
Unbiasing Collaborative Filtering for
Popularity-Aware Recommendation
(Discussion Paper)

Luciano Caroprese1, Giuseppe Manco1, Marco Minici1, Francesco Sergio Pisani1 and
Ettore Ritacco1

1ICAR-CNR, Via Bucci, 8-9c, Rende (Italy)

Abstract
We analyze the behavior of recommender systems relative to the popularity of the items to recommend.
Our findings show that most popular ranking-based recommenders are biased towards popular items, thus
affecting the quality of recommendation. Based on these observations, we propose a new deep learning
architecture with an improved learning strategy that significantly improves the performance of such
recommenders on low-popular items. The proposed technique is based on two main aspects: resampling
of negatives and ensembling of multiple instances of the algorithm. Experimental results on traditional
benchmark datasets show that the proposed approach substantially improves the recommendation
ability by balancing accurate contributions almost independently from the popularity of the items to
recommend.

Keywords
Recommender Systems, Collaborative Filtering, Deep Learning, Big Data

1. Introduction

The massive amount of information available to users in the form of digital catalogs and online
services allows users to access and consume online content, but at the same time it poses a choice
paradox. Purchasing items on e-commerce sites, selecting movies on streaming platforms or
connecting with other peers on social networks implies making choices among a huge amount
of elements. Recommender Systems play a crucial role within this context since they provide
users with a better experience through the recommendation of new content and data that users
are likely to appreciate.

Recommendations can have a disruptive impact: if on one side, they assist users in their
choices, on the other side they can influence the choices themselves. Indeed, Recommender
systems can favor particular categories of items or particular brands over others, thus introducing
a bias within the catalog [1]. A typical bias is intrinsic to the nature of recommendation. In
systems involving interaction between significant amounts of users and items, we observe the
presence of very few very popular items and many less popular others. This distribution follows
the so-called 80-20 rule that refers to the fact that 80% of users express preferences for only 20%

SEBD 2021: The 29th Italian Symposium on Advanced Database Systems, September 5-9, 2021, Pizzo Calabro (VV), Italy
Envelope-Open luciano.caroprese@icar.cnr.it (L. Caroprese); giuseppe.manco@icar.cnr.it (G. Manco); marco.minici@icar.cnr.it
(M. Minici); francescosergio.pisani@icar.cnr.it (F. S. Pisani); ettore.ritacco@icar.cnr.it (E. Ritacco)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:luciano.caroprese@icar.cnr.it
mailto:giuseppe.manco@icar.cnr.it
mailto:marco.minici@icar.cnr.it
mailto:francescosergio.pisani@icar.cnr.it
mailto:ettore.ritacco@icar.cnr.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

of the available items. In practice, user preferences follow a long tail distribution. Recommender
Systems based on collaborative filtering [2], who tend to characterize user preferences from
interactions, are affected by a relevant problem: they tend to suggest very popular items and
neglect less popular ones. This way, there is a reinforced effect because the most popular items
will become more and more popular than the less known ones. This phenomenon is called
popularity bias.

The quality of the recommendations is inevitably affected by the popularity bias, since most
recommendations are prone to contain objects that the user will consider trivial and well known.
By contrast, the capability of recommending items belonging to the long tail (i.e., less popular)
can disclose new perspectives: niche items, little-known objects, hidden gems that satisfy the
user’s preferences can greatly improve user engagement, provided that the recommended items
are consistent with user’s taste.

The current literature has extensively studied the problems of fairness and bias [3, 4, 5] within
recommender systems, with particular emphasis to popularity bias [6, 7, 8]. Notably, in [9], it is
shown that unfair recommendations are concentrated on groups of users interested in long-tail
and less popular items. In this paper we focus our attention on recommender sytems based on
ranking [10, 11], which are extremely flexible and as a consequence particularly interesting to
unbias. Typical approaches [12, 13] consider techniques to increase the representation of less
popular items, by either post-processing techniques or constraining the recommendation score.
Despite such recent efforts, unbiasing the recommendation from popular items is still an open
problem.

In this paper we devise a ranking-based recommender system for implicit feedback (RVAE),
based on a variational autoencoder architecture. The proposedmodel is a substantial extension of
theMVAEmodel proposed in [14] and in fact it inherits its accuracy and computational efficiency.
We analyze the behavior of RVAE and show that the model is characterized by the popularity
bias problem. We then propose an experimental study of specific techniques to overcome it.
The proposed technique is based on two main concepts: resampling/reweighting items and
ensembling of multiple instances of the algorithm. Our experiments show that these simple
strategies allow to unbias the algorithm and hence provide more effective recommendations.

2. Basic Framework

We start by setting the notation that we shall use throughout the paper. In the context of
collaborative filtering, 𝑢 ∈ 𝑈 = {1, … ,𝑀} indexes a user and 𝑖, 𝑗 ∈ 𝐼 = {1, … , 𝑁 } index items
for which the user can express a preference. We model implicit feedback, thus assuming a
preference matrix X ∈ {0, 1}𝑀×𝑁, so that 𝑥𝑢,𝑖 = 1 whenever user 𝑢 expressed a preference for
item 𝑖, and 𝑥𝑢,𝑖 = 0 otherwise. Also, x𝑢 is the (binary) row indexed at 𝑢, representing all the item
preferences for user 𝑢. Given x𝑢, we define 𝐼𝑢 = {𝑖 ∈ 𝐼 |𝑥𝑢,𝑖 = 1} (with 𝑁𝑢 = |𝐼𝑢|). The preference
matrix induces a natural ordering between items: 𝑖 ≺𝑢 𝑗 has the meaning that 𝑢 prefers 𝑖 to 𝑗, i.e.
𝑥𝑢,𝑖 > 𝑥𝑢,𝑗 in the rating matrix. Our objective is to devise a model for such an ordering.

Preference Modeling. We consider a general framework where preferences are modeled as
the effect of latent factors ultimately characterizing users and/or items. We shall consider two

basic instantiations of this general idea, and will provide a unified framework.
The first situationwe consider is theMultinomial Variational Autoencoder (MVAE) framework

proposed in [14]. Within this framework, for a given user 𝑢 the related x𝑢 is modeled as the
effect of a multinomial distribution governed by a prior z, i.e.

x𝑢 ∼ Discrete (𝜋(z))

𝜋(z) ∝ exp {𝑓𝜙(z)}

Here, 𝑓𝜙(⋅) represents a neural network parameterized by 𝜙. The latent variable z is modeled by
a prior 𝑃(z) (typically a gaussian distribution). Thus, the probability of preferences for a given
user can be expressed as

𝑃(x𝑢) = ∫ 𝑃(x𝑢|z)𝑃(z) dz

Due to the intractability of the above integral, [15] devise a variational approach based on a
proposal 𝑄(z|x𝑢) that approximates the posterior distribution. Again, 𝑄 is modeled as a gaussian
distribution

𝑄(z|x𝑢) = 𝒩 (z; 𝜇𝑢, 𝜎𝑢),

where 𝜇𝑢, 𝜎𝑢 = 𝑔𝜃(x𝑢) and 𝑔𝜃 is a neural network parameterized by 𝜃. By exploiting the inequality

log 𝑃(x𝑢) ≥ 𝔼z∼𝑄(⋅|x𝑢) [log 𝑃(x𝑢|z) − 𝑃(z)]

we can finally learn the 𝜙, 𝜃 parameters by optimizing the loss

ℓ𝑀𝑉𝐴𝐸(𝜙, 𝜃) = ∑
𝑢
{𝔼z∼𝑄𝜃(⋅|x𝑢) [log 𝑃𝜙(x𝑢|z)] − 𝕂𝕃[𝑄𝜃(z|x𝑢)‖𝑃(z)]}

The overall framework is based hence on regularized encoder-decoder scheme, where 𝑄𝜃(z|x𝑢)
represents the encoder, 𝑃𝜃(x𝑢|z) represents the decoder and the term 𝔼z∼𝑄𝜃(⋅|x𝑢) [𝑃(z)] acts as a
regularizer. In the training phase, for each 𝑢 a latent variable z ∼ 𝑄𝜃(⋅|x𝑢) is devised. Next, z is
exploited to devise the probability 𝑃𝜙(x𝑢|z). Users with low probability are penalized within the
loss and the network parameters can be updated accordingly.

Prediction for new items is accomplished by resorting to the learned functions 𝑃𝜙 and 𝑄𝜃:
given a (partial) user history x𝑢, we compute z = 𝜇𝑢 and then devise the probabilities for the
whole item set through 𝜋(z). Unseen items can then be ranked according to their associated
probabilities.

The second formulation we consider is inspired by the Bayesian Personalized Ranking (BPR)
model introduced in [10]. The idea underlying this model is that a preference 𝑖 ≺𝑢 𝑗 can be
directly explained as closeness in a latent space where both items and users can be mapped.
Mathematically this can be devised by computing a factorization rank p𝑇𝑢q𝑖 for each pair (𝑢, 𝑖),
and modeling preferences by means of a Bernoulli process:

𝑖 ≺𝑢 𝑗 ∼ Bernoulli(𝑝)

𝑝 = 𝜎 (p𝑇𝑢(q𝑖 − q𝑗))

where 𝜎(𝑎) = (1 + 𝑒−𝑎)−1 is the logistic function. The optimal embeddings P and Q can hence
be obtained by opimizing the loss

ℓ𝐵𝑃𝑅(P,Q) ≈ ∑
𝑢
∑
𝑖,𝑗
𝑖≺𝑢𝑗

log 𝜎 (p𝑇𝑢(q𝑖 − q𝑗)

We combine the two frameworks by adapting the BPR loss to the MVAE model. In particular,
instead of modeling 𝑃(x𝑢|z), we directly model 𝑃(𝑖 ≺𝑢 𝑗|z)within a similar variational framework.
In short, the current preferences are encoded within a latent variable z that is further exploited
to decode all ranks:

𝑖 ≺𝑢 𝑗 ∼ Bernoulli(𝑝𝑖,𝑗)
𝑝𝑖,𝑗 = 𝜎(𝜁𝑖 − 𝜁𝑗)
𝜁 = 𝑓𝜙(z)

Here, 𝜁 represents the output of a neural network parameterized by 𝜙. For a given item 𝑖, the
value 𝜁𝑖 represents then the associated rank which can be used sort all preferences. The model
can be obtained by optimizing the loss:

ℓ𝑅𝑉𝐴𝐸(𝜙, 𝜃) = ∑
𝑢
{𝔼z∼𝑄𝜃(⋅|x𝑢) [∑

𝑖,𝑗
𝑖≺𝑢𝑗

log 𝑃𝜙(𝑖 ≺𝑢 𝑗|z)] − 𝕂𝕃[𝑄𝜃(z|x𝑢)‖𝑃(z)]} (1)

We call this model Ranking Variational Autoencoder (RVAE).

Learning by Negative Sampling. In the above formulation there are some details worth
further discussion. When learning the RVAE model, optimizing the likelihood requires that
all pairs of items are considered within Eq. (1). This is unrealistic with large item bases, and
it is usually customary to only consider a subset 𝒫𝑢 ⊂ {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝐼 ; 𝑖 ≺𝑢 𝑗}. The sampling of
𝒟𝑢 is critical for determining the behavior of any predictive model; the most used approach
in literature is to uniformly sample, for each user 𝑢 and item 𝑖 (called positive item), a fixed
number of items {𝑗1, … 𝑗𝑛} ⊂ 𝐼 − 𝐼𝑢 with the underlying assumption that ∀𝑘 ∶ 𝑖 ≺𝑢 𝑗𝑘. Thus, Eq.
(1) can be rewritten as:

ℓ𝑅𝑉𝐴𝐸(𝜙, 𝜃) = ∑
𝑢
{𝔼z∼𝑄𝜃(⋅|x𝑢) [∑

(𝑖,𝑗)∈𝒟𝑢

log 𝑃𝜙(𝑖 ≺𝑢 𝑗|z)] − 𝕂𝕃[𝑄𝜃(z|x𝑢)‖𝑃(z)]} (2)

This will be the basis loss upon which we develop our study next.

3. The Impact of Popularity

We start our analysis on the following popular benchmark datasets: i) Movielens, a time
series dataset containing user-item ratings pairs along with the corresponding timestamp; ii)
Pinterest, based on the social media that allows users to save or pin an image (item) to their
board. The dataset denotes as 1 the pinned images for each user; iii) CiteUlike, a dataset
obtained from the homonymous service which provides a digital catalog to save and share

0 0.5k 1.0k 1.5k 2.0k 2.5k 3.0k 3.5k
Item

100

101

102

103
Po

pu
la

rit
y

1007 low-popular items (avg pop: 6)
2367 mid-popular items (avg pop: 164)
142 top-popular items (avg pop: 1239)

(a) ML1M

0 2k 4k 6k 8k 10k
Item

100

101

102

103

Po
pu

la
rit

y

1767 low-popular items (avg pop: 18)
7620 mid-popular items (avg pop: 153)
529 top-popular items (avg pop: 568)

(b) Pinterest

0 2k 4k 6k 8k 10k 12k 14k 16k
Item

100

101

102

Po
pu

la
rit

y

3783 low-popular items (avg pop: 4)
12693 mid-popular items (avg pop: 12)
504 top-popular items (avg pop: 61)

(c) CiteUlike

Figure 1: Item popularity distributions.

academic papers. Within fig. 1 we plot all the items within the datasets, by increasing popularity.
For each dataset we identify three classes: low, mid and high popular items.

We then study the behavior of the RVAE model with respect to the popularity classes defined.
To do so, we adopt the following protocol. For each dataset, 70% of users are randomly sampled
with all user’s items. Each such user is associated with x𝑢 and a set 𝒟𝑢 of positive/negative
item pairs. In particular, we consider all positive items within x𝑢, and for each positive item 𝑖
we sample 𝑛 = 4 negative items. The remaining 30% users are uniformly split into validation
and test. In particular, for each user 𝑢 we consider a random subset 𝑃𝑢 ⊂ 𝐼𝑢 representing the
30% of the positive items, and 𝑁𝑢 represents a subset of 100 negative items sampled from 𝐼 − 𝐼𝑢.
The vector x𝑢 is masked to remove all elements in 𝑃𝑢. We then feed the masked x𝑢 to obtain
the score vector 𝜁𝑢. Now, for a given cutoff value 𝑐, let us consider the 𝑐 − 1 negative items for
𝑢 for which RVAE gives the highest score, and, among them the item 𝑗 having the minimum
score. There is an hit with cutoff 𝑐, for the user 𝑢 and the item 𝑖 ∈ 𝑃𝑢, if 𝜁𝑢,𝑖 ≥ 𝜁𝑢,𝑗. Let 𝐻 𝑐

𝑢 the

number of hits for the user 𝑢 with cutoff 𝑐. We define the Hit-Rate at 𝑐 on 𝑇 as HR@𝑐 = ∑𝑢∈𝑇 𝐻 𝑐
𝑢

∑𝑢∈𝑈 |𝑃𝑢|
.

We can trivially specialize this definition for items within the low, medium and high popularity,
by considering only items in 𝑃𝑢 that belong to the specific class. The results of the evaluation
are summarized in table 1a. We can see that the model suffers mainly on low-popular items.
As a matter of fact, the overexposure of popular items is predominant and the model learn to
predict essentially those items. The fact is that popular items are easy to predict. However, it is
in the mid and especially on low popular items that the most interesting predictions can take
place: niche items are difficult to discover by an end user and hence their accurate suggestions
can greatly improve user engagement. The research question is hence: how can we boost the
model to improve the performance on low-popular items?

4. Unbiased Recommendation

In a simple experiment, we retrain the model by only considering pairs (𝑖, 𝑗) ∈ 𝒟𝑢 such that
𝑖 is in the low popular class. We call this model RVAE𝐿. Compared to the results in table 1a,
the results for this restricted model (shown in table 1b) show that if attention is placed on low
popular items, their response on prediction accuracy can be improved. Similar results can be
observed for the mid popular items. Thus, in order to unbias the model we need to rebalance

Dataset
HR@1 HR@5 HR@10

Global Low Med High Global Low Med High Global Low Med High

Movielens 0.2510 0.00 0.16 0.43 0.5853 0.01 0.47 0.83 0.7443 0.05 0.65 0.94
Pinterest 0.2731 0.13 0.23 0.46 0.6992 0.46 0.66 0.86 0.8764 0.65 0.86 0.95
CiteULike 0.2875 0.07 0.22 0.67 0.6021 0.29 0.57 0.90 0.7638 0.48 0.75 0.95

(a) RVAE

Dataset
HR@1 HR@5 HR@10

Global Low Global Low Global Low

Movielens 0.0012 0.15 0.0042 0.50 0.0063 0.74
Pinterest 0.0089 0.43 0.0166 0.81 0.0192 0.93
CiteULike 0.0254 0.32 0.0561 0.71 0.0703 0.89

(b) RVAE𝐿

Table 1
Predictive accuracy.

the contribution on low (and mid) popular items with regards to the high popular ones. To
achieve this goal, we study three different strategies.

The first strategy consists in weighting, for each pair (𝑖, 𝑗) ∈ 𝒟𝑢, the contribution to the loss
with a factor inversely proportional to the popularity of the item 𝑖:

𝑤𝑖 =
𝛾(1+𝑒𝛼(𝑓𝑖−𝛽−1))

−1
+1

𝛾+1

Here, 𝑓𝑖 represents the number of occurrences of 𝑖, and 𝛼, 𝛽, 𝛾 the parameters representing the
steep, center and scale of the decay of high popular items. We experiment with 𝛼 = 0.01, 𝛽
representing the average frequency of mid-popular items and 𝛾 = 100 and call this variant
RVAE𝑊. The above strategy has the advantage of reweighing the contributions of low and mid
popular items with respect to high popular ones: the ratio between the most popular and the
lowest popular is approximately 1/𝛾. However, this weighting scheme has a main disadvantage.
The weight is relative to a positive item 𝑖, but it is associated with pairs (𝑖, 𝑗) ∈ 𝑃𝑢. That is,
besides weighting the contribution of 𝑖, this scheme also overexposes (or dually underexposes)
the contribution of the negative item 𝑗. To avoid this, an alternative strategy consists in changing
the sampling scheme that produces 𝒟𝑢. In practice, rather than uniformly sampling, for each
positive item, a fixed number 𝑛 of negative items, we can apply an inversely stratified sampling
where 𝑛𝑖 negatives are sampled, with 𝑛𝑖 being inversely proportional to the popularity of the

item: 𝑛𝑖 = 𝑛 ⋅ ⌈max(f)
𝑓𝑖

⌉.
The ratio with the above formula is to provide the same visibility to each positive item in the

loss function. Thus, the most popular item will be associated with exactly 𝑛 pairs. By contrast,
low and mid popular items will be overexposed in the comparison. We call this variant RVAE𝑆.

The third strategy consists in combining the baseline RVAE model with RVAE𝐿. For a user 𝑢,
let 𝜁𝐵 the the score vector produced by RVAE, and 𝜁𝐿 the score produced by RVAE𝐿. We define
RVAE𝐸 and the model that produces the score 𝜁𝐸 defined as 𝜁𝐸 = Softmax(𝜁𝐵) + 𝛿m ⋅ Softmax(𝜁𝐿).

The vectormmasks all items but the low popular. The scores are normalized (via the Softmax
function) to make the two models comparable. Finally, 𝛿 is a weight aimed at tuning the boost
for the low popular items, as devised by RVAE𝐿. We experimentally found an optimal tuning
with 𝛿 = 0.4.

HR@1 HR@5 HR@10
Global Low Med High Global Low Med High Global Low Med High

M
ov
ie
le
ns RVAE 0.2510 0.00 0.16 0.43 0.5853 0.01 0.47 0.83 0.7443 0.05 0.65 0.94

RVAE𝑊 0.0854 0.01 0.13 0.01 0.2958 0.07 0.40 0.10 0.4661 0.11 0.59 0.23
RVAE𝑆 0.1245 0.06 0.12 0.13 0.3875 0.16 0.38 0.40 0.5825 0.28 0.57 0.61
RVAE𝐸 0.2466 0.05 0.16 0.42 0.5506 0.22 0.43 0.80 0.6965 0.37 0.59 0.91

Pi
nt
er
es
t RVAE 0.2731 0.13 0.23 0.46 0.6992 0.46 0.66 0.86 0.8764 0.65 0.86 0.95

RVAE𝑊 0.2196 0.29 0.23 0.18 0.6544 0.68 0.66 0.64 0.8592 0.80 0.86 0.87
RVAE𝑆 0.2482 0.11 0.23 0.35 0.6770 0.45 0.65 0.80 0.8664 0.64 0.86 0.93
RVAE𝐸 0.2726 0.26 0.22 0.46 0.6954 0.63 0.65 0.86 0.8620 0.80 0.84 0.94

C
it
eU

lik
e RVAE 0.2875 0.07 0.22 0.67 0.6021 0.29 0.57 0.90 0.7638 0.48 0.75 0.95

RVAE𝑊 0.2711 0.09 0.25 0.46 0.6156 0.37 0.61 0.76 0.7698 0.55 0.77 0.87
RVAE𝑆 0.3890 0.32 0.39 0.43 0.7264 0.61 0.73 0.76 0.8399 0.73 0.84 0.90
RVAE𝐸 0.2805 0.16 0.21 0.66 0.5634 0.50 0.50 0.87 0.6941 0.71 0.64 0.92

Table 2
Comparative analysis.

Table 2 summarizes the results of the evaluation. We see that, in general, all the strategies
considerably improve the response of the model to the low popular items. However, RVAE𝑊 has
a low response on the high popular items. By contrast, RVAE𝑆 succeeds in boosting performance
on both the low popular and the mid popular items. Overall, the ensemble RVAE𝐸 provides the
best response, by boosting low popular items without substantially degrading over the other
classes.

5. Conclusions

The approach proposed in this paper is a preliminary study: We introduce a Ranking collabo-
rative filtering algorithm (RVAE) and study how the algorithm is affected by popularity bias.
Next, we show how simple techniques based on reweighting/resampling and/or ensembling
can recalibrate the recommendations. There are several aspects that are worth further investi-
gation. First of all, both the weighting and the inverse stratified sampling schemes are based on
hyperparameters that need to be carefully tuned. Also, the ensemble strategies are simple and
more complex schemes that also take into account other model instantiations can be studied.
We reserve the attention to these challenges in a future work.

References

[1] V. Tsintzou, E. Pitoura, P. Tsaparas, Bias disparity in recommendation systems, CoRR
abs/1811.01461 (2018). URL: http://arxiv.org/abs/1811.01461.

[2] C. C. Aggarwal, Recommender Systems, Springer, 2016.
[3] B. Friedman, H. Nissenbaum, Bias in computer systems, ACM Trans. Inf. Syst. 14 (1996)

330–347.
[4] Z. Zhu, X. Hu, J. Caverlee, Fairness-aware tensor-based recommendation, in: ACM

International Conference on Information and Knowledge Management, CIKM ’18, 2018, p.
1153–1162.

http://arxiv.org/abs/1811.01461

[5] Y. Deldjoo, V. W. Anelli, H. Zamani, A. Bellogin, T. Di Noia, A flexible framework for
evaluating user and item fairness in recommender systems, User Modeling and User-
Adapted Interaction (2021).

[6] O. Celma, P. Cano, From hits to niches?: Or how popular artists can bias music recom-
mendation and discovery, in: 2nd KDD Workshop on Large-Scale Recommender Systems
and the Netflix Prize Competition, 2008.

[7] H. Steck, Item popularity and recommendation accuracy, in: Proceedings of the Fifth
ACM Conference on Recommender Systems, RecSys ’11, 2011, p. 125–132.

[8] R. Borges, K. Stefanidis, On measuring popularity bias in collaborative filtering data, in:
EDBT Workshop on BigVis 2020: Big Data Visual Exploration and Analytics, 2020.

[9] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, The unfairness of popularity bias
in recommendation, CoRR abs/1907.13286 (2019). URL: http://arxiv.org/abs/1907.13286.

[10] S. Rendle, C. Freudenthaler, Z. Gantner, L. Schmidt-Thieme, Bpr: Bayesian personalized
ranking from implicit feedback, in: Conf. on Uncertainty in Artificial Intelligence, UAI ’09,
2009, pp. 452–461.

[11] T. Ebesu, B. Shen, Y. Fang, Collaborative memory network for recommendation systems,
in: ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
’18, 2018.

[12] Z. Zhu, J. Wang, J. Caverlee, Measuring and mitigating item under-recommendation bias in
personalized ranking systems, in: ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’20, 2020, p. 449–458.

[13] H. Abdollahpouri, R. Burke, B. Mobasher, Managing popularity bias in recommender
systems with personalized re-ranking, CoRR abs/1901.07555 (2019). URL: http://arxiv.org/
abs/1901.07555.

[14] D. Liang, R. G. Krishnan, M. Hoffman, T. Jebara, Variational autoencoders for collaborative
filtering, in: ACM Conf, on World Wide Web, WWW ’18, 2018, pp. 689–698.

[15] D. P. Kingma, M. Welling, Auto-encoding variational bayes, in: 2nd
International Conference on Learning Representations, ICLR’14, 2014.
arXiv:http://arxiv.org/abs/1312.6114v10 .

http://arxiv.org/abs/1907.13286
http://arxiv.org/abs/1901.07555
http://arxiv.org/abs/1901.07555
http://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10

	1 Introduction
	2 Basic Framework
	3 The Impact of Popularity
	4 Unbiased Recommendation
	5 Conclusions

