the CASAS project.
Achieved performance are evaluated against the state-of-the-art probabilistic algorithm defined
in [2].

This discussion paper is organized as follows. Section 2 introduces the theoretical background
behind MTPPs and their neural network implementations. Section 3 describes our approach to
apply MTPPs to activities of daily living. Section 4 reports an initial evaluation of our approach
based on MTPPs against the state-of-the-art technique proposed in [2]. Finally, Section 5
concludes the paper with final considerations and future works.

2. Marked Temporal Point Process Prediction

(Marked) Temporal Point Process (shortly MTPP) is a powerful mathematical tool for modeling
the latent mechanisms that govern the occurrence of random events observed over time. In
particular, these models can be used as predictive models, that are capable of specifying the
timing of future events, based on the history of the past.

2.1. Preliminaries on MTPP

Formally, a marked temporal point process is a stochastic process modelling a list of discrete
events e; = (tj,a;), witht; € RT, j € Z" and a; € A where the domain of A is application
dependent [10]. Note that, with respect to the basic formulation of a TPP, the concept of event
point is extended with a marked a;, i.e. additional information associated with an event that can
be of separate interest (e.g. in the prediction of an earthquake we are interested in its position
and magnitude) or may simply be included to make a more realistic model of the event times (as
in our case). Let the history H; be the list of events (time and marker pairs) up to the time ¢, we
can explicitly specify the conditional density function that the next event will occur during the
interval [t, ¢t 4+ dt] with mark a by f*(¢t,a) = f(t, a| H;) where the notation * from [11] means
that this density is conditional on the past (right up to but not including the present) rather
than writing explicitly that the function depends on the history. From the density functions



f((t1,a1),...,(tj,a;)) specifying the distributions of all events time and marker pairs, one by
one, starting in the past, thus the distribution of all events is given by the joint density:

fH{(ts,a5) =) = Hf(tjaaj\Htj_l) = Hf*(tjvaj) (1)

A common way to model temporal point process with marker is by the conditional intensity
function that could be specified by the conditional density f(t,a|H;,) and its corresponding
cumulative distribution function F'(¢,a|Hy, ) for any ¢ > t,,. Formally, the conditional intensity
function is defined by:
)\*(t,a) _ f(tva’th)
1— F(t,a|Hy,)

The conditional intensity function can be interpreted heuristically by considering an infinites-
imal interval around ¢, say [t, ¢ + dt] and the number of points falling in it N: \*(¢, a)dtda =
E[N(dt x da)|H,] that is, the mean number of points in a small time interval dt with the mark
in a small interval d¢. Based on the application domains, different forms of the conditional
intensity function has been proposed aiming at capturing the phenomena of interests [9]. For
example, the specific parametric could be as in Poisson process [12] when keep A fixed over time,
and to be independent of the history Hy; as non homogeneous Poisson process when keep A(t)
as a function of only time and not the history of events you get; as Hawkes process [13], where
exponential formulation of the conditional intensity simulate the fact that a point increases
the chance of getting other points immediately after, and Self-correcting process [14] where
as opposed to Hawkes process the chance of new points decreases immediately after a point
has appeared. Beside the specific form of the conditional intensity, as those introduced above,
all these different parametrizations imply specific assumptions about the functional forms of
the generative processes, which may or may not reflect the reality and definitely would be
unknown in the most common cases.

)

2.2. Recurrent Marked Temporal Point Process

Differently to the approaches where the conditional intensity has a specified parametric form,
recent research on MTPP emphasizes more on the neural-network-based point process models
as a promising approach that can better capture the dynamics of a complex system. In particular,
two recent approaches, namely RMTPP [15] and ERPP [16], have demonstrated that Recurrent
Neural Network (RNN) can be used to model and automatically learn the conditional intensity
function (without any particular prior assumptions) by achieving better prediction results than
simple TPP models (e.g. Point, Hawkes or Self-correcting processes).

RMTPP [15] is the seminal work that initially proposed to use RNN in the MTPP framework.
Specifically, the event history is embedded into a vector 4, and then used to define the con-
ditional intensity as A*(t) = exp(w’(t — t;) + vThj + b'), where vT is a column vector, w?,
b are scalars learned during the train of the network and the exponential function is used
as a non-linear transformation and guarantees that the intensity is positive. Formulation of
A summarizes three contributions: (1) the first term emphasizes the influence of the current
event j; (2) the second term vThj represents the accumulative influence from the marker and



the timing information of the past events; (3) the last term gives a base intensity level for the
occurrence of the next event.

By following the path traced by [15], ERPP proposed a model that automatically learns the
conditional intensity function of a point process by synergically using two RNNs, one RNN
with asynchronous events as input and another RNN with time series as input. The underlying
rationale is that time series are more suitable to carry the synchronously and regularly updated,
while the event sequence can compactly catch event driven, more abrupt information, which
can affect the conditional intensity function over longer period of time. Adopting a twin RNN
structure permits to deal with timeseries and event via separate RNN, and can be suitable to
model point process in which the dynamics of these two source of data can be rather varying [16].

3. Prediction for Activities of Daily Living based on RMTPP and
ERPP

We use (marked) Temporal Point Process (MTPP) as a mathematical framework for the modeling
and learning of human’s behaviors, associated with their side habit information. In fact, human
activities are captured by sensors and recorded as many discrete events in continuous time.

Definition 3.1. Let the input be a set of sequence of activities performed in the time with its
timestamp, i.e. S = {e; = (t1,a1),...,em = (tm,am)} is a sequence of pairs marked by a
kind of activity and its timestamp. Given two events ¢; and e; with ¢ > j, we have that ¢; > t;.
Considering the j-th observation, our goal is to predict the next observation (j+1), i.e. when
the next activity will happen and what type of activity it will be, given the past sequence of
observations.

3.1. Prediction Model Formulations

To build the model prediction based on the RMTPP’s architecture, we first embed the sequence
of daily activities (see Definition 3.1) into a latent space. Then, the embedded vector and the
temporal features are fed into the recurrent layer. The recurrent layer learns a representation
that summaries the nonlinear dependency over the previous events. Based on the learned
representation h; , it outputs the prediction for the next marker a;41 and timing ¢;41 to
calculate the respective loss functions.

As evidenced in [16], based on the hidden unit of RNN, we are able to learn a unified
representation of the dependency over the history. In consequence, the direct formulation 2
of the conditional intensity function A*(¢; + 1) captures both of the information from past
event timings and event markers. On the other hand, since the prediction for the marker also
depends nonlinearly on the past timing information, this may improve the performance of the
classification task as well when both of these two information are correlated with each other.

By adopting the ERPP’s architecture, the model differs substantially, since time series and
event sequence are predicted separately. Specifically, we fed the different timestamps into a
LSTM and the sequence of activities is embedded and fed into a separate LSTM.
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Figure 1: Aruba installation

4. An Experimental analysis

The experimental analysis has been conducted on the ARUBA dataset provided by the CASAS
project . The dataset has been acquired by monitoring the activities performed by an elderly
during two years of daily life in the house depicted in Figure 1.

Furnitures and walls are depicted using black lines. The environment contains different
category of sensors including passive infrared sensors - PIRs (denoted with ellipses and code
MXXX), door-attached switch sensors (denoted with empty rectangles and code DXXX), and
temperature sensors (denoted with code DXXX). In particular, the house is equipped with 31
passive infrared sensors (PIR) installed on the ceiling in correspondence of sensitive places for
human activities (e.g., M002 and M003 mounted in correspondence of the bed, M009 and M010
mounted in correspondence of the sofa) and pointing at the floor. As soon as the elderly walks
in the area covered by a sensor, he/she makes it trigger to the ON value. Two kinds of PIR
sensors are available with two different detection area sizes: small cone sensors (denoted with
small ellipses) and large cone sensors (denoted with large ellipses). The former have the goal of
detecting the elderly interacting with the specific furnitures in correspondence of the sensors,
whereas the latter have the goal of detecting him/her generically entering a room or an area
(e.g., M019 detects the person entering the kitchen).

The dataset is labeled with the activity the elderly is performing when each sensor measure-
ment onsets. The dataset reports 12 different activities. The dataset has been pre-processed in
order to remove sensor measurements other than those coming from the PIR sensors and to
remove OFF measurements for PIR sensors, which do not contain any information (PIR sensors
trigger to OFF after a predetermined amount of time). The goal of the evaluation is to measure
the ability of the proposed technique to predict the next activity and when this activity will

'cf. http://casas.wsu.edu/
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be performed. Achieved performance have been compared with the state-of-the-art technique
proposed in [2]. The Aruba dataset has been split in a training set (70% of the measurements)
and a validation set (30% of the measurements). We evaluated the time prediction using the
Mean Absolute Error (MAE), Precision and Recall and F1-score.

4.1. Performance of chosen state-of-the-art approach

The performance of our solution have been compared with those obtained with the technique
proposed by the CASAS research group in [2]. The source code of the algorithm is freely
available on the project website, even though some re-coding was needed in order to compute
performance envisioned in our work. In particular, performance in [2] are not computed
considering all the different activities together, but with respect to a specific activity. Evaluation
in the original paper [2] was conducted with a different, less recent and smaller dataset from
the very same research group.

The technique proposed in [2] is based on two components. The current activity - RA, is
recognized by applying Support Vector Machines - SVM, to sensor measurements. At this point
the likelihood of a predicted activity - PA, is obtained by taking into account (i) the likelihood
that activity PA occurs after activity RA, (ii) the confidence in the distribution of the occurrence
times of PA relative to RA, and (iii) the mean delay between RA and PA. In addition pattern
mining over sensor measurements is employed.

Performance has been computed by asking to the algorithm at each step, which is the next
activity and when it is going to happen. On a total of 238 748 decisions, the next activity was
correctly predicted in the 56% of the cases, which is fairly good performance considered that
the number of different activities is 12. The precision obtained though was 0.19, the recall 0.18
and F1-score 0.18. The MAE with respect to the onset of a specific activity is instead of 182.1
minutes.

4.2. Performance of our approach

In order to evaluate the effectiveness of our approach, we performed the same experiments
described in the section 4.1 using both RMTPP and ERPP. As introduced in section 2.2, RMTPP
is a way to connect recurrent neural networks and point processes, giving us the opportunity
to predict not only the marker but also the timing of the future events. It is important to notice
that no prior knowledge about the hidden functional forms of the latent temporal dynamics
is needed. The reference paper for the implementation of RMTPP is [15]. Using the same
settings described in 4.1, we obtained the following results using RMTPP: the MAE is 4.672
with a precision of 0.648, recall of 0.907 and F1-score equals to 0.756. In order to evaluate ERPP,
we used as reference the paper [16], using a single layer LSTM of size 32 with Sigmoid gate
activations and tanh activation for hidden representation. The results are better than RMTPP in
terms of MAE. We obtained the following values: MAE: 0.008, precision: 0.660, recall: 0.905 and
F1-score: 0.763. Notably, MAE is an indication of the average deviation of the predicted values
w.r.t the corresponding observed values, suggesting us that ERPP outperform RMTPP in long
term model prediction.



‘MAE Precision Recall F1-Score

Cook [2] | 1821 0.19 0.18 0.18
RMTPP [15] | 4.67 0.65 0.90 0.76
ERPP [16] | 0.01 0.66 0.90 0.76

Table 1
Performance evaluation results

4.3. Discussion

Table 1 recaps the results obtained during our performance evaluation. From these preliminary
tests, the proposed approaches clearly outperform the state-of-the-art algorithm proposed
in [2]. The algorithm presented in [2] is essentially based on classical pattern mining and
machine learning. In particular, starting from the activity currently recognized as ongoing,
based on an SVM classifier, patterns are extracted on a statistical basis taking into account time
relationships between activities and the value of specific sensor measurements as indicators of
future activities. RMTPP [15] and ERPP [16] are instead based on recurrent neural networks,
which proved themselves very effective for many different learning tasks.

5. Conclusions and Future Work

In this paper, we have proposed the application of Marked Temporal Point Process for human
action analysis, which has not been explored before. We have adopted ERPP and RMTPP
as methods describing the generative mechanism of event sequences. Empirical results on
challenging daily life datasets demonstrate the efficacy of the proposed methods and consistent
performance gain for event prediction and causality analysis w.r.t. state-of-the-art approach. In
future work, we plan to enrich our test set with more references and to extend this work with a
novel architecture incorporating external features in order to improve its temporal dependence
modeling and to better embed the dynamics that govern the generation process of the events.
We will extend validation also to other techniques.
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