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Abstract
Distance-based machine learning methods have limited applicability to categorical data, since they
do not capture the complexity of the relationships among different values of a categorical attribute.
Nonetheless, categorical attributes are common in many application scenarios, including clinical and
health records, census and survey data. Although distance learning algorithms exist for categorical
data, they may disclose private information about individual records if applied to a secret dataset. To
address this problem, we introduce a differentially private algorithm for learning distances between
any pair of values of a categorical attribute according to the way they are co-distributed with the values
of other categorical attributes forming the so-called context. We show empirically that our approach
consumes little privacy budget while providing accurate distances.
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1. Introduction

Most machine learning and data analysis methods rely, directly or indirectly, on their ability
to compute distances or similarities between data objects. Although different definitions of
distance/similarity exist, they are relatively easy to compute, provided that data are given in
form of numeric vectors. Additionally, for most of the above-mentioned distance-based methods,
differentially private counterparts of them have been proposed as well. Differential privacy [1]
is a computational paradigm which guarantees that the output of a statistical query applied
to a secret dataset does not allow to understand whether a particular data object is present in
the dataset or not. In recent years, many differentially private variants have been proposed for
most distance based algorithms, including kNN [2], SVM [3] and k-means [4].

When data are described by categorical features/attributes, instead, distances can only account
for the match or mismatch of the values of an attribute between two data objects, leading to
poorer and less expressive proximity measures (e.g., the Jaccard similarity). And yet, intuitively,
a patient whose disease is “gastritis” should be closer to a patient affected by “ulcer” than to
one having “migraine”. An efficient solution consists in using some distance learning algorithm
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to infer the distance between any pair of different values of the same categorical attribute from
data. Among all existing methods, DILCA [5] is one of the most effective. DILCA’s objective is
to compute the distance between any pair of values of a categorical attribute by taking into
account the way the two values are co-distributed with respect to the values of other categorical
attributes forming the so-called context. According to DILCA, if two values of a categorical
attribute are similarly distributed w.r.t. the values of the context attributes, then their distance
is lower than that computed for two values of the same attribute that are divergently distributed
w.r.t. the values of the same context attributes. DILCA has been successfully used in different
scenarios including clustering [5], semi-supervised learning [6] and anomaly detection [7].
However, if applied to a secret dataset, it may disclose a lot of private information.

In this paper, we address the problem of learning meaningful distances for categorical data in
a differentially private way. To this purpose, we first introduce a differentially-private extension
of DILCA adopting the exponential mechanisms. We show experimentally that it provides
accurate distances even with relatively small values of privacy budget 𝜀. Additionally, we
show that our algorithm (which we call DP-DILCA) is effective in two distance-based learning
scenarios, including clustering and k-NN classification.

2. Background

In this section, we introduce the necessary background required to understand the theoretical
foundations of our method and, contextually, we introduce its related scientific literature.

2.1. Differential Privacy

Differential privacy [1] is a privacy definition that guarantees the outcome of a calculation to
be insensitive to any particular record in the data set. More formally, we report the following
definition [1]:

Definition 1 (𝜀-differential privacy). Letℳ : Ω −→ ℛ be a randomized mechanism (i.e. a
stochastic function with values in a generic setℛ) and consider a real number 𝜀 > 0. We say that
ℳ preserves 𝜀-differential privacy if for all pair of datasets 𝐷,𝐷′ differing for only one record
and ∀𝑟 ∈ ℛ, 𝑃 (ℳ(𝐷)=𝑟)

𝑃 (ℳ(𝐷′)=𝑟) ≤ 𝑒𝜀.

Differential privacy satisfies two important properties: composition and post-processing [1].
The composition property states that by combining the results of several differentially private
mechanisms, the outcome will be differentially private too, and the overall level 𝜀 of privacy
guaranteed will be the sum of the level of privacy of each mechanism. On the other hand, the
post-processing property says that once a quantity 𝑟 has been computed in a differentially
private way, any following transformation of this quantity is still differentially private, with no
need to spend part of the privacy budget for it.

Several mechanisms and techniques preserving differential privacy have been proposed in
literature. Two of the most famous mechanisms are the Laplace and the Exponential mechanisms
[1]. They both calibrate the amount of random noise they inject in the computation by looking
at the sensitivity of the function (or utility function) considered:



Definition 2 (Global sensitivity). Let 𝑞 : Ω −→ R𝑑 be a numeric function. The global sensi-
tivity𝐺𝑆(𝑞) is a measure of the maximal variation of function 𝑞 when computed over two datasets
differing for only one record and is defined as 𝐺𝑆(𝑞) = max𝐷∼𝐷′ ||𝑞(𝐷)− 𝑞(𝐷′)||1.

2.2. DILCA

Measuring similarities or distances between two data objects is a crucial step for many machine
learning and data mining tasks. While the notion of similarity for continuous data is relatively
well-understood and extensively studied, for categorical data the similarity computation is not
straightforward. The simplest comparison measure for categorical data is overlap [8]: given
two tuples, it counts the number of attributes whose values in the two tuples are the same.
The overlap measure does not distinguish different values of attributes, hence matches and
mismatches are treated equally. Among all the proposed methods for distance computation,
we focus on DILCA [5], a framework to learn context-based distances between each pair of
values of a categorical attribute 𝑌 . The main idea behind DILCA is that the distribution of
the co-occurrences of the values of 𝑌 and the values of the other attributes in the dataset
may help define a distance between the values of 𝑌 (intuitively, two values that are similarly
co-distributed w.r.t. all the other values of all the other attributes are similar and so they should
be close in the new distance). However, not all the other attributes in the dataset should be
taken in consideration, but only those that are more relevant to 𝑌 . We call this set of relevant
attributes with respect to 𝑌 the context of 𝑌 . DILCA distance is defined as follow

Definition 3 (DILCA distance). Let 𝑦1, . . . 𝑦𝑛 be the values of attribute 𝑌 . For each pair 𝑦𝑖, 𝑦𝑗
with 𝑖, 𝑗 = 1, . . . , 𝑛, the distance between 𝑦𝑖 and 𝑦𝑗 is computed as

𝑑(𝑦𝑖, 𝑦𝑗) =

⎯⎸⎸⎷∑︀
𝑋∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 )

∑︀|𝑋|
𝑘=1(𝑃 (𝑦𝑖|𝑥𝑘)− 𝑃 (𝑦𝑗 |𝑥𝑘))2∑︀

𝑋∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 ) |𝑋|

where 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 ) is the set of the attributes belonging to the context of 𝑌 , |𝑋| is the number of
values attribute 𝑋 can assume, and 𝑃 (𝑦𝑖|𝑥𝑘) is the conditional probability that 𝑌 takes value 𝑦𝑖
given that 𝑋 has value 𝑥𝑘.

The conditional probabilities 𝑃 (𝑦𝑖|𝑥𝑘) are estimated from the data: the contingency table
between attributes 𝑋 and 𝑌 is constructed and this contingency table can be interpreted as the
empirical joint distribution of the two variables.

3. DP-DILCA

In this section, we introduce a method whose final goal is to inject some form of randomness
in DILCA in order to make the resulting distances among the values of the target attribute 𝑌
differentially private. There are two moments when DILCA algorithm accesses the original
(secret) dataset: the context and the contingency tables computation phases. If the context
selection is made preserving ℎ · 𝜀-differential privacy (where ℎ ∈ [0, 1]) and the computation of
all the contingency tables is made preserving (1−ℎ)𝜀-differential privacy, then the composition



Algorithm 1: 𝐷𝑃𝐶𝑜𝑛𝑡𝑒𝑥𝑡(𝐷,𝑌, ℎ · 𝜀, 𝑘)
Input: The original dataset 𝐷 with 𝑁 records and attributes 𝐹 = {𝑋1, ...., 𝑋𝑚}, the

target attribute 𝑌 ∈ 𝐹 , the privacy budget ℎ𝜀, the number 𝑘 of attributes in the
context

Result: The set 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 )

1 𝑔𝑠← 2
𝑁

(︁
1

𝑙𝑛(2) + 𝑙𝑜𝑔(𝑁)
)︁

;

2 ℱ ← {𝑋1, . . . , 𝑋𝑚} ∖ {𝑌 };
3 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 )← ∅;
4 for 𝑡 = 1 to 𝑘 do
5 Select an object 𝑋 ∈ ℱ with probability proportional to 𝑒𝑥𝑝

(︁
ℎ𝜀·𝑀𝐼(𝑌,𝑋)

2·𝑘·𝑔𝑠

)︁
;

6 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 )← 𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 ) ∪ {𝑋};
7 ℱ ← ℱ ∖ {𝑋};
8 end

and the post-processing theorems guarantee that the overall algorithm preserves 𝜀-differential
privacy.

The context selection procedure used by DILCA is an application of a filter method for
supervised feature selection. Indeed, some work has been done on differentially private feature
selection. For instance, [9] and [10] present two alternative differentially private implementa-
tions of a feature selection method that preserves nearest-neighbor classification capability. In
[11], instead, the authors study the sensitivity of several association measures used for feature se-
lection and integrate the noised version of these measures in two differentially private classifiers.
Here, we propose a differentially private selection method that measures the connection of two
attributes by looking at the (distorted) Mutual Information between them and then extracts the 𝑘
most relevant attributes. Mutual Information is a widely used measure of association in the super-
vised feature selection problem and it can be computed as 𝐼(𝑋,𝑌 ) = 𝐻(𝑋)+𝐻(𝑌 )−𝐻(𝑋,𝑌 )
(where 𝐻(·) is the entropy function). Thus, finding the 𝑋 which maximizes 𝐼(𝑋,𝑌 ) is equiva-
lent to finding the 𝑋 which maximizes 𝐼 ′(𝑋,𝑌 ) = 𝐻(𝑋)−𝐻(𝑋,𝑌 ).

Theorem 3.1 (Sensitivity of 𝐼 ′(𝑋,𝑌 )). Given a dataset 𝐷 with 𝑁 records and two attributes
𝑋 and 𝑌 , an upper bound of the sensitivity of 𝐼 ′(𝑋,𝑌 ) is 2

𝑁

(︁
1

𝑙𝑛(2) + 𝑙𝑜𝑔(𝑁)
)︁
.

Algorithm 1 describes the differentially private version of context selection. It requires the
specification, as input parameter, of the desired number 𝑘 of attributes in the context of the target
attribute. When setting the value of parameter 𝑘, one must consider that lower values of 𝑘 are
preferable, from a differentially private point of view. In step 5 of Algorithm 1, the exponential
mechanism is applied 𝑘 times, in order to extract the top 𝑘 attributes: each application of the
exponential mechanism requires part of the overall privacy budget; thus, the smaller 𝑘 is, the
higher the accuracy of the selected context. Algorithm 1 preserves ℎ𝜀-differential privacy.

Once the context of target attribute 𝑌 has been selected, DILCA algorithm computes the
contingency table 𝐶𝑇 (𝑋,𝑌 ) between 𝑌 and 𝑋 , for each 𝑋 in context. Instead of the exact
value 𝐶𝑇 (𝑋,𝑌 ), we compute a distorted contingency table via the Laplace mechanism. This
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Figure 1: Average F-score of the differentially private context.

mechanism needs the specification of two parameters, the sensitivity of the function 𝐶𝑇 , that
can be proved to be 2, and the privacy budget. Since the total number of needed contingency
tables is 𝑘 = |𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑌 )|, the privacy budget we spend for each contingency table is (1−ℎ)𝜀

𝑘 .
In this way, the overall DP-DILCA algorithm preserves 𝜀-differential privacy.

4. Experiments

In this section, we describe the experiments conducted to evaluate the performances of DP-
DILCA. For this evaluation, we use four real-world datasets: adult1, NLTCS2, IPUMS-BR and
IPUMS-ME3.

4.1. Assessment of context selection

In the first experiment, we run DP-DILCA on the real-world datasets in order to assess the
quality of the context they select. For each dataset, we consider one attribute at a time as
target attribute and we compute its differentially private context for increasing levels of privacy
budget 𝜀. Then we compare the context selected by DP-DILCA with the context obtained with
the corresponding non-private method. In all the experiments we set 𝑘 = 3. To evaluate the
similarity between the private and non-private context for each target attribute, we use the
F-score, i.e., the harmonic mean of precision and recall. For each 𝜀, we repeat the experiments 30
times and we compute the mean value of all scores. Figure 1 shows the results of our comparison:
for each 𝜀 we report the average value of the F-score over all the attributes of each dataset. In
all the datasets, the results achieved by DP-DILCA increase with respect to 𝜀.

4.2. Assessment of the distance matrices

In this section we repeat the same experiments on the real-world data presented in Section 4.1,
but we focus on the final output of DP-DILCA: the distances between the values of the target
attribute. As before, for each dataset we consider one attribute at a time as target and we
compute the differentially private distance matrix associated to its values, for increasing levels
of privacy budget 𝜀. Then we compare the distances obtained with DP-DILCA with those

1https://archive.ics.uci.edu/
2http://lib.stat.cmu.edu/
3https://international.ipums.org/

https://archive.ics.uci.edu/
http://lib.stat.cmu.edu/
https://international.ipums.org/
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Figure 2: Average Pearson correlation between the differentially private distance matrices and the
correspondent non private ones.
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Figure 3: Results on clustering (a) and kNN classification (b).

obtained with the corresponding non-private method. In this experiment we set 𝑘 = 3 and
ℎ = 0.3. We quantify the linear correlation between the private distance matrix 𝑀 ′, with shape
𝑛×𝑛, and its non-private counterpart 𝑀 through the sample Pearson’s 𝜌 correlation coefficient.
The 𝜌 coefficient takes values between -1 (perfect negative correlation) and 1 (perfect positive
correlation). If the two matrices are not correlated we will have 𝜌 ∼= 0.

For each 𝜀, we repeat the experiments 30 times and we compute the mean value of the sample
Pearson correlation coefficient. Figure 2 shows the results of our computations: for each 𝜀 we
report the average value of the measure over all the attributes of each dataset. The results show
that there is positive correlation between private and non-private distances and the Pearson’s
coefficient increases as 𝜀 grows. Notice that the Pearson coefficient is always 1 when the target
attribute has only two values. For this reason, for NLTCS (Figure 2(b)), which consists of binary
attributes only, the Person’s correlation is always maximum.

4.3. Experiments on clustering and classification

In this section, we assess the effectiveness and utility of the distances computed by our dif-
ferentially private algorithms. To this purpose, we embed DP-DILCA into two distance-based
learning algorithms: the Ward’s hierarchical clustering algorithm and the kNN classifier. Both
the algorithms take as input the matrix of the pairwise distances between the data objects.
DP-DILCA’s output is the distance between values of a categorical attribute; if it is applied to



all attributes in 𝐹 , then the distance between any pair of objects 𝑜𝑖, 𝑜𝑗 , both described by 𝐹
can be computed as 𝑜𝑏𝑗𝐷𝑖𝑠𝑡(𝑜𝑖, 𝑜𝑗) =

√︀∑︀
𝑋∈𝐹 𝑀𝑋 [𝑜𝑖.𝑋, 𝑜𝑗 .𝑋]2, where 𝑀𝑋 is the distance

matrix returned by DP-DILCA for attribute 𝑋 and 𝑜𝑖.𝑋 and 𝑜𝑗 .𝑋 are the values of attribute 𝑋
on objects 𝑜𝑖 and 𝑜𝑗 [5]. We will refer to this metric as 𝑜𝑏𝑗𝐷𝑖𝑠𝑡𝐷𝑃𝐷𝐼𝐿𝐶𝐴. Similarly, we will
call 𝑜𝑏𝑗𝐷𝑖𝑠𝑡𝐷𝐼𝐿𝐶𝐴 the metric obtained by the non-private DILCA algorithm.

We run the experiment about clustering as follows: for each real-world dataset, we compute
the object distance matrix using the different private and non private metrics, then we run
Ward’s hierarchical clustering with these matrices as input. Since the hierarchical algorithm
returns a dendrogram which, at each level, contains a different number of clusters, we consider
the level corresponding to the number of clusters equal to the number of classes. We call the
overall clustering models 𝐶𝑙𝑢𝑠𝑡𝐷𝑃𝐷𝐼𝐿𝐶𝐴 and 𝐶𝑙𝑢𝑠𝑡𝐷𝐼𝐿𝐶𝐴, depending on the distance metric
adopted. We evaluate the quality of the results through the adjusted rand index (ARI) computed
w.r.t. the actual classes [12]. For this reason we run this experiment on dataset adult only.
Figure 3(a) shows the mean ARI results over 30 experiments. The value of 𝜀 on the 𝑥 axis of
the plot is the overall privacy budget used for the learning of the metric, while the privacy
budget spent for computing the distances among values of a single attribute is 𝜀

𝑚 . The ARI
values of the clustering model with private distance computation grow with respect to the
privacy budget, and for high values of 𝜀, they get results close to those of the clustering with
non-private distances.

As last experiment, we run the kNN classification algorithm, with 𝑘 = 5. We perform a
4-fold cross-validation: one fold is retained as test set, then the metrics 𝑜𝑏𝑗𝐷𝑖𝑠𝑡𝐷𝑃𝐷𝐼𝐿𝐶𝐴, and
𝑜𝑏𝑗𝐷𝑖𝑠𝑡𝐷𝐼𝐿𝐶𝐴 are learned on the remaining 3 folds and the classification model is trained on
the same set. We call the overall models 𝑘𝑁𝑁𝐷𝑃𝐷𝐼𝐿𝐶𝐴 and 𝑘𝑁𝑁𝐷𝐼𝐿𝐶𝐴, depending on the
distance learning algorithm used. For each dataset, we apply the four kNN models 30 times and
compute the mean accuracy of the classification on the the test set. The process is repeated
four times and the results are further averaged on the four test sets. In Figure 3(b) we report
the mean accuracy of all the models for increasing levels of privacy budget 𝜀. The results of
𝑘𝑁𝑁𝐷𝑃𝐷𝐼𝐿𝐶𝐴 are always very close to those of 𝑘𝑁𝑁𝐷𝐼𝐿𝐶𝐴, even for very low levels of 𝜀.

5. Conclusion

We have introduced a new family of differentially private algorithms for the data-driven compu-
tation of meaningful and expressive distances between any two values of a categorical attribute.
Our approach is built upon an effective context-based distance learning framework whose
output, however, may reveal private information if applied to a secret dataset. For this reason,
we have proposed a randomized algorithm, based on the Laplace and exponential mechanisms,
that satisfies 𝜀-differential privacy and returns accurate distance measures even with relatively
small privacy budget consumption. Additionally, the metric learnt by our approach can be used
profitably in distance-based machine learning algorithms, such as hierarchical clustering and
kNN classification.
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