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Abstract

The democratization of data access and the adoption of OLAP in scenarios requiring hand-free interfaces
push towards the creation of smart OLAP interfaces. In this paper, we describe COOL, a framework
devised for COnversational OLap applications. COOL interprets and translates a natural language dialog
into an OLAP session that starts with a GPS] (Generalized Projection, Selection, and Join) query and
continues with the application of OLAP operators. The interpretation relies on a formal grammar and
on a repository storing metadata and values from a multidimensional cube. In case of ambiguous text
description, COOL can obtain the correct query either through automatic inference or user interactions
to disambiguate the text.
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1. Introduction

Following the spreading of analytic tools, a heterogeneous plethora of data scientists is accessing
data. However, the gap between data scientists and analytic skills is growing since different
types of data require to learn specialized metaphors and formal tools (e.g., SQL language
to query relational data). Natural language interfaces are a promising bridge towards the
democratization of data access [1]. Rather than demanding vertical skills in computer science
and data architectures, natural language is a native “tool” to organize and provide meaningful
questions/answers. Interfacing natural language processing (either written or spoken) to
database systems opens to new opportunities for data exploration and querying [2].

Actually, in the area of data warehouse, OLAP (On-Line Analytical Processing) is an “ante
litteram” smart interface, since it supports the users with a “point-and-click” metaphor to
avoid writing well-formed SQL queries. Nonetheless, the possibility of having a conversation
with a smart assistant to run an OLAP session (i.e., a set of related OLAP queries) opens to
new scenarios and applications. It is not just a matter of further reducing the complexity of
posing a query: a conversational OLAP system must also provide feedback to refine and correct
wrong queries, and it must have memory to relate subsequent requests. A reference application
scenario is augmented business intelligence [3], where hand-free interfaces are mandatory.
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Figure 1: System overview. Ontology

In this paper, we describe COOL [4, 5] to convert natural language into COnversational OLap
sessions composed of GPSJ queries and analytic operators. GPS]J [6] is the main class of queries
used in OLAP. COOL is the first proposal addressing a full-fledged implementation for OLAP
analytical sessions that is:

« Automated and portable: by reading metadata (e.g., hierarchy structures, measures, at-
tributes, and aggregation operators) from a ROLAP engine, COOL automatically builds
the minimal lexicon involved in the translation.

+ Robust to user inaccuracies in syntax, OLAP terms, and attribute values, by exploiting
metadata and implicit information.

« Extendable and easily configurable on a data warehouse (DW) without a heavy man-
ual definition of the lexicon. The minimal lexicon is extendable by importing known
ontologies in the Knowledge Base.

2. System overview

Figure 1 sketches a functional view of the architecture. Given a set of multidimensional cubes
(DwW), we distinguish between an offline phase (to initialize and configure the system) and an
online phase (to enable the user interaction). We refer the user to [7] for an explanation of the
DW terminology.

2.0.1. The offline phase

The offline phase automatically extracts the set of entities &, i.e., the DW-specific terms used
to express the queries. Such information is stored in the knowledge base (KB), which relies on
the DFM expressiveness [7]. This phase runs only when the DW undergoes modification (e.g.,
cube schemas or data instances) and extracts all multidimensional metadata. A cube modeled
as a star schema in a ROLAP engine consists of dimension tables (DTs: the cube hierarchies)
and a fact table (FT: the cube). The Automatic KB feeding extracts measures (FT columns
not in the primary key), attributes (DT columns), values (distinct instances of the DT columns),
and hierarchies (either coded or inferred). These elements represent the lexicon necessary
to translate natural language into conversational sessions. COOL supports lexicon extension
with external synonyms that can be automatically imported from open data ontologies (e.g.,
Wordnet [8]) to widen the understood language. Besides the domain-specific terminology, the



KB also includes the set of standard terms that are domain independent and that do not require
any feeding (e.g., group by, where, select). Further enrichment can be optionally carried out
manually (e.g., when the physical names of tables/columns do not match a standard vocabulary).

2.0.2. The online phase

The online phase runs every time a natural language query is issued. In a hand-free scenario (e.g.,
[9]), the spoken query is initially translated to text by the Speech-to-text software module.
Since this task is out of our research scope, we exploited a public Web Speech API. The uninter-
preted text is then analyzed by the Interpretation step, refined in the Disambiguation
& Enhancement step, translated by the SQL generation step, and finally executed and visu-
alized by the Execution & Visualization step.

Interpretation consists of two alternative steps. Full query interprets the texts describing
full queries (which happens when an analytic session starts). OLAP operator modifies the
latest query when the user states an OLAP operator across a session (i.e., roll-up, drill-down, and
slice&dice). The switch between the two steps to manage the conversation (i.e., a dialog between
the user and COOL) is modeled by two states: engage (in which the system expects a Full
Query to be issued) and navigate (in which the dialogue evolves by iteratively applying OLAP
operators that refine the initial query). When COOL achieves a successful interpretation of a
full query (i.e., it is able to run the query), it switches to the navigate state. Both Full query
and OLAP operator follow these steps: (i) Tokenization & Mapping, (ii) Parsing, and
(iii) Checking & Annotation.

Tokenization & mapping. A raw text T is a sequence of single words T = (t1, ..., t,). The
goal of this step is to identify the entities in 7, i.e., the only elements that will be involved in
the Parsing step. Turning a text into a sequence of entities means finding a mapping between
words in 7" and £.

Definition 1 (Mapping & mapping function). A mapping function M (T') is a partial func-
tion that associates sub-sequences (or n-grams)’ from T to entities in € such that: (i) sub-sequences
of T' have length n at most; (ii) the mapping function determines a partitioning of T'; and (iii) a
sub-sequence T' = (t;,...,t;) € T (with |T'| < n) is associated to an entity E if and only if
Sim(T', E) > « (where Sim() is a similarity function, later defined) and E € TopN (E,T")
(where TopN (E,T") is the set of N entities in £ that are the most similar to T' according to
Sim(T', E)). The output of a mapping function is a sequence M = (E1, ..., E}) on & that we call
a mapping.

The similarity function Sim() is based on the Levenshtein distance and keeps token per-
mutation into account to make similarity robust to token permutations (e.g., sub-sequences
(P., Edgar) and (Edgar, Allan, Poe) must result similar).

Several mappings might exist between 1" and £ since Definition 1 admits sub-sequences of
variable lengths (corresponding to different partitionings of T') and associates the top similar
entities to each sub-sequence. This increases the interpretation robustness since COOL chooses
the best mapping through a scoring function. Given a mapping M = (E4, ..., Ey,), its score

"The term n-gram is used as a synonym of sub-sequence in the area of text mining.



(GPSJ) ::= (MC){GC)(SC) | (MC)(SC)(GC) | (SC)(GC){MC) | (SC)(MC)(GC)

(
[ {GC){SCHMC) [ (GC)(MC)(SC) | (MC)(SC) [ (MC)(GC) | (SC)(MC) | (GC)(MC) | (MC)
(

(MC) ::= ((Agg)(Mea) | (Mea)(Agg) | (Mea) | (Cnt)(Fct) | (Fct)(Cnt) | (Cnt)(Attr) | (Attr)(Cnt))+
(GC) == “group by” (Attr)+
(SC) := “where” (SCA)
(SCA) ::= (SCN) “and” (SCA) | (SCN)
(SCN) === “not” (SSC) | (SSC)
(SSC) ::= (Attr)(Cop)(Val) | (Attr)(Val) | (Val)(Cop)(Attr) | (Val){Attr) | (Val)
(Cop) = “=7 [ <> [ €37 [« < €27 | <7
(Agg) ::= “sum” | “avg” | “min” | “maz” | “stdev”
(Cnt) ::= “count” | “count distinct”
(Fct) ::= Domain-specific facts
(Mea) ::= Domain-specific measures
(Attr) ::= Domain-specific attributes
(Valy ::= Domain-specific values

Figure 2: Backus-Naur representation of the Full query grammar. Entities from the KB are terminal
symbols.

Score(M) (i.e., the sum of entity similarities) is higher when M includes several entities with
high similarity values. Intuitively, the higher the mapping score, the higher the probability to
determine an optimal interpretation.

Parsing validates the syntactical structure of a mapping against a formal grammar and
outputs a data structure called parse tree that is later used to translate a mapping into SQL.

In Full query, Parsing is responsible for the interpretation of a complete GPSJ query
stated in natural language. A GPS] query contains a measure clause (MC) and optional group-by
(GC) and selection (SC) clauses. Parsing a full query means searching in a mapping the complex
syntax structures (i.e., clauses) that build up the query. Given a mapping M, the output of the
parser is a parse tree PT)y, i.e., an ordered tree that represents the syntactic structure of a
mapping according to the grammar from Figure 2. To the aim of parsing, entities are terminal
elements in the grammar.

For the sake of brevity, we omit the grammar of the OLAP Operator and we refer the user
to [4]. Intuitively, our conversation steps are inspired by well-known OLAP visual interfaces
(e.g., Tableau https://www.tableau.com/). To apply an OLAP operator, COOL must be in the
state navigate, i.e., a full GPS]J query has been already successfully interpreted into a parse tree
PT¢ that acts as a context for the operator. The output of the OLAP Operator parser is a
parse tree PT), that is used to update P1¢.

Both GPSJ grammars are LL(1)? [10], not ambiguous (i.e., each mapping admits, at most, a
single parse tree PT)y), and can be parsed by an LL(1) parser with linear complexity [10]. If
the input mapping M is fully parsed, PT); includes all the entities as leaves. Conversely, if
only a portion of the input belongs to the grammar, an LL(1) parser produces a partial parsing,
meaning that it returns a parse tree including the portion of the input mapping that belongs to
the grammar (i.e., the PT rooted in (GPSJ)). The remaining entities can be either singleton or

®Rules presented in Figure 2 do not satisfy LL(1) constraints for readability reasons.
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complex clauses that could not be connected to the main parse tree. We will call parse forest
PF) the union of the parse tree with residual clauses. Obviously, if all the entities are parsed,
it is PFy; = PT);. Considering the whole forest rather than the simple parse tree enables
ambiguities to be recovered in the Disambiguation & Enhancement step. Henceforth, we
refer to the parser’s output as a parse forest independently of the presence of residual clauses.
Disambiguation & enhancement. Due to natural language ambiguities, speech-to-text inac-
curacies, and wrong query formulations, parts of the text can be misunderstood. The reasons
behind the misunderstandings are manifold, including (but not limited to) a wrong usage of ag-
gregation operators (e.g., summing non-additive measures), inconsistencies between attributes
and values in selection predicates (e.g., filtering on product “New York”), or grouping by a
descriptive attribute. Such parts of the parse forest are annotated as ambiguities. To reduce the
parse forest PF); to a single parse tree PT), the Disambiguation & Enhancement step
solves ambiguities automatically whenever possible (by exploiting implicit information) or by
asking appropriate questions to the user.

SQL generation translates a full-query parse tree into an executable SQL query. If an OLAP
operator has been submitted, such tree must be updated accordingly. Given a full query parse
tree, the generation of its corresponding SQL requires to fill in the SELECT, WHERE, GROUP BY
and FROM statements. The SQL generation applies to both star and snowflake schemas [7] and is
done as follows: SELECT (measures and aggregation operators from (MC) and attributes in the
group by clause (GC)); WHERE (predicates from the selection clause (SC)); GROUP BY (attributes
from the group by clause (GC)); and FROM (measures, attributes, and values identify the fact
and the dimension tables). The join path is identified by following the referential integrity
constraints.

3. Experimental tests

Tests are carried out on a real-world benchmark of analytics queries [11]. Since queries from
[11] refers to private datasets, we mapped the natural language queries to the Foodmart schema®.
The Automatic KB feeding populated the KB with 1 fact, 39 attributes, 12337 values and 12449
synonyms. Additionally, only 50 synonyms where manually added in the KB enrichment step
(e.g., “for each", “for every", “per" are synonyms of the group by statement). While mapping
natural language queries to the Foodmart domain, we preserved the structure of the original
queries (e.g., word order, typos, etc.). Overall, 75% of the queries in the dataset are valid GPS]
queries, confirming how general and standard GPSJ queries are. The filtered benchmark includes
110 queries. We consider token sub-sequences of maximum length n = 4 (i.e., the [1..4]-grams)
as no entity in the KB is longer than 4 words. Each sub-sequence is associated with the top N
similar entities with similarity higher than « such that at least a percentage /3 of the tokens in
T is covered. f3 is fixed to 70% based on an empirical evaluation. For the sake of brevity, only
the major results are reported.

Effectiveness is evaluated as the tree similarity [12] T'Sim(PT, PT*) between the parse
tree PT produced by our system and the correct one PT™, which is manually written by us.
Although only one parse forest is involved in the disambiguation phase; for testing purposes, it

*A dataset of food sales (https://github.com/julianhyde/foodmart-data-mysql).
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Figure 3: Empirical evaluation

is interesting to see if the best parse tree belongs to the top-k ranked ones. Effectiveness is more
affected by the entity/token similarity threshold o and ranges in [0.83, 0.89]. In all cases, the
best results are obtained when more similar entities are admitted and more candidate mappings
are generated. Independently of the chosen thresholds the system results very stable (i.e., the
effectiveness variations are limited) and even considering only one query to be returned its
effectiveness is at the state of the art [2, 13, 14]. This confirms that (1) the choice of proposing
only one query to the user does not negatively impact on performances (while it positively
impacts on interaction complexity and efficiency) and (2) our scoring function properly ranks
parse tree similarity to the correct interpretation for the query since the best ranked is in most
cases the most similar to the correct solution.

As the previous tests do not include disambiguation, only 58 queries out of 110 are not
ambiguous and produce parse trees that can be fed as-is to the generation and execution phases.
Starting from the best configuration from the previous tests (for N = 6 and o = 0.4), by
applying an increasing number of correcting actions the effectiveness increases from 0.89 up to
0.94. Unsolved differences are mainly due to missed entities in the mappings.

As to efficiency, we ran the tests on a machine equipped with Intel(R) Core(TM) i7-6700 CPU
@ 3.40GHz CPU and 8GB RAM, with the framework implemented in Java. Figure 3b shows
the average execution time by varying | M | and the number of allowed top similar entities N.
The execution time increases with the number of entities included in the optimal parse tree,
as such also the number of top similar entities impacts the overall execution time. We recall
that effectiveness remains high also for N = 2 corresponding to an execution time of 1 second,
raising to 10 seconds in the worst case.

4. Related works

Conversational business intelligence can be classified as a natural language interface (NLI) to
business intelligence systems to drive analytic sessions. Despite the plethora of contributions in
each area, to the best of our knowledge, no approach lies at their intersection.

NLIs to operational databases enable users to specify complex queries without previous train-



ing on formal programming languages (such as SQL) and software; a recent and comprehensive
survey is provided in [15]. Overall, NLIs are divided into two categories: question answering
and dialog. To the best of our knowledge, no dialog-based system for OLAP sessions has been
provided so far. SQLizer [13] generates templates over the issued query and applies a “repair”
loop until it generates queries that can be obtained using at most a given number of changes
from the initial template. Domain-specific approaches add semantics to the translation process
through domain-specific ontologies and ontology-to-database mappings. SODA [16] uses a
simple but limited keyword-based approach that generates a reasonable and executable SQL
query based on the matches between the input query and the database metadata, enriched with
domain-specific ontologies. ATHENA [14] maps natural language into an ontology representa-
tion and exploits mappings crafted by the relational schema designer to resolve SQL queries.
Analyza [17] integrates the domain-specific ontology into a “semantic grammar”(i.e., a grammar
with placeholders for the typed concepts such as measures, dimensions, etc.) to annotate and
finally parse the user query. Unfortunately, by relying on the definition of domain-specific
knowledge and mappings, the adoption of these approaches is not plug-and-play as an ad-hoc
ontology is rarely available and burdensome to create.

5. Conclusion

In this paper, we proposed COOL, a conversational OLAP framework supporting the translation
of a natural language conversation into an OLAP session. COOL supports both the interpretation
of GPS]J queries and OLAP operators.

Besides proposing a technical solution and a reference architecture, the contribution of the
paper lies in the discussion of specific issues related to conversational OLAP systems. Since its
conception, OLAP analysis aims to allow users to analyze data without requiring technological
skills. Conversational OLAP represents a step forward in this direction. We believe that
conversational OLAP can be particularly useful in the context of hand-free applications such as
the ones we proposed in [3]: adding conversational capabilities to an augmented OLAP solution
would be highly desirable whenever the user is working in the field (e.g., a warehouse or a
factory) and is not in front of a computer. To close the loop, we are working towards enabling
access to OLAP results in a conversational and hand-free fashion. The idea is to create query
summaries (e.g., [18]) that can fit augmented-reality devices or (vocal) smart assistants.
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